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Chapter 1. The Two-Sigma Solution

Summary: Educational psychologist Benjamin Bloom is widely known for demonstrating that
one-on-one tutoring produces vastly better learning outcomes than traditional classroom
teaching, and documenting how talent development differs from traditional schooling. Math
Academy is addressing these issues by creating an adaptive, fully-automated online mathematical
talent development platform that emulates the decisions of an expert tutor to provide the most

effective way to learn math.

Bloom’s Two-Sigma Problem

In 1984, educational psychologist Benjamin Bloom published a landmark study comparing the
effectiveness of one-on-one tutoring and traditional classroom teaching. The difference was
monumental: the average tutored student performed better than 98% of the students in a

traditional class.

This finding led to a challenge widely known as Bloom’s two-sigma problem: can we develop
methods of group instruction that are as effective as one-on-one tutoring? (The terminology
“two-sigma” comes from statistics, where the effects of interventions are often measured in

standard deviations or sigmas. An effect size of 98% is slightly more than two sigmas.)

To quote Bloom directly (Bloom, 1984):

“..[T]the most striking of the findings is that under the best learning conditions we can devise
(tutoring), the average student is 2 sigma above the average control student taught under
conventional group methods of instruction.

The tutoring process demonstrates that most of the students do have the potential to reach this
high level of learning. I believe that an important task of research and instruction is to seek ways
of accomplishing this under more practical and realistic conditions than the one-to-one tutoring,
which is too costly for most societies to bear on a large scale.

This is the “2 sigma” problem. Can researchers and teachers devise teaching-learning conditions
that will enable the majority of students under group instruction to attain levels of achievement
that at present can be reached only under good tutoring conditions?

If the research on the 2 sigma problem yields practical methods ... it would be an educational
contribution of the greatest magnitude. It would change popular notions about human potential


http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
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and would have significant effects on what the schools can and should do with the educational
years each society requires of its young people.”

Bloom speculated that an equivalent two-sigma effect might be achieved by combining various
evidence-based learning strategies, especially those involving different objects of change (the
learner, the instructional material, the home environment or peer group, and the teacher and

teaching process) and those that occur at different times in the teaching-learning process.

This is Math Academy’s challenge and purpose. Math Academy is solving Bloom’s two-sigma
problem by bringing together many evidence-based cognitive learning strategies into a single
online learning platform. Our adaptive, fully-automated platform emulates the decisions of an

expert tutor to provide the most effective way to learn math.

Talent Development vs Traditional Schooling

The core philosophy of Math Academy is centered around talent development as opposed to
traditional schooling. At surface level, the two ideas may seem similar: after all, isn’t the purpose
of schooling to develop students’ talents? Bloom, who researched this question extensively,
discovered that the answer is a resounding “no” - the differences between talent development
and traditional schooling are so numerous, so striking, and so critical that traditional schooling

typically cannot even be characterized as supporting talent development.

Around the same time that Bloom coined the two-sigma problem, he was also immersed in a
massive study of talent development. As summarized by other researchers (Luo & Kiewa, 2020),
Bloom (1985) discovered striking commonalities in the upbringing of extremely successful
individuals across a wide variety of fields, leading to a general characterization of the process of

talent development:

“Research interest on talent development was sown by psychologist Benjamin Bloom’s (1985)
seminal book, Developing Talent in Young People. Bloom studied 120 highly talented individuals
across six talent domains and discovered common factors that led to exceptional achievements
across domains. In an interview, Bloom remarked:

‘We at one time thought that the development of a tennis player would be very different from the
development of a concert pianist or a sculptor or a mathematician or a neurologist. What we’ve
found is that even though the content and the procedures may be enormously different in each
field, there is a common set of characteristics in the home, the instruction, and the like. There is a
very general process that seems to be central to the development of talent no matter what the field.
(Brandt, 1985: 34)””


https://en.wikipedia.org/wiki/Adaptive_learning
https://en.wikipedia.org/wiki/Expert_system
https://journals.sagepub.com/doi/full/10.1177/0261429420934436
https://archive.org/details/developingtalent0000unse
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Bloom believed (Brandt, 1985) that this talent development process was being leveraged much
more effectively in athletic than in academic contexts, and that there was an opportunity to
massively elevate students’ degree of learning and academic achievement by reproducing

favorable conditions for talent development:

“I [Bloom] firmly believe that if we could reproduce the favorable learning and support conditions
that led to the development of these [extremely successful] people, we could produce great learning
almost everywhere.

[T]hey [educators] do a very good job in sports. There’s nothing we can tell coaches in high schools
and colleges. But when we get beyond sports, things are sporadic, accidental. Students may have a
good teacher one year and a very poor one the next. And even in the academic subjects, all kinds
of chance circumstances are at work. ... Schools do not seem to have a great tolerance for students
who are out of phase with other students in their learning process.”

One of the main differences between traditional schooling and talent development, according to
Bloom & Sosniak (1981), is that students are grouped primarily by age, rather than ability, and
each group progresses through the curriculum in lockstep. Each member of the group engages

in the same tasks, and it is expected that different students will learn skills to different levels.

"The school schedule and standards are largely determined by the age of the child. The curriculum
and learning experiences are presumably appropriate to most students at that age or grade. While
there may be some adjustments for different rates of progress and some adjustment of standards
for individuals within a grade or classroom, each individual is instructed as a member of a group
with some notion that all are to get as nearly equal treatment as the teacher and the instructional
material can supply.

[T]he group is central in the school learning process and only minimal adjustments are made for
individual children. If the group as a whole has difficulty, the teacher will reteach the task or skill
until some portion of the group has learned it. But generally, all the children are not expected to
learn a task or skill to the same level and little is done with the use of feedback-corrective
procedures to bring all children to the same standard of accomplishment.

Since it is not expected that each child will learn to the same standard or level, relative standards
are emphasized, but the tasks are the same. Certain children are expected to learn a task to a high
level while others are expected to learn it only to a much lower level.”

In talent development, however, instruction is completely individualized. Learning tasks are
chosen based on the specific needs of individual students, each student must learn each skill to a
sufficient level of mastery before moving on to more advanced skills. Students progress through
skills at different rates, but learn skills to the same threshold of performance. Their progress is
measured not by their level of learning in courses that they have taken, but rather by how

advanced the skills are that they can execute to a sufficient threshold of performance.

"Part or all of the instruction the talented individual received was on a one-to-one basis. The
pianists had weekly or twice weekly private lessons. ... The swimmers worked with many other


https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198509_brandt2.pdf
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198111_bloom.pdf
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swimmers in the pool, but the instruction was individualized and personalized. The
mathematicians had much less systematic instruction in the early years, but they almost always
learned alone or with one adult or peer.

Some of the instruction each week was provided by a teacher (tutor) who diagnosed what was
needed, set learning objectives, and provided instruction with frequent feedback and correctives.
The teacher also suggested appropriate practice, emphasizing specific points or problems to be
solved, and set a time by which the individual was expected to attain the objectives to a particular
standard. At the end of the set time, the child performed and the teacher noted the gains and what
had still to be accomplished, gave corrective instruction, and then gave further instruction for new
material and procedures. The teacher praised and encouraged the child for his or her
accomplishments, and when the standard was attained, set a new task and further objectives and
standards. The cycle of learning tasks, objectives, standards, and motivation was repeated over
and over as the child progressed.

In talent development, each child was seen as unique and the teacher (tutor) set appropriate
learning tasks for the child, gave rewards which the child valued or responded to, and set the pace
of learning believed to be appropriate for the individual child. The child's learning rate was
central and there was continual adjustment to the child learning the talent. The objectives and
standards set by the teacher were always in terms of specific tasks to be accomplished in particular
ways by the individual child. While the child was frequently judged in comparison with other
children, emphasis was on the accomplishment or mastery of the particular learning tasks set for
the individual.”

To recap, Bloom & Sosniak (1981) summarized these differences as follows:

"In general, school learning emphasizes group learning and the subject or skills to be learned.
Talent development typically emphasizes the individual and his or her progress in a particular
activity. In school group learning, little is done to help each individual solve his or her special
learning problems, while in talent learning the instruction is regarded as good, at least by the
parents, only if it helps the individual make clear progress, overcome learning difficulties, and
move to higher and higher standards of attainment."

They also noted that these differences are closely related to the scope of a teacher’s
responsibility: in traditional schooling, teachers focus on a “cross section” of many students
covering a small subset of curriculum over a short period of time, whereas in talent
development, teachers have “longitudinal” accountability for fewer students each learning long

progressions of skills over a long periods of time.

"...[In talent development, the teacher] emphasizes the child's progress from lesson to lesson with
the child's stage at one time as the benchmark for noting progress or gains. .. The teacher is
concerned with the child's growth and progress toward what is possible at the highest level. This
stems from the likelihood that the teacher will remain with the child over a number of years and
also from the teacher's long term view of what is possible for the particular child.

In contrast, the schools are arranged by courses. Although the curriculum in a particular subject
may extend over a period of ten or more years, each teacher has the child only for a term, year, or
course. And the teacher is responsible only for what happens during that period of time. The
teacher judges each child in terms of how well he or she is doing in comparison with other
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children at that grade level or in that class. Each teacher at a particular grade level is primarily
concerned with the teaching and learning appropriate to that grade. Little attention is paid to
what the child has already learned, or to what each child will need to effectively enter the next
grade or course.”

Bloom & Sosniak (1981) also observed that these differences are so critical that traditional
schooling typically cannot even be characterized as supporting talent development. As Bloom
describes, talent development is not only different from schooling, but in many cases completely

orthogonal to schooling:

"For one portion of our sample, talent development and schooling were almost two separate
spheres of their life. ... Usually the student made the adjustments, resolving the conflict by doing
all that was a part of schooling and then finding the additional time, energy, and resources for
talent development. ... Mathematicians found and worked through special books and engaged in
special projects and programs outside of school.

