Features
CS Primer Show #23: MathAcademy and the efficient pursuit of mastery
1h on 2025-01-17. Math Academy was originally built to support a school program. How come it also works so well for adults? What makes someone a student a good fit for Math Academy -- what's required to succeed? The idea of calibrating to student interest/motivation profiles in the future, just like we currently calibrate to student knowledge profiles.
Chalk and Talk Podcast
2024-12-20. To be released.
Becket U Newsletter #59: Last 25 Years in Review, Don't Die From Heart Disease, "When Will I Ever Need to Use This?"
2024-11-21. Subsection "When Will I Ever Need to Use This?"
Becket U Newsletter #58: AI Model Engineers Biology, Gwern's Latest Interview, "Schools Were Never Optimized for Learning"
2024-11-21. Subsection "Schools Were Never Optimized for Learning."
Golden Nuggets Podcast #40 (Round 4): How Justin learns, new ML course, the magic of Twitter
1h on 2024-11-20; transcript. Developing coding projects for the upcoming ML course. How I would go about learning a new subject where there's not an adaptive learning system available. The power of instructional guidance and a good curriculum. Why I want to learn biology / why I haven't done so yet / how I wish that "Math Academy for biology" existed / how I'm going to try to get myself over the hump by instructing an LLM how to tutor me at least more efficiently than a standard textbook. Strategies I use to increase my output (especially writing output). Viewing Twitter as a mode of production instead of a mode of consumption.
Bonded by Science Podcast
2024-11-13. To be released.
Becket U Newsletter #56: Impact of Prediction Markets, How to Get Ahead of 99% of People, Work on Something That Will Make a Difference
2024-11-13. Subsection "The Mathematician Reforming Education."
Scraping Bits Podcast #116 (Round 3): Essential Math for Machine Learning, Math Intuition/Creativity, Proof Vs Computation
3h on 2024-11-05. Why go through lots of concrete computational examples first before jumping into abstract proofs. The importance of having a zoo of concrete examples. The evolution of Math Academy's content. How to identify the right "chunks" of information and the right prerequisites for the knowledge graph. How to continue learning math as efficiently as possible after you finish all the courses on Math Academy. Frustrations with the lack of existing ML learning resources. How to know whether you're ready for ML projects or you need to learn more math. The blessing and curse of intellectual body dysmorphia. Harnessing reality distortion as a helpful tool. Journaling and documenting one's life.
Golden Nuggets Podcast #39 (Round 3): MA's upcoming machine learning course
2h on 2024-10-30; transcript. Rationale, vision, and progress on Math Academy's upcoming Machine Learning I course (and after that, Machine Learning II, and possibly a Machine Learning III). Design principles behind good math explanations (it all comes down to concrete numerical examples). Unproductive learning behaviors (and all the different categories: kids vs adults, good-faith vs bad-faith). How to get the most out of your learning tasks. Why I recommend NOT to take notes on Math Academy. What to try first before making a flashcard (which should be a last resort), and how we're planning to incorporate flashcard-style practice on math facts (not just times tables but also trig identities, derivative rules, etc). Using X/Twitter like a Twitch stream.
Moontower: The Principles of Learning Fast (Newsletter, Full Doc)
2024-10-09. A month prior, Kris Abdelmessih came across my blog and made a list of 30 articles to read. Not only did he read them all (and even more!), but he also created an incredibly interesting and thoughtful synthesis of them all!
Education Next Article: The Tutoring Revolution
2024-10-08. Quoted regarding why it's necessary for students to receive individualized instruction and how Math Academy leverages the science of learning to accomplish this.
Golden Nuggets Podcast #37 (Round 2): Balancing learning with creative output
1.75h on 2024-09-27; transcript. Balancing learning math with doing projects that will get you hired. The role of mentorship. Designing social environments for learning. Why it's important to let conversations flow out of scope. Misconceptions about "slow and deep" learning. How to create career luck. The sequence of steps that led me to get involved in Math Academy (lots of people ask me about this so here's the precise timestamp: 1:13:45 - 1:24:45). Strategies to maximize your output. The "magical transition" in the spaced repetition process.
Scraping Bits Podcast #107 (Round 2): Proof Writing, Discovering Math, Expert Systems, Learning Math Like a Language
1.75h on 2024-09-25; transcript. Why aspiring math majors need to come into university with proof-writing skills. My own journey into learning math. Math as a gigantic tree of knowledge with a trunk that is tall relative to other subjects, but short relative to the length of its branches. The experience of reaching the edge of a subfield (the end of a branch): as the branch gets thinner, the learning resources get sh*tter, and making further progress feels like trudging through tar (so you have to find an area where you just love the tar). How to fall in love with a subject. How to get started with a hard subject that you don't love: starting with small, easy things and continually compound the volume of work until you're making serious progress. How to maintain focus and avoid distractions. The characteristics of a math prodigy that I've tutored/mentored for 6 years and the extent to which these characteristics can be replicated. How Math Academy's AI system works at a high level, the story behind how/why we created it, and the stages in its evolution into what it is now. How Math Academy's AI is different from today's conventional AI approach: expert systems, not machine learning. How to "train" an expert system by observing and rectifying its shortcomings. How to think about spaced repetition in hierarchical bodies of knowledge where partial repetition credit trickles down through the hierarchy and different topics move through the spaced repetition process at different speeds based on student performance and topic difficulty. Areas for improvement in how Math Academy can help learners get back on the workout wagon after falling off. Why you need to be fully automatic on your times tables, but you don't need to know how to do three-digit by three-digit multiplication in your head. Analogy between building fluency in math and languages. #1 piece of advice for aspiring math majors.
Golden Nuggets Podcast #35 (Round 1): Optimizing learning efficiency at Math Academy
2.5h on 2024-09-11; transcript. Why are people quitting their jobs to study math? How to study math like an Olympic athlete. Spaced repetition is like "wait"-lifting. Desirable difficulties. Why achieving automaticity in low-level skills is a necessary for creativity. Why it's still necessary to learn math in a world with AI. Abstraction ceilings as a result of cognitive differences between individuals and practical constraints in life. How much faster and more efficiently we can learn math (as evidenced by Math Academy's original school program in Pasadena). Math Academy's vision and roadmap.
Scraping Bits Podcast #102 (Round 1): Learning Mathematics Like an Athlete
1h on 2024-09-04; transcript. My background. Why learn advanced math early. Thinking mathematically. A "mathematical" / "first principles" approach to getting in shape with minimalist strength training. Benefits of building up knowledge from scratch & how to motivate yourself to do that. Goal-setting & gamification in math & fitness. Maintaining motivation by looking back at long-term progress (what used to be hard is now easy). Traits of successful math learners. How does greatness arise & what are some multipliers on one's chance of achieving it. How to build habits, solidify them into your identity, and have fun with it.
Cicero D99 Road to Reading Podcast
2024-09-02. To be released.