Why Talent Development is Necessary in Math

by Justin Skycak on

When students do the mathematical equivalent of playing kickball during class, and then are expected to do the mathematical equivalent of a backflip at the end of the year, it’s easy to see how struggle and general negative feelings can arise.

The subfield within education that seeks to maximize learning is known as “talent development.” In talent development, the optimization problem is clear: an individual’s performance is to be maximized, so the methods used during practice are those that most efficiently convert effort into performance improvements.

Practitioners of talent development tend to be found in hierarchical skill domains like sports and music, where each advanced skill requires many simpler skills to be applied in complex ways. This is because it’s hard to climb up the skill hierarchy without intentionally trying to do so.

To learn an advanced skill, you must be able to comfortably execute its prerequisite skills, and the prerequisite skills underlying those, and so on. Getting to the point of comfortable execution on any skill takes lots of practice over time – and even after you get there, you have to continue practicing to maintain your ability.

None of this happens naturally. If you don’t carefully manage the process, then you struggle. Nobody gets to be really good at a sport or instrument without taking their talent development seriously and intentionally trying to maximize their learning.

Now, most students aren’t expected to achieve a high level of success in sports or music, so they can get away with de-prioritizing talent development. If every student in gym class were expected to be able to do a backflip by the end of the year, things would have to change – but the expectations are so low that meeting them does not require talent development.

But when it comes to math, things become problematic. Like sports and music, math is an extremely hierarchical skill domain, so achieving a high level of success requires a dedication to talent development. However, unlike sports and music, most students are expected to achieve a relatively high level of success in math: many years of courses increasing in difficulty, culminating in at least algebra, typically pre-calculus, often calculus, and sometimes even higher than that.

As a result, in math, de-prioritizing talent development leads to major issues. When students do the mathematical equivalent of playing kickball during class, and then are expected to do the mathematical equivalent of a backflip at the end of the year, it’s easy to see how struggle and general negative feelings can arise.