Sometimes the schools or particular teachers made minor adjustments to dissipate the conflict.
Mathematicians were sometimes excused from a class they were too advanced for and allowed to
work on their own in the library. Sometimes they were accelerated one grade as a concession to
their outside learning.

Whether the individual or the school made these adjustments, it was clear that these adjustments
minimized conflict but did little to assist in talent development. The individual was able to work
at both schooling and talent development, although with minimum interaction. .. Talent
development and schooling were isolated from one another. Schooling did not assist in talent
development, but in these instances it did not interfere with talent development.”

And while other participants that Bloom studied had more overlap between schooling and talent

development, the overlap was not always positive. Rather, it yielded a mixed bag of experiences:

“For a second portion of our sample, school experiences were a negative influence on their talent
development. For these individuals the conflicting requirements of talent development and
schooling could rarely be resolved. Schooling was truly something to be suffered through. These
individuals found that their efforts in the talent field were not well received by teachers,
principals, or peers.

For the third portion of our sample, we find the most encouraging role of the schools in talent
development. School experiences became a major source of support, encouragement, motivation,
and reward for the development of talent. ... Some individuals found private support for their
development of talent from teachers or principals. These teachers or principals noticed the child’s
special development and recognized the quality of his or her work. ... They recognized the student’s
seriousness and shared with the student an eagerness for working toward very high standards and
a commitment to excellence.”

The general orthogonality of schooling and talent development, and the mixed bag of positive
and negative experiences resulting from any overlap between them, echo one of Bloom’s quotes

(Brandt, 1985) at the beginning of this chapter:
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“..[W]hen we get beyond sports, things are sporadic, accidental. Students may have a good teacher
one year and a very poor one the next. And even in the academic subjects, all kinds of chance
circumstances are at work.”

Private Tutoring is Necessary but Prohibitively Expensive

Unfortunately, in most fields and particularly in mathematics, there is no widely available
solution to the lack of talent development by traditional schools other than private tutoring,
which is prohibitively expensive for most families and schools. To get a sense of lower bound,
financially: a successful low-cost tutoring intervention (40 minutes per school day, 1 tutor per 2
students) cost about $4000 per student per year, with tutors being paid a yearly stipend of only
$16,000 (plus benefits) while working through the entire school day (6 class periods) (Guryan et
al., 2023). Under these conditions, a full hour of fully individualized tutoring (1 tutor per student)
each school day would cost $12,000 per student per year (= $4000 x 2 x 60/40).

It’s important to note that while these tutors possessed strong math skills, they were not
long-term expert coaches in the sense of the preceding discussion on talent development.
Rather, tutors were “willing to devote one year to public service — for example, recent college graduates,
retirees or career-switchers — but do not necessarily have extensive prior training or experience as

teachers.” Needless to say, long-term expert coaches would be far more costly and harder to find.

While there do exist mathematical “talent search” competitions in which top competitors are
selected for talent development, only a tiny proportion of highly talented students take the exam
and make the cut, and the duration of talent development that they receive is brief. To quote

mathematician George Berzsenyi (2019):

“Participation in each of these [exams] is based on performance in the previous competition(s),
and hence to a great extent the entire process is aimed at finding about 60 students for the
three-week Mathematical Olympiad Summer Program (MOSP), where six students are selected to
represent the United States at the International Mathematical Olympiad (IMO).

It always bothered me to have several hundred thousand students take the AMC, learn that tens of
thousands of them are talented, and then select 60 for a brief talent development program and
ignore the rest, expecting them to develop their own capabilities and, if not discouraged, come
back the following year to prove themselves again.”

The goal of Math Academy is to make mathematical talent development widely available to

serious students who are motivated to undertake it.


https://www.aeaweb.org/articles?id=10.1257/aer.20210434
https://community.ams.org/journals/notices/201909/rnoti-p1471.pdf
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Stages of Talent Development

As summarized by researcher Gordon Bloom (2002), Benjamin Bloom (1985) observed that the
journey to developing a talent could be divided into three phases in which the student’s activity
in the talent area transitioned from fun and exciting playtime, to intense and strenuous skill

refinement, to developing their individual style and pushing the boundaries of the field.

“Bloom’s (1985) research identified three phases of talent development of expert performers ...
labeled the early years, the middle developmental years, and the final years of perfecting the skills.

[The early years began] when individuals were introduced to activities in their sport. ... The
coach/teacher provided the performer with considerable amounts of positive feedback and
approval and allowed the children to play and explore all aspects of the sport. Rewards were
garnered for effort rather than for achievement, and rarely was the coach critical of the children.

In the second phase or middle years ... individuals became fully committed to their performance
goals. For the tennis players, the sport became more than a “game,” it became “real business.” ... In
the early years of development, the coaches had been good at getting the athletes interested in and
excited about their sport. In the middle years, however, the athletes and their parents felt they
needed someone to teach them precision and technique as well as strategy. They also needed to
tailor their skills to emphasize their own personal strengths and to compensate for any weaknesses
they might have. ... The cultivation of talent now became a top priority for the performer. Coaches
demanded more hard work, commitment, and discipline from their athletes. The athletes’ training
regimens became more intense and advanced as coaches introduced them to more strenuous and
strategic areas of their sport.

Later Years. Athletes who achieved high levels of success auditioned for the opportunity to work
with ... an individual widely recognized as a master teacher or expert in the domain. ... [The
athletes| were totally committed to their chosen activity and would do whatever was necessary to
excel. ... [including making] a number of sacrifices ... such as greater expenses and often moving to
a new city. .. The relationship between athlete and expert coach evolved into one of mutual
respect and collegiality with both parties focusing less on instructional methods and more on
tactical refinement and the development of the individual’s style. ... These coaches challenged
their proteges to excel beyond their perceived human capabilities. “This was especially true of the
Olympic swimmers, who were expected to exceed records beyond that ever previously
accomplished by any human being. So, too, was it true of the mathematicians, who were expected
to solve problems that had never been solved before’ (Bloom, 1985, p. 525).”

Math Academy carries students through the second stage of talent development, which centers
around intense and strenuous skill development. In this stage, it is assumed that students are
motivated, be it intrinsically or extrinsically, to engage in particularly effortful forms of practice

that maximize their learning.

Note that Math Academy may not be appropriate for students who remain in Bloom’s first stage
and desire a form of educational “playtime,” or students who have progressed to the third stage

and are developing original research in mathematics.


https://www.mcgill.ca/sportpsych/files/sportpsych/2002_-_bloom_g.a._2002._role_of_the_elite_coach_in_the_development_of_talent._in_j.m._silva_d.e._stevens_eds._psychological_foundations_of_sport_pp._466-483._boston-_allyn_and_bacon.pdf
https://archive.org/details/developingtalent0000unse
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Chapter 2. The Science of Learning

Summary: Math Academy leverages evidence-based cognitive learning strategies including active
learning, deliberate practice, mastery learning, minimizing cognitive load, developing
automaticity, layering, non-interference, spaced repetition (distributed practice), interleaving, the
testing effect (retrieval practice), and gamification. These methods are backed by decades of
research, but they clash with traditional educational practices, which are held in place by
convenient misconceptions about learning. By systematically applying these strategies, Math
Academy accelerates student learning by 4x, meaning that serious students learn 4x the amount of

material in the same time as compared to traditional classrooms.

Cognitive Learning Strategies

The science of learning has advanced significantly over the past century. Numerous effective
cognitive learning strategies have been identified and researched extensively since the early to

mid-1900s, with key findings being successfully reproduced over and over again.
At a glance, here are some of the highlights:

e Active Learning - students learn more when they are actively performing learning

exercises as opposed to passively consuming educational content.

e Deliberate Practice - effective learning feels like a workout with a personal trainer and
should center around individualized training activities that are chosen to improve

specific aspects of their performance through repetition and successive refinement.

e Mastery Learning - each individual student needs to demonstrate proficiency on

prerequisite topics before moving on to more advanced topics.

e Minimizing Cognitive Load - because our brains can only process small amounts of

new information at once, it’s critical to break down skills and concepts into tiny steps.

e Developing Automaticity - to free up mental processing power, it’s also critical to

practice low-level skills enough that they can be carried out without requiring conscious
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effort.

e Layering - learning is about making connections. The more connections there are to a
piece of knowledge, the more ingrained, organized, and deeply understood it is, and the
easier it is to recall. The most efficient way to increase the number of connections to
existing knowledge is to continue layering on top of it - that is, continually acquiring

new knowledge that exercises prerequisite or component knowledge.

e Non-Interference - conceptually related pieces of knowledge should be spaced out over
time so that they are less likely to interfere with each other’s recall. New concepts should

be taught alongside dissimilar material.

e Spaced Repetition (Distributed Practice) - reviews should be spaced out or distributed
over multiple sessions (as opposed to being crammed or massed into a single session) so
that memory is not only restored, but also further consolidated into long-term storage,

which slows its decay.

e Interleaving (Mixed Practice) - the effectiveness of practice is diminished when a single
skill is practiced many times consecutively beyond a minimum effective dose. Review
problems should be spread out or interleaved over multiple review assignments that each
cover a broad mix of previously-learned topics. In addition to being more efficient, this

also helps students match problems with the appropriate solution techniques.

e The Testing Effect (Retrieval Practice) - to maximize the amount by which your
memory is extended when solving review problems, it’s necessary to avoid looking back
at reference material unless you are totally stuck and cannot remember how to proceed.

For this reason, it’s necessary to test frequently as a part of the learning process itself.

e Gamification - when game-like elements (such as points and leaderboards) are properly
integrated into student learning environments, students typically not only learn more
and engage more with the content, but also enjoy it more. However, these gamified
elements must be aligned with the goals of the course, the motivations of the students,
and the context of the educational setting. Further, they need to be resistant to “hacking”
behaviors that attempt to bypass learning by exploiting loopholes in the rules of the

game.
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The Persistence of Tradition

One might expect to find these strategies being leveraged in today’s classrooms to drastically

improve the depth, pace, and overall success of student learning. However, the disappointing

reality is that the practice of education has barely changed, and in many ways remains in direct

opposition to the strategies outlined above.

Classes still march through linear sequences of topics according to a predetermined
schedule. Students are tethered to the pace of the class, which means that students who
get lost are continually asked to learn new topics despite not having mastered the
prerequisites, and students who learn quickly are prevented from learning more
advanced concepts that come later in the class schedule or in a higher grade level (even if

they have already mastered the prerequisites).

Units of related material are taught in subsequent lessons, which promotes confusion,
impedes recall, and places a severe bottleneck on how many topics can be successfully
taught simultaneously, thereby creating lots of friction and massively slowing down the

learning process.

After learning a topic during class and practicing it on the homework, students forget
about it until it’s time to study for a test — and there are only a handful of tests given
throughout the entire duration of a course. After the test, students are rarely required to
practice the topic again, unless it just happens that some new topic requires them to
remember the old one. The end result is that students end up forgetting most of what

they learn.

All students are given the same homework and assessments. This creates opportunities
for coordinated cheating, a wide-open loophole in the grading system. Many students
habitually exploit this loophole to bypass learning and obtain grades that do not reflect
their (lack of) knowledge.

As lamented by Weinstein, Madan, & Sumeracki (2018):

“The science of learning has made a considerable contribution to our understanding of effective
teaching and learning strategies. However, few instructors outside of the field are privy to this
research.

In particular, a review published 10 years ago identified a limited number of study techniques that
have received solid evidence from multiple replications testing their effectiveness in and out of the
classroom (Pashler et al., 2007).


https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0087-y
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A recent textbook analysis (Pomerance, Greenberg, & Walsh, 2016) took the six key learning
strategies from this report by Pashler and colleagues, and found that very few teacher-training
textbooks cover any of these six principles — and none cover them all, suggesting that these
strategies are not systematically making their way into the classroom.

This is the case in spite of multiple recent academic (e.g., Dunlosky et al., 2013) and general
audience (e.g., Dunlosky, 2013) publications about these strategies.”

Kirschner & Hendrick sum it up as follows (2024, pp.275):

“..[MJost students, and also many or even most teachers, don’t have an accurate picture of the
effectiveness of their study approach.

After more than a hundred years of research into learning and memory, there are a few things that
we know about good and less good approaches. Since the turn of this century, people have been
trying to figure out how to remember as much as possible, how to ensure that we forget as little as
possible, and how to do this in as little time as possible.

The reason we have our doubts with respect to teachers is because the findings that have emerged
from this research aren’t yet included in textbooks for teachers (both in research in the US, as well
as in the Netherlands and Flanders; Pomerance, Greenberg, & Walsh, 2016; Surma,
Vanhoyweghen, Camp, & Kirschner, 2018).”

As Halpern & Hakel (2003) emphasize more sharply:

“Those outside academia further assume that because we are college faculty, we actually have a
reasonable understanding of how people learn and that we apply this knowledge in our teaching.
... It would be reasonable for anyone reading these fine words to assume that the faculty who
prepare students to meet these lofty goals must have had considerable academic preparation to
equip them for this task. But this seemingly plausible assumption is, for the most part, just plain
wrong.

The preparation of virtually every college teacher consists of in-depth study in an academic
discipline: chemistry professors study advanced chemistry, historians study historical methods and
periods, and so on. Very little, if any, of our formal training addresses topics like adult learning,
memory, or transfer of learning.

And these observations are just as applicable to the cognitive, organizational, and educational
psychologists who teach topics like principles of learning and performing, or evidence-based
decision-making. We have found precious little evidence that content experts in the learning
sciences actually apply the principles they teach in their own classrooms. Like virtually all college
faculty, they teach the way they were taught.

But, ironically (and embarrassingly), it would be difficult to design an educational model that is
more at odds with the findings of current research about human cognition than the one being used
today at most colleges and universities.

There is a large amount of well-intentioned, feel-good psychobabble about teaching out there that
falls apart upon investigation of the validity of its supporting evidence.”
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These sentiments are also echoed by Rohrer & Hartwig (2020):

“We fear, however, that continued advocacy might fall on deaf ears. ... empirical evidence is not
highly valued by many of the educators who recommend learning methods and train teachers (e.g.,
Robinson, Levin, Thomas, Pituch, & Vaughn, 2007; Sylvester Dacy, Nihalani, Cestone, &
Robinson, 2011). Against this backdrop, it might be difficult to inspire the kind of support for
evidence-based interventions like those that sparked the dramatic improvements in Western
medicine over the last century. Doing so, we believe, is the most pressing challenge facing learning
scientists.”

A Common Theme Preventing Adoption

| Theme and Examples

So, what happened? Why have these cognitive learning strategies been rejected by the education

system? The common theme throughout the literature is that effective cognitive learning strategies

often deviate from traditional conventions, which are held in place by convenient misconceptions about

learning.

The most obvious example of this theme is active learning.

Traditionally, classes are taught using passive learning: the instructor lectures, and
students listen, maybe answering a question here and there. Unsurprisingly, this is not
nearly as effective as an active learning class where students spend most of their time

actively performing learning exercises.

However, it has been shown (Deslauriers et al., 2019) that even though students in active
learning classes learn more, they mistakenly perceive that they learn less. Active learning
produces more learning by increasing cognitive activation, but students often mistakenly
interpret extra cognitive effort (such as productive struggle and occasional confusion) as

an indication that they are not learning as well, when in fact the opposite is true.

Of course, this misconception is a convenient belief for students who want to minimize
the amount of effort that they expend during class while still “feeling” as though they are
learning (even if it is not really happening). It is also a convenient belief for teachers who
enjoy the spotlight and art of lecturing and the “feeling” that their students are learning,
do not want to nag students to stay focused during class, and do not suffer repercussions

for the reality that is their students’ lack of learning.


https://files.eric.ed.gov/fulltext/ED611861.pdf
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116

32 | The Math Academy Way - Working Draft

Another example of this theme is interleaving (mixed practice).

Traditionally, homework assignments focus on a single topic (or group of closely related
topics) that are practiced many times consecutively beyond a minimum effective dose.
This is not nearly as effective as spreading out or interleaving those problems over
multiple review assignments that each cover a broad mix of previously-learned topics,
which is more efficient and also helps students learn to match problems with the

appropriate solution techniques.

However, it has been shown (see Rohrer, 2009 for a review) that even though interleaving
promotes vastly superior retention and generalization, students again mistakenly believe
that they are learning less due to the increased cognitive effort. Teachers can be fooled,
too, because although interleaving increases performance on cumulative tests, it actually
lowers performance on homework (which is otherwise artificially high if students settle
into a robotic rhythm of mindlessly applying one type of solution to one type of
problem).

Again, this misconception is a convenient belief for students who want to get through
homework as quickly and effortlessly as possible while “feeling” as though they are
mastering new skills (even if they are unable to consistently reproduce those skills in
true assessment situations). It is also a convenient belief for teachers who want to assign
good homework grades and “feel” as though these grades represent their students’
learning, but don’t want to spend extra effort organizing a properly spaced mixed review
schedule and fielding a greater number and variety of homework questions from

students.

A similar example can be constructed for every cognitive learning strategy that was mentioned

earlier in this chapter. In some way or another, each strategy increases the intensity of effort

required from students and/or instructors, and the extra effort is then converted into an outsized

gain in learning. However, the extra effort also exposes the reality that students didn’t actually

learn as much as they (and their teachers) “felt” they did under less effortful conditions. This

reality is inconvenient to students and teachers alike; therefore, it is common to simply believe

the illusion of learning and avoid activities that might present evidence to the contrary.

More generally, while “innocent until proven guilty” is a good model for a legal system,

“competent until proven incompetent” is a poor model for an educational system. If students are

not made to demonstrate measurable learning at each step of the way, until they are able to
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consistently reproduce learned skills in true assessment situations, then the most likely outcome
is that very little learning will happen. Whereas the casualties of the legal system are those who
are jailed without just cause, the casualties of the education system are those students who are
hopelessly pushed to learn advanced skills despite not having actually mastered the
prerequisites. Empowering students requires ensuring their learning, and ensuring learning

requires interrogating their knowledge.

| Desirable Difficulty vs Illusion of Comprehension

This theme is so well-documented in the literature that it even has a catchy name: a practice
condition that makes the task harder, slowing down the learning process yet improving recall

and transfer, is known as a desirable difficulty. As summarized by Rohrer (2019):

“A feature that decreases practice performance while increasing test performance has been
described by Bjork and his colleagues as a desirable difficulty, and spacing and mixing are two of
the most robust ones. As these researchers have noted, students and teachers sometimes avoid
desirable difficulties such as spacing and mixing because they falsely believe that features yielding
inferior practice performance must also yield inferior learning.”

Many types of cognitive learning strategies introduce desirable difficulties - for instance, Bjork
& Bjork (2011) list a few more:

“Such desirable difficulties (Bjork, 1994; 2013) include varying the conditions of learning, rather
than keeping them constant and predictable; interleaving instruction on separate topics, rather
than grouping instruction by topic (called blocking); spacing, rather than massing, study sessions
on a given topic; and using tests, rather than presentations, as study events.”

As Bjork & Bjork (2023, pp.21-22) elaborate, desirable difficulties make practice more
representative of true assessment conditions. Consequently, it is easy for students (and their
teachers) to vastly overestimate their knowledge if they do not leverage desirable difficulties

during practice, a phenomenon known as the illusion of comprehension:

“A general characteristic of desirable difficulties (such as the spacing or interleaving of study or
practice trials) is that they present challenges (i.e., difficulties) for the learner, and hence can even
appear to be slowing the rate at which learning is occurring. In contrast, their opposites (such as
massing or blocking of study or practice trials) often make performance improve rapidly and can
appear to be enhancing learning.

Thus, as either learners or teachers, we are vulnerable to being misled as to whether we or our
students are actually learning effectively, and, indeed, we can easily be misled into thinking that
these latter types of conditions, such as massing or blocking, are actually better for learning. Such
dynamics probably play a major role in why students often report that their most preferred and
frequently used types of study activity include activities such as rereading chapters (e.g., Bjork et
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al., 2013), typically right away after an initial reading. Such activities can provide a sense of
familiarity or perceptual fluency that we can interpret as reflecting understanding or
comprehension and, thus, produce in us what we have sometimes called an ‘illusion of
comprehension’ (Bjork, 1999; Jacoby et al., 1994).

Similarly, when information comes readily to mind, which frequently is the case in blocked
practice, or with no contextual variation in a repeated study or practice setting, we can be led to
believe that such immediate access reflects real learning when, in fact, such access is likely to be
the product of cues that continue to be present in the unchanging study situation, but that are
unlikely to be present at a later time, such as on an exam. As both learners and teachers, we need
to be suspicious of conditions of learning, such as massing and blocking, that frequently make
performance improve rapidly, but then typically fail to support long-term retention and transfer.
To the extent that we interpret current performance as a valid measure of learning, we become
susceptible both to mis-judging whether learning has or has not occurred and to preferring poorer
conditions of learning over better conditions of learning.”

| The Educational System Prefers Illusion

As Bjork (1994) explains, the typical teacher is incentivized to maximize the immediate
performance and/or happiness of their students, which biases them against introducing

desirable difficulties and incentivizes them to promote illusions of comprehension:

“Recent surveys of the relevant research literatures (see, e.g., Christina & Bjork, 1991; Farr, 1987;
Reder & Klatzky, 1993; Schmidt & Bjork, 1992) leave no doubt that many of the most effective
manipulations of training - in terms of post-training retention and transfer - share the property
that they introduce difficulties for the learner.

If the research picture is so clear, why then are ... nonproductive manipulations such common
features of real-world training programs? ... [T]he typical trainer is overexposed, so to speak, to the
day-to-day performance and evaluative reactions of his or her trainees. A trainer, in effect, is
vulnerable to a type of operant conditioning, where the reinforcing events are improvements in the
[immediate] performance and/or happiness of trainees.

Such a conditioning process, over time, can act to shift the trainer toward manipulations that
increase the rate of correct responding — that make the trainee’s life easier, so to speak. Doing
that, of course, will move the trainer away from introducing the types of desirable difficulties
summarized in the preceding section.”

What’s more, most educational organizations operate in a way that exacerbates this issue:

“The tendency for instructors to be pushed toward training programs that maximize the
performance or evaluative reaction of their trainees during is exacerbated by certain institutional
characteristics that are common in real-world organizations.

First, those responsible for training are often themselves evaluated in terms of the performance
and satisfaction of their trainees during training, or at the end of training.
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Second, individuals with the day-to-day responsibility for training often do not get a chance to
observe the post-training performance of the people they have trained; a trainee’s later successes
and failures tend to occur in settings that are far removed from the original training environment,
and from the trainer himself or herself.

It is also rarely the case that systematic measurements of post-training on-the-job performance
are even collected, let alone provided to a trainer as a guide to what manipulations do and do not
achieve the post-training goals of training.

And, finally, where refresher or retraining programs exist, they are typically the concern of
individuals other than those responsible for the original training.”

As a result, these cognitive learning strategies often ruffle the feathers of educational
traditionalists, whose immediate response is to lash out against it. Take it directly from John
Gilmour Sherman (1992), a professor who implemented evidence-based learning strategies in his
own classroom, only to be shut down for no reason other than his superior’s unsupported

opinions about how learning works:

“Avoiding a frontal attack, the chairman of the Psychology Department at Georgetown declared
by fiat that something on the order of 50% of class time must be devoted to lecturing. By reducing
the possibility of self-pacing to zero, this effectively eliminated PSI [Personalized System of
Instruction] courses.

He issued this order on the grounds that in the context of lecturing it is the dash of intellects in
the classroom that informs the student.” No data were presented on this point! The spectacle of
purporting to defend scholarship while deciding the merits of instructional methods by assertion is

silly.

The troubling aspect of all these cases was that data played no part in the decisions. It is
disturbing when one has to wonder whether research on the education process makes any

difference.”

Ultimately, Sherman’s experiences led him to conclude that

“..[T]he investment in keeping things as they are may be impossible to overcome. ... Improving
instruction is the goal, but only in the context of not changing anything that is important to any
vested interest. ... [When the role of the teacher] does not conform to what most people think of as
teaching; this is a problem and an obstacle to implementation.”

This sentiment continues into recent years. As Bjork & Bjork (2023, pp.19) reminisce:

“Having been asked to convey in ‘our own words’ what we most want students and teachers to
know regarding how to apply findings from the science of learning has led us to think back on our
efforts to spread the desirable difficulties gospel, so to speak. It verges on laughable that we
thought 25 years or so ago that we would simply tell people about certain key findings, and they
would then immediately change how they managed their own learning.”
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Or, as Rohrer & Hartwig (2020) put it bluntly:

“..[T]he success of an intervention depends partly on whether students and teachers are willing to
use it. Too often, the classroom is where promising interventions go to die.”

Technology Changes Everything

| Revival via Technology

It is unfortunate that Sherman and countless other researchers, practitioners, and proponents of
evidence-based education are no longer alive to see their life’s work positively transform the
practice of education - and especially so for those like Sherman (1992) who eventually despaired

“whether research on the education process makes any difference.”

However, some did maintain hope that one day their contributions might be revived in the
future when computers advanced far enough to make individualized digital learning

environments technologically possible and commercially viable.

Indeed, these cognitive learning strategies are now some of the main guiding principles behind
Math Academy. By leveraging these strategies to their fullest effect and capitalizing on their
compounding nature, Math Academy is proud to offer a learning environment where students

can learn many times more than they would otherwise in a traditional classroom.

| Necessity of Technology

In building this environment, we discovered something interesting: technology not only lets us
circumvent the opposing inertia in the education system, but also helps us leverage these
cognitive learning strategies to a degree that would not be feasible for even the most agreeable
and hard-working human teacher. While it’s true that a human teacher can reap some benefits
of these strategies while maintaining a reasonable workload (and there really is no good excuse
for not doing so), technology enables us to leverage these strategies to their full extent and
produce even better learning outcomes than a human teacher who uses loose approximations of

these strategies as much as humanly possible.

For instance, consider spaced repetition. While some curricula now adopt a spiral approach

where material is naturally revisited and further built upon in later textbook chapters and/or
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grades, this is nowhere near the level of granularity, precision, and individualization that is
required to capture the maximum benefit of true spaced repetition. Taken to its fullest extent,
spaced repetition requires the instructor to keep track of a repetition schedule for every student
for every topic and continually update that schedule based on the student’s performance - and
each time a student learns (or reviews) an advanced topic, they’re implicitly reviewing many

simpler topics, all of whose repetition schedules need to be adjusted as a result.

Of course, this is an inhuman amount of work. In fact, before building our online system, we
actually tried performing a loose approximation of spaced repetition manually while teaching in
a human-to-human classroom. It turned out that, teaching just two classes with only a handful
of students in each class, it took more time and effort than a full-time job to implement a very
loose approximation of spaced repetition for the class as a whole - not even personalized to
individual students. And that’s just one of many strategies that are necessary for effective

teaching!

But just because fully leveraging these cognitive learning strategies requires an inhuman
amount of work, doesn’t mean that there’s little to gain from it (especially when a century of
research has shown that these strategies lead to immense improvements in learning). All it
means is that the human teacher is a bottleneck to effective teaching. And what’s always the

solution when manual human effort is a bottleneck? Technology.

| Accelerating Student Learning by 4x

By building a system that fully leverages these cognitive strategies, we have accelerated student
learning by 4x: on Math Academy, serious students learn 4x the amount of material in the same
time (or the same amount of material in a quarter of the time) as compared to traditional
classrooms. And that’s being conservative, since our courses tend to be even more
comprehensive than what you'd find in a traditional classroom. (Our courses aim to cover the
superset of all content that one could reasonably expect to find in any major textbook or

standard class syllabus.)
The 4x factor is a hard measurement, backed by concrete numbers:
e We measure our course length in terms of XP. One XP is approximately one minute of

focused effort, give or take, depending on the individual student. We model our average

student on a serious (but imperfect) student who works an average of 40 XP per weekday.
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e Using the AP Calculus BC Course as a comparison, a typical student in a school will
have a 50-minute class five days per week plus about an hour of homework per night.
Throughout a typical 32-week school year, that’s a total of (50 minutes class + 60 minutes
homework average per day) (five days) (32 weeks) = 17,600 minutes. Add in a couple extra
hours for each test and quiz throughout each semester and then at least 30-40 hours for
practice exams and studying for the AP exam, if you want to get a 5. That will put you in

the ballpark of our calculation of 24,000 minutes.

e The Math Academy AP Calculus BC Course is approximately 6,000 XP (equivalent to

about 6,000 minutes) and already includes quizzes, reviews, and highly specific test prep.

The rest of the book describes how our technology accomplishes this.
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Importance: Many of the most effective manipulations of training — in terms of post-training retention and
transfer — share the property that they introduce difficulties for the learner. The typical trainer is incentivized to
maximize the immediate performance and/or happiness of trainees, which biases them against introducing

these types of desirable difficulties. What’s more, most training organizations are set up to exacerbate this issue.
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Chapter 3. Core Science: How the Brain Works

Summary: Cognition involves the flow of information through sensory, working, and long-term
memory banks in the brain. Sensory memory temporarily holds raw data, working memory
manipulates and organizes information, and long-term memory stores it indefinitely by creating
strategic electrical wiring between neurons. Learning amounts to increasing the quantity, depth,
retrievability, and generalizability of concepts and skills in a student’s long-term memory. Limited
working memory capacity creates a bottleneck in the transfer of information into long-term

memory, but cognitive learning strategies can be used to mitigate the effects of this bottleneck.

Sensory, Working, and Long-Term Memory

In order to develop a good intuitive sense of how learning can be optimized, it’s crucial to
understand - at a concrete, physical level in the brain - what learning actually is. At the most
fundamental level, learning is the creation of strategic electrical wiring between neurons

(“brain cells”) that improves the brain’s ability to perform a task.

When the brain thinks about objects, concepts, associations, etc, it represents these things by
activating different patterns of neurons with electrical impulses. Whenever a neuron is activated
with electrical impulses, the impulses naturally travel through its outward connections to reach
other neurons, potentially causing those other neurons to activate as well. By creating strategic
connections between neurons, the brain can more easily, quickly, accurately, and reliably

activate larger patterns of neurons.

As one might expect, it is extraordinarily complicated to understand what these specific brain
patterns are, how they interact, and how the brain identifies strategic ways to improve its
connectivity. However, to some extent, these are just nature’s way of implementing cognition -

and the overarching cognitive processes of the brain are much better understood.

At a high level, human cognition is characterized by the flow of information across three

memory banks:

1. Sensory memory temporarily holds a large amount of raw data observed through the

senses (sight, hearing, taste, smell, and touch), only for several seconds at most, while
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relevant data is transferred to short-term memory for more sophisticated processing.

2. Short-term memory, and more generally, working memory, has a much lower capacity
than sensory memory, but it can store the information about ten times longer. Working
memory consists of short-term memory along with capabilities for organizing,
manipulating, and generally “working” with the information stored in short-term
memory. The brain’s working memory capacity represents the amount of effort that it
can devote to activating neural patterns and persistently maintaining their simultaneous

activation, a process known as rehearsal.

3. Long-term memory effortlessly holds indefinitely many facts, experiences, concepts, and
procedures, for indefinitely long, in the form of strategic electrical wiring between
neurons. Wiring induces a “domino effect” by which entire patterns of neurons are
automatically activated as a result of initially activating a much smaller number of
neurons in the pattern. The process of storing new information in long-term memory is
known as consolidation. At a cognitive level, learning can be described as a positive

change in long-term memory.

These memory banks work together to form the following pipeline for processing information:

1. Sensory memory receives a stimulus from the environment and passes on important

details to working memory.

2. Working memory holds and manipulates those details, often augmenting or substituting

them with related information that was previously stored in long-term memory.

3. Long-term memory curates important information as though it were writing a

“reference book” for the working memory.

Note, however, that there is a crucial conceptual difference between long-term memory and a
reference textbook: long-term memory can be forgotten. The text in a reference book remains
there forever, accessible as always, regardless of whether you read it - but the representations in
long-term memory gradually, over time, become harder to retrieve if they are not used, resulting
in forgetting. The phenomenon of forgetting in long-term memory has been widely researched
and can be characterized as follows (Hardt, Nader, & Nadel, 2013):

“...[Florgetting refers to the absence of expression of previously properly acquired memory in a
situation that normally would cause such expression. This can reflect actual memory loss or a
failure to retrieve existing memory.”


https://en.wikipedia.org/wiki/Short-term_memory
https://en.wikipedia.org/wiki/Working_memory
https://en.wikipedia.org/wiki/Memory_rehearsal
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Memory_consolidation
https://www.mcgill.ca/science/files/science/channels/attach/hardt_et_al_-_decay_happens_-_the_role_of_active_forgetting_in_memory.pdf
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However, the lower-level mechanisms underlying forgetting in long-term memory are not yet

well understood.
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There are two complementary perspectives by which we can think about this pipeline.

e encoding perspective - the pipeline converts or “encodes” information from the
outside world into a representation that can be stored in long-term memory and

later recalled.

e executive function (or cognitive control) perspective - the pipeline is centered
around working memory, which pulls relevant information from sensory and

long-term memory into an area where it can be combined, transformed, and used

to guide behavior to achieve goals.

In the context of mathematical talent development, once a student is beyond the stage of

learning how to read and count, we are less concerned with their sensory memory and more


https://en.wikipedia.org/wiki/Encoding_(memory)
https://en.wikipedia.org/wiki/Executive_functions
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concerned with their long-term memory. The goal of instruction is to increase the quantity,
depth, retrievability, and generalizability of mathematical concepts and skills in the student’s

long-term memory.

The student’s working memory capacity is a bottleneck in the transfer of information into their
long-term memory. However, by leveraging cognitive learning strategies and properly
scaffolding and adapting instruction to the student’s individual needs, we can minimize the
degree to which their working memory capacity limits their learning, thereby maximizing the

transfer of new information and the retention of existing information in long-term memory.

Design Constraints

The brain’s information-processing pipeline is designed to be incredibly efficient. However,
even the most efficient designs have limitations. Design is all about balancing trade-offs to
achieve the best possible outcome in the face of constraints. To understand the constraints and

the rationale behind a design, it can be helpful to attempt some naive critiques.

Critique: Why is long-term memory needed? Why can’t the brain just hold everything in

working memory forever through rehearsal?

Rationale: Rehearsal requires a lot of effort. It is very taxing on the brain. When the brain

engages in rehearsal, it’s like a muscle that is lifting a weight.

Just like a muscle has a limit to the amount of weight it can hold, the brain has a limit to the
amount of new information it can hold in working memory via rehearsal. Most people can only
hold about 7 digits (or more generally 4 chunks of coherently grouped items) simultaneously and
only for about 20 seconds (Miller, 1956; Cowan, 2001; Brown, 1958). And that assumes they aren’t
needing to perform any mental manipulation of those items - if they do, then fewer items can be

held due to competition for limited processing resources (Wright, 1981).

Long-term memory solves this problem by providing a place where the brain can store lots of

information for a long time without requiring much effort.

Critique: Why doesn’t the brain just store everything it encounters in long-term memory?

That way, it would never forget anything.


https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://en.wikipedia.org/wiki/Chunking_(psychology)
https://journals.sagepub.com/doi/abs/10.1080/17470215808416249?journalCode=qjpa
https://academic.oup.com/geronj/article-abstract/36/5/605/550194
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Rationale: When it comes to information storage, more is not always better. In order for it to be
worthwhile to store a piece of information, the benefit must offset the cost. Creating
connections between neurons is costly in the sense that it requires biological resources - the
connections are physical growths between cells, which means they have to be actively

constructed and maintained by the body.

To illustrate with a concrete example, suppose that you want to buy a biography book that will
help you understand somebody’s background and their impact on society. One book contains
300 pages, costs $20, and covers formative experiences in their childhood, their career arc, and
occasional anecdotes to illustrate key points and themes. Another book contains 10,000 pages,
costs $1,000, covers all of the information in the first book, and also includes a description of
every single meal the person ate throughout their life. Unless you have a specific, intense
interest in this person’s dietary habits (which you probably don’t), it’s easy to see that the first

option is superior.

Case Study: Information Flow During a Computation

To illustrate how information flows through these memory banks when solving a math problem,
, 3. . . . . . .
let’s analyze what happens as we compute 4~ using typical arithmetic strategies while writing
down some intermediate steps. (Remember that exponentiation is just repeated multiplication:

4® means to take three 4’s and multiply them together, that is, £=4x4x4=64)
First, let’s get a sense of how each memory bank will help us solve the problem:

1. Sensory memory will capture visual data that lets us read the problem or any
intermediate work that we’ve written down, thereby allowing the written information to
be loaded into working memory. It will also filter out any distractions (e.g. background

noise) as we solve the problem.

2. Working memory will hold the relevant pieces of the problem, request additional
information from long-term memory, and apply that information to incrementally
transform the pieces of the problem into the solution. Our problem-solving narrative

will take place within the working memory.



46 | The Math Academy Way - Working Draft

3. Long-term memory will, upon request from working memory, produce definitions, facts,
and procedures that we learned previously. It is like an internal “reference book” that we

can use to look up additional information that would be helpful while solving the current

problem.

It’s worth re-emphasizing that the problem-solving narrative will take place within the working

memory. Sensory and long-term memory will supply working memory with information, which

working memory will combine, transform, and use to guide our behavior to solve the problem.

As researchers elaborate (Roth & Courtney, 2007):

“Working memory (WM) is the active maintenance of currently relevant information so that it is
available for use. A crucial component of WM is the ability to update the contents when new
information becomes more relevant than previously maintained information. New information
can come from different sources, including from sensory stimuli (SS) or from long-term memory
(LTM).

In order for information in working memory to guide behavior optimally ... it must reflect the most
relevant information according to the current context and goals. Since the context and the goals
change frequently it is necessary to update the contents of WM selectively with the most relevant
information while protecting the current contents of WM from interference by irrelevant
information.

There are ... many ways in which WM can be changed, including through the manipulation of
information being maintained (Cohen et al., 1997; D'Esposito, Postle, Ballard and Lease, 1999),
the addition or removal of items being maintained (Andres, Van der Linden and Parmentier,
2004), or the replacement of one item with another (Roth, Serences, and Courtney, 2006).”

Now, let’s walk through the specific steps needed to solve the problem while observing what

happens in each memory bank.

Sensory Memory Working Memory Long-Term Memory
(SM) (WM) (LTM)

View problem: £

Send relevant info to

WM: 4 exponent 3
Rehearsing: 4 exponent 3

Request definition of exponent from LTM.

Retrieve definition: “A

exponent B means A
Rehearsing: 4 exponent 3, “A exponent B means A multiplied multiplied by itself B


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2080868/
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by itself B times” times”

Apply “A exponent B means A multiplied by itself B times”
to 4 exponent 3 to get 4 x 4 x 4. Clear out all other WM.

Rehearsing: 4 x 4 x 4
Request procedure of repeated multiplication from LTM.

Retrieve procedure:

“multiply in any order,
Rehearsing: 4 x 4 x 4, “multiply in any order, but left-to-right  but left-to-right by
by default” default”

Apply “multiply in any order, but left-to-right by default” to
4 x4 x 4 to get (4 x 4) x 4. Clear out all other WM.

Rehearsing: (4 x 4) x 4

Request 4 x 4 from LTM.

Retrieve fact: 4 x 4 =16

Rehearsing: (4 x4) x 4,4 x4 =16

Apply 4 x 4 =16 to (4 x 4) x 4, resulting in 16 x 4. Clear out all
other WM.

Rehearsing: 16 x 4
Request 16 x 4 from LTM.

Unable to retrieve fact
16 x 4. Automatic

redirect to retrieve
Rehearsing: 16 x 4, “multiply place values separately and add  procedure: “multiply
results” place values separately
and add results”

(Write 16 x 4 on paper for later reloading.)

Apply “multiply place values separately and add results” to
16 x 4. Tens place value is 10 so multiply 10 x 4. Clear out 16
x 4 from WM.

Rehearsing: 10 x 4, “multiply place values separately and add

results”
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View written work:
16 x 4
40

Send relevant info to
WM: 16 x 4, “one

number written down’

View written work:
16 x 4
40 + 24

Send relevant info to
WM: 40 + 24

5

Request 10 x 4 from LTM.

Rehearsing: 10 x 4 = 40, “multiply place values separately and

add results”
(Write 40 on paper for later reloading)

Reload WM.

Rehearsing: 16 x 4, “multiply place values separately and add

» <«

results”, “one number written down”

Apply “multiply place values separately and add results” and
“one number written down” to 16 x 4. Next is ones place;
ones place value is 6 so multiply 6 x 4. Clear out all other
WM.

Rehearsing: 6 x 4

Request 6 x 4 from LTM.

Rehearsing: 6 x 4 = 24
(Write 24 on paper for later reloading)

Reload WM.

Rehearsing: 40 + 24

Request 40 + 24 from LTM.

Retrieve fact: 10 x 4 = 40

Retrieve fact: 6 x 4 = 24
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Unable to retrieve 40 +

24. Automatic redirect
Rehearsing: 40 + 24, “add digits” to procedure: “add
digits”
Apply “add digits” to 40 + 24. First digit will be 4 + 2. Clear
all other WM.

Rehearsing: 4 + 2, “add digits”

Request 4 + 2 from LTM.

Retrieve fact: 4 +2=6

Rehearsing: 4 + 2 = 6, “add digits”

(Write 6 on paper for later reloading)

Reload WM.
View written work:
16 x 4
40 + 24
6

Send relevant info to
WM: 40 + 24, “one
number written down”

Rehearsing: 40 + 24, “add digits”, “one number written down”

Apply “add digits” and “one number written down” to 40 +
24. Second digit will be 0 + 4. Clear out all other WM.

Rehearsing: 0 + 4

Request 0 + 4 from LTM.

Retrieve fact: 0 +4 =4

Rehearsing: 0+ 4 =4

(Write 4 on paper for later reloading)

Reload WM.
View written work:
16 x 4
40 + 24
64
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Send relevant info to
WM: 64
Rehearsing: 64

Answer is 64.

What learning resulted from this computation? Remember that learning occurs when the wiring
of long-term memory is changed in a positive way that increases a student’s ability to perform a
task. This can involve any combination of wiring up new information, wiring up connections
between existing pieces of information, reorganizing existing wiring so that the information can

be retrieved more efficiently, etc.

With this in mind, let’s take inventory of the processes that occurred within long-term memory

in the example above:

® Retrieval of definitions:

“A exponent B means A multiplied by itself B times”

e Retrieval of facts:

4x4=16
10 x4 =40
6x4=24
4+2=6
0+4=4

e Redirects to procedures (and retrieval/execution of those procedures):
16 x 4 > “multiply place values separately and add results”
40 + 24 > “add digits”

All of these pieces of information will become further consolidated in long-term memory, and
there will be additional wiring connecting these component skills as part of a larger procedure

for computing exponents.

Additionally, the fact 4 = 64 will also begin consolidating in long-term memory (though it will

soon be forgotten unless it is repeatedly reviewed into the future). Indeed, many people who
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frequently perform mental math with exponents know their cubes from 1°to6’ by heart and can

simply retrieve their values as opposed to computing them.

Neuroscience of Working Memory

Recall that when the brain thinks about objects, concepts, associations, etc, it represents these
things by activating different patterns of neurons with electrical impulses. Loosely speaking, the
brain’s working memory capacity represents the amount of effort that it can devote to activating
these neural patterns and persistently maintaining their simultaneous activation. The cognitive
load of a task represents the amount of this effort that the brain would need to put forth in order

to complete the task.

As summarized by D'Esposito (2007):

“..[Tlhe neuroscientific data presented in this paper are consistent with most or all neural
populations being able to retain information that can be accessed and kept active over several
seconds, via persistent neural activity in the service of goal-directed behaviour.

The observed persistent neural activity during delay tasks may reflect active rehearsal
mechanisms. Active rehearsal is hypothesized to consist of the repetitive selection of relevant
representations or recurrent direction of attention to those items.

Research thus far suggests that working memory can be viewed as neither a unitary nor a
dedicated system. A network of brain regions, including the PFC [prefrontal cortex], is critical for
the active maintenance of internal representations that are necessary for goal-directed behaviour.
Thus, working memory is not localized to a single brain region but probably is an emergent
property of the functional interactions between the PFC and the rest of the brain.”

Long-term learning is represented by the creation of strategic electrical wiring between
neurons. Whenever a neuron is activated with electrical impulses, the impulses naturally travel
through its outward connections to reach other neurons, potentially causing those other
neurons to activate as well. By creating strategic connections between neurons, the brain can

more easily, quickly, accurately, and reliably activate larger patterns of neurons.

Talcott (2021) summarizes this process as follows:

“Individual neurons can be thought of as rather simple biological batteries, each maintaining a
gradient of biochemical ions across its cell membrane, which results in a small, local electrical
charge - or potential.

Incoming signals from neighbouring brain cells are communicated to the neuron’s dendrites and
act to continuously modify the magnitude of the neuron’s electrical charge. When the sum of


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2429995/
https://solportal.ibe-unesco.org/articles/the-neurodevelopmental-underpinnings-of-childrens-learning-connectivity-is-key
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signals from other neurons drives the electrical gradient to and then past a critical voltage, an
electrical signal - the action potential - is generated and propagated along the neuron’s axon.
This signal ultimately modulates the activity of other neurons to which it connects.

This process of synaptic transmission comprises the release of neurotransmitter chemicals at the
junction between two cells — the synapse. Neurotransmitters released in response to the action
potential in the pre-synaptic cell bind to receptors on the dendrites of the post-synaptic cell. The
effects of such neurotransmitter binding serve to modify the electrical potential in the cell, either
exciting it toward generating an action potential or inhibiting it from doing so.

Cognition - our thinking, reasoning and learning processes — are derived from activity in neural
networks within the brain ... Neurodevelopment is a lifelong process involving the modification of
the structural and functional properties of the brain ... One of the most striking aspects of the
post-natal neurodevelopmental period in early childhood is in this near continuous refinement of
neural connectivity, including both the strengthening of productive synapses and elimination of
those that are less robust or redundant...

Structural and functional connectivity provides mechanisms for implementing adaptation of the
brain in response to an individual’s experience of the world. As children are born with nearly a full
complement of brain cells, adaptation of responses to environmental change - the underlying
basis of learning for any organism - is accomplished mainly through modifying neural
connectivity. Connectivity increases in parallel with children’s advancement of their cognitive
capacities and learning achievement.

Adapted from a theory first articulated by Donald Hebb in the 1940, one well-supported principle
regarding the relationships between brain structure and function in the developing brain is ‘what
fires together, wires together’ .. When reinforced through repetition (experience), this coupling
increases the probability of their activity being coincident in the future. This feedback process also
works in reverse, such that connections that are not actively reinforced can be eliminated through
a competitive elimination process, which favours the survival of more functionally adaptive
networks at the expense of less efficient or redundant competitor networks through development...

These mechanisms of synaptic plasticity are widely considered to be a predominant way through
which information is coded and retained in brain networks ... Learning and memory (a cognitive
demonstration of learning through recall of material to which an individual has been exposed) are
therefore both expressed in the brain and related at the neural level to modification of
connectivity within neural networks in response to repeated patterns of environmental stimuli and
their associations.”

Wiring induces a “domino effect” by which entire patterns of neurons are automatically
activated as a result of initially activating a much smaller number of neurons in the pattern.
However, when the brain is initially learning something, the corresponding neural pattern has
not been “wired up” yet, which means that the brain has to devote effort to activating each
neuron in the pattern. In other words, because the dominos have not been set up yet, each one
has to be toppled in a separate stroke of effort. This imposes severe limitations on how much

new information the brain can hold simultaneously in working memory.
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Chapter 4. Core Technology: the Knowledge Graph

Summary: Math Academy utilizes a knowledge graph, an interconnected structure of thousands
of topics from 4th grade through university-level mathematics, to organize its curriculum and
facilitate algorithmic decision-making. The knowledge graph allows Math Academy to place each
student at the edge of their individual “knowledge frontier,” fill in any gaps in foundational
knowledge, leverage mastery learning to efficiently extend student knowledge, provide spaced
reviews and remedial reviews when necessary, and capitalize on “encompassing” relationships to

achieve turbo-boosted learning speed.

Understanding the Knowledge Graph

| Linking Topics and Prerequisites

To understand how Math Academy leverages specific cognitive learning strategies, it is helpful
to have high-level understanding of our knowledge graph, which organizes our curriculum in a

way that enables algorithmic decision-making.

Here, the word “graph” is a term that readers may be unfamiliar with. Usually, the word “graph”
refers to a chart illustrating the relationship between two variables, such as a bar chart or a line
chart. But in our context, the word “graph” refers to a diagram consisting of objects and arrows

between them. This terminology is common in the mathematical field of graph theory.

Our knowledge graph contains multiple thousands of interlinked topics. Each linkage between
topics indicates a relationship between them, such as one topic being a prerequisite for another
topic. (There are lots of different kinds of relationships, but for now, we’ll just focus on

prerequisites.)

For instance, below is a simple example of a knowledge graph that shows a topic Adding
Fractions and Whole Numbers Using Models (bottom) that is the prerequisite for three other topics
(top). After a student learns the topic on the bottom, they will be ready to learn any topic that it
points to. In other words, the arrows point along potential “learning paths” that the student can

follow.


https://en.wikipedia.org/wiki/Knowledge_graph
https://en.wikipedia.org/wiki/Graph_theory
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However, if multiple arrows point to a higher topic, then that means the higher topic has

multiple prerequisites that the student needs to learn beforehand.

To illustrate, the topic Adding Fractions With Unlike Denominators has been added to the top of
the knowledge graph. As indicated by the arrows pointing to it, it has two prerequisites that the
student needs to learn beforehand:

1. Adding Fractions With Unlike Denominators Using Models

2. Adding Fractions and Whole Numbers

Adding Fractions
With Unlike Denominators

Adding Fractions Adding Eractions and Subtracting Fractions
With Unlike Denominators 9 and Whole Numbers
- Whole Numbers h
Using Models Using Models

"‘\»\_ — * //'

Adding Fractions and
Whole Numbers Using
Models

Start Here

| Zooming Out

Zooming out more, we see that knowledge graphs can encode a lot of complicated information

that would otherwise be hard to describe and reason about.
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Zooming out even more, below is the knowledge graph for an entire course consisting of about
300 topics.

Fully zoomed out, Math Academy’s entire curriculum consists of multiple thousands of topics

spanning 4th Grade through university-level math. All these topics are connected up together in
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the knowledge graph. In this view, a course is simply a section of our knowledge graph. (In the

visualization below, different colors represent different courses.)

The knowledge graph above contains the following courses: 4th Grade Math, 5th Grade Math,
Pre-Algebra, Algebra I, Geometry, Algebra II, Pre-Calculus, Calculus I, Calculus II, Linear Algebra,
Multivariable Calculus, *Differential Equations, *Probability & Statistics, *Discrete Mathematics,
*Abstract Algebra. (At the time of writing, this accounts for most, but not all, of the content in our
system - courses not listed have large overlap with the preceding list. Asterisks indicate that a

course is still under development.)

| Course Graph

On school and university websites, it is common to see courses arranged into a course graph,
which can be interpreted as a highly-compressed version of a knowledge graph where a single

entity represents hundreds of topics. Math Academy’s course graph is shown below:
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However, it is important to realize that each course is ultimately just a set of topics in the
knowledge graph. The knowledge graph is the ultimate source of truth; a course graph simply
summarizes and communicates information about the high-level structure of a knowledge graph

so that humans can understand it.



60 | The Math Academy Way - Working Draft

Using the Knowledge Graph

| Scaffolded Mastery Learning

Math Academy’s knowledge graph enables us to implement mastery learning, in which

students demonstrate proficiency on prerequisites before moving on to more advanced topics.

End Here

X =not ready to learn
. = ready to learn
v =learned

Start Here

Each topic involves a lesson that is broken down into several key pieces of learning called
knowledge points. Each knowledge point contains a worked example and asks questions

similar to the worked example.

Knowledge points build on each other to help scaffold students through the lesson: the first
knowledge point covers the most basic idea or skill of the lesson, and later knowledge points

gently introduce more advanced cases.
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Lesson: Adding Two-Digit Whole Numbers

Introduction

Knowledge Point 1: Adding Two-Digit Numbers to
Two-Digit Numbers

Practice Questions

Knowledge Point 2: Adding Two-Digit Numbers to
Two-Digit Numbers With Carrying

Practice Questions

Knowledge Point 3: Adding Two-Digit Numbers to
Two-Digit Numbers: Carrying to Hundreds

Practice Questions

To demonstrate mastery of a topic, a student must answer sufficiently many questions correctly
in each successive knowledge point in the lesson. Once this is accomplished, more advanced

topics become available for the student to work on.

| Additional Linkages

> Key Prerequisites Enable Targeted Remediation

Each knowledge point is linked to one or more key prerequisite topics that represent the

prerequisite knowledge that is most directly being used in that knowledge point. If a student
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ever fails a lesson twice at the same knowledge point, we automatically provide remedial reviews
on the key prerequisites. This helps the student strengthen their foundations in the areas where
they are most in need of additional practice, so that they are better prepared to pass the lesson

the next time around.

As a concrete example, suppose that while re-attempting the lesson Exponents with Rational

Bases, a student

e manages to pass Part 1: Expressing a Product Using an Exponent, e.g. expressing 4 x 4 x 4 as
4 but

e gets stuck again at Part 2: Evaluating an Exponential Expression, e.g. computing (-4)° = (-4) x
(-4) x (-4).

In this situation, the student has demonstrated that they understand the concept of an exponent,

but they are struggling to use multiplication to compute the result.

Although multiplication occurs several steps back in the sequence of prerequisites, we have
linked Part 2: Evaluating an Exponential Expression to the key prerequisite topic Multiplying
Negative Numbers, which allows us to automatically trigger a targeted remedial review on

Multiplying Negative Numbers.
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Lesson: Exponents with Rational Bases

Part 3: Raising a Number to the Power of One

Part 2: Evaluating an Exponential Expression <

X

Part 1: Expressing a Product Using an Exponent
Cubing Rational
Numbers
Squaring Rational
Numbers

Multiplying Negative
Numbers

Key
Prerequisite

Multiplying Positive
Numbers with Negative
Numbers

Multiplying
Two-Digit
Decimals

Multiplying
Fractions

> Encompassings Enable Turbo-Boosted Learning Speed

Our knowledge graph also stores encompassing relationships between topics. Advanced
mathematical problems implicitly practice or “encompass” many simpler skills. Using
sophisticated algorithms that capitalize on these encompassings, Math Academy enables
students to spend most of their time learning new material while simultaneously making sure
they keep getting practice on things they've previously learned. This results in turbo-boosted

learning speed.

How does this work? The main idea is that whenever a student is due to review some
previously-learned material, we serve them the smallest possible set of learning tasks that
encompasses all the due review. The student receives all the review they need, in the most

concentrated form possible.

To illustrate, consider the following multiplication problem, in which we multiply the two-digit

number 39 by the one-digit number 6:



64 | The Math Academy Way - Working Draft

5
39

X 6
234

In order to perform the multiplication above, we have to multiply one-digit numbers and add a

one-digit number to a two-digit number:
e First, we multiply 6 x 9 = 54. We carry the 5 and write the 4 at the bottom.
e Then, we multiply 6 x 3 = 18 and add 18 + 5 = 23. We write 23 at the bottom.

In other words, Multiplying a Two-Digit Number by a One-Digit Number encompasses Multiplying
One-Digit Numbers and Adding a One-Digit Number to a Two-Digit Number.

We can visualize this using an encompassing graph as shown below. The encompassing graph
is similar to a prerequisite graph, except the arrows indicate that a simpler topic is encompassed
by a more advanced topic. (Encompassed topics are usually prerequisites, but prerequisites are

often not fully encompassed.)

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Multiplying One-
Digit Numbers

Adding One-
Digit Numbers to
Two-Digit Numbers

Now, suppose that a student is due for reviews on all three of these topics. Because of the

encompassings, the only review that they will actually have to do is Multiplying a Two-Digit
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Number by a One-Digit Number. When they complete this review, it will implicitly provide

repetitions on the topics that it encompasses because the student has effectively practiced those

skills as well.

Explicit
Review

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Multiplying One-
Digit Numbers

Adding One-
Digit Numbers to
Two-Digit Numbers

| Diagnostic Exams

Implicit
Review

Explicit
Review

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Multiplying One-
Digit Numbers Implicit

Review

Adding One-
Digit Numbers to
Two-Digit Numbers

When a student joins Math Academy, they take an adaptive diagnostic exam that leverages the

knowledge graph to quickly identify their knowledge frontier. The knowledge frontier is the

boundary between what they know and what they don’t know, and it indicates what topics they

are ready to learn. Following the diagnostic, whenever a student is served new lessons, those

lessons always cover topics that are on the student’s knowledge frontier.

In addition to assessing knowledge of course content, our diagnostic exams also assess

knowledge of lower-grade foundations that students need to know in order to succeed in the

course (i.e. they are prerequisites for the course). It is common for incoming students to be

excited about a course but lack some foundational knowledge - and our knowledge graph

enables us to identify and fill in any missing foundational knowledge while simultaneously

allowing students to learn course topics that don’t rely on that missing foundational knowledge.
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Chapter 5. Accountability and Incentives

Summary: Students and teachers are often not aligned with the goal of maximizing learning,
which means that in the absence of accountability and incentives, classrooms are pulled towards a
state of mediocrity. Accountability and incentives are typically absent in education, which leads
to a “tragedy of the commons” situation where students pass courses (often with high grades)
despite severely lacking knowledge of the content. However, Math Academy is properly held

accountable and incentivized to maximize student learning.

Accountability and Incentives are Necessary but Absent in

Education

According to K. Anders Ericsson (1993), one of the most influential researchers in the field of

human expertise and performance:

“deliberate practice requires effort and is not inherently enjoyable. Individuals are motivated to

practice because practice improves performance.”

In other words, maximal learning does not happen naturally as a result of maximizing other
things like enjoyment, comfort, convenience, and ease of practice. In fact, maximal learning is at

odds with some of these things. Sacrifices must be made.

At the risk of stating the obvious: if you want to maximize learning, then you should not make
decisions on the basis of anything other than how those decisions affect measurable learning.
However, what may not be so obvious is that students and teachers are often not aligned with

the goal of maximizing learning.

Students often just want to get a good enough grade to avoid angering their parents, or to get
into college (or get a scholarship to college) - and in college, they often just want to do well
enough to get their degree and either get a job or be accepted to graduate school. From the
perspective of such students, the goal is to earn grades that are good enough to keep moving
along their desired career path, while minimizing the amount of extra effort. Earning sufficient

grades with minimal effort is totally different from maximizing learning.


https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
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Likewise, while teachers generally want their students to learn, they also receive substantial
pressure from parents and administrators to make the learning process feel comfortable and
enjoyable, and check boxes on people’s intuitions (however mistaken) about learning, while
simultaneously ensuring that students don’t fall behind on any standardized tests. A teacher’s
goal is often for their students to perform well enough not to raise eyebrows from parents and
administrators, while minimizing the amount of griping from students (and parents) about how

much effort is required.

These forces pull classrooms towards a state of mediocrity: students need to learn some baseline
amount that is deemed “enough” for their grade level, but there is no need to learn more than
that, even if it is possible (and extremely advantageous) to learn much more in the same amount

of time.

The pull towards mediocrity is not unique to education. However, other industries do a better
job of counteracting it by leveraging accountability mechanisms and incentives to motivate
people to maximize performance. For instance, in professional athletics, coaches are held
accountable for winning (their continued employment depends on it) and they are often
incentivized with massive financial bonuses for achievements like qualifying for tournaments
and winning championships. The same is true for players. Along the chain of command from

team owners to coaches to players, there is also a chain of accountability and incentives.

While it’s true that college rankings can be viewed as some kind of incentive structure, it’s
important to realize that learning is not the basis of such rankings. The rankings may
incentivize other things, but not learning. As MIT researchers elaborate (Subirana, Bagiati, &
Sarma, 2017):

“Taking a look at major University ranking methodologies one can easily observe they
consistently lack any objective measure of what content knowledge and skills students retain from
college education in the long term.

In general, college academics taught in the classroom don’t seem to be recognized explicitly by
public market indicators. As an example, MIT was ranked number one in the world by US News
Report in the latest ranking available, however taking a closer look at the ranking methodology
one can see it does not include any metric of what students retained from the classroom. In fact,
all major market ranking methodologies consistently lack any objective measure of student college
academic retention ([MIT office of the provost 2012]).”

Likewise, while it’s true that teacher credentialing can be viewed as some sort of accountability
mechanism, it’s important to realize that accountability for learning in particular is lacking. As

discussed in chapter 2, most teacher credentialing programs do not cover, much less assess,


https://cbmm.mit.edu/sites/default/files/publications/CBMM%20Memo%20068-On%20Forgetting%20-%20June%2018th%202017%20v2.pdf
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prospective teachers on their knowledge of the science of learning and ability to leverage

effective practice techniques to maximize student learning.

It’s also worth noting that university professors generally aren’t required to earn teaching
credentials, and they’re not even incentivized to teach as their primary concern - they are
primarily measured in terms of research output, not teaching. Yet, they are also given more
autonomy in designing their courses, and as a result, college courses tend to be more
instructor-centered than student-centered (as compared to K-12 courses). A typical university
professor gives some lectures, assigns weekly problem sets, and then gives a mid-term and a
final exam that are curved so that no matter how much learning did or did not occur, the result

is always a normal distribution and a shrug.

We re-emphasize some quotes from chapter 2:

“A recent textbook analysis (Pomerance, Greenberg, & Walsh, 2016) took the six key learning
strategies from this report by Pashler and colleagues, and found that very few teacher-training
textbooks cover any of these six principles - and none cover them all, suggesting that these
strategies are not systematically making their way into the classroom.” - Weinstein, Madan, &
Sumeracki (2018)

“The preparation of virtually every college teacher consists of in-depth study in an academic
discipline: chemistry professors study advanced chemistry, historians study historical methods and
periods, and so on. Very little, if any, of our formal training addresses topics like adult learning,
memory, or transfer of learning. ... [IJronically (and embarrassingly), it would be difficult to design
an educational model that is more at odds with the findings of current research about human
cognition than the one being used today at most colleges and universities.” - Halpern & Hakel
(2003)

What Happens in the Absence of Accountability and Incentives

| Tragedy of the Commons

As discussed in chapter 1, Bloom & Sosniak (1981) noted that teachers typically focus on a “cross

section” of many students covering a small subset of curriculum over a short period of time.

"Although the curriculum in a particular subject may extend over a period of ten or more years,
each teacher has the child only for a term, year, or course. And the teacher is responsible only for
what happens during that period of time."

As a result, maintenance and improvement of students’ mathematical knowledge is a

responsibility shared by a group of many teachers.


https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0087-y
https://cognitiveresearchjournal.springeropen.com/articles/10.1186/s41235-017-0087-y
https://www.mensopschool.nl/wp-content/uploads/2016/09/de-impact-van-lk-op-gemotiveerde-en-ongemotiveerde-lln.pdf
https://www.mensopschool.nl/wp-content/uploads/2016/09/de-impact-van-lk-op-gemotiveerde-en-ongemotiveerde-lln.pdf
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198111_bloom.pdf
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However, it is widely known that in the absence of accountability and incentives that promote
collective interests, people will focus on behaviors that benefit themselves as individuals, and
pay less attention to how their actions affect the group as a whole. As a result, when a group is
given responsibility for the maintenance and improvement of a shared resource, the resource
will typically deteriorate. While some individuals may care for the resource properly, they are
typically unable or unwilling to pick up the slack of those who do not. This kind of deterioration

of a shared or “common” resource is known as the tragedy of the commons.

A concrete example of the tragedy of the commons is littering. In the absence of accountability
and incentives, public spaces will become filled with trash. Even people who dispose of their
trash properly will generally not be motivated to pick up the trash of others. To prevent a public
space from becoming filled with trash, it is necessary to create accountability mechanisms, such
as fines for littering, and incentives, such as paid jobs to incentivize some people to periodically
clean the space. But if the accountability and incentives are not implemented properly (e.g. the
fine for littering is too low or unenforceable, or the paid jobs do not hire enough people or do
not hold them accountable for actually cleaning the entire space), then the space will still

become filled with trash.

The tragedy of the commons takes place in education in a similar way. Instead of “littering,” the
tragic action is allowing students to pass courses despite severely lacking knowledge of the
content. A teacher who “picks up other people’s trash” is a teacher who holds students
accountable for learning the material in their course, including any prerequisite material that

they are missing.

When there is a lot of “trash,” i.e. students are severely lacking prerequisite knowledge, a
teacher who “picks up other people’s trash” puts forth a ton of effort supporting students
through remedial assignments/assessments and help sessions, while simultaneously holding the
line on expectations and enduring griping from students who experience a rude awakening
about how much extra work they have to put in to shore up their missing foundations. Few
teachers do this, just as few people pick up other people’s trash. Instead, when faced with a
situation like this, the typical teacher will just run the class as usual, curve (or otherwise inflate)

the grades, and leave the problem for the next year’s teacher to deal with (or not deal with).

While littering fines and paid janitorial jobs often provide the necessary accountability and
incentives to keep spaces clean, teachers typically do not face penalties for allowing students to
pass courses despite severely lacking knowledge of the content, and teachers are given no

financial incentive for working hard to remedy these kinds of problematic situations that are


https://en.wikipedia.org/wiki/Tragedy_of_the_commons
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created by other teachers. As a result, it is common for students to pass courses despite severely
lacking knowledge of the content.

| Grades Can’t Be Trusted

> Evidence for Grade Inflation

One of the most obvious examples of students passing courses (often with high grades) despite
severely lacking knowledge of the content is the co-occurrence of extreme learning loss and

extreme grade inflation during the COVID-19 pandemic.

Researchers have found that the learning loss experienced by students during COVID-19 was
even more extreme than that experienced by evacuees during Hurricane Katrina, one of the
deadliest hurricanes to hit the United States (Kuhfeld, Soland, & Lewis, 2022):

“Using test scores from 5.4 million U.S. students in grades 3-8, we tracked changes in math and
reading achievement across the first two years of the pandemic. Average fall 2021 math test scores
in grades 3-8 were .20-27 standard deviations (SDs) lower relative to same-grade peers in fall 2019
... These drops are significantly larger than estimated impacts from other large school disruptions,
such as after Hurricane Katrina (Sacerdote [2012] when reported math scores dropped .17 SDs in
one year for New Orleans evacuees).”

Based on the magnitude of this learning loss, one would reasonably expect that student grades
would have dropped during the pandemic. But instead, the opposite happened: grades
skyrocketed and remained elevated even after most schools returned to normal in-person
instruction after the pandemic. As researchers at the CALDER Center (Center for Analysis of
Longitudinal Data in Education Research) discovered when analyzing educational data from the
state of Washington (Goldhaber & Young, 2023):

“..[A]lmost no students received an F grade in the spring of 2020. The share of F grades dropped
from .. 9.3% to 1.4% in math courses .. between the fall and spring semesters of 2020. The
distribution of grades higher than F mostly increased for A grades, with the share of A’s jumping
from 32.9% to 56.3% in math ... The average GPA in math jumped from 2.6 to 3.2 ... The figures
also suggest that English and science grades largely returned to pre-pandemic levels by 2021-22,
but math grades did not. Indeed, the math GPA in 2021-22 was 2.7, 0.4 points higher than it was
in2018-19.”


https://edworkingpapers.com/sites/default/files/ai22-521.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
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However, standardized test scores have not increased commensurately:

“To better understand what these shifts in grading might mean, we perform some simple
regressions to descriptively assess the extent to which the relationship between grades and test
scores has changed over time. ... [A] student who got an ‘A’ in Algebra 1 was predicted to be in the
73rd percentile of the test distribution in 2015-16, the 68th percentile in 2018-19, and the 58th
percentile in 2021-22.”

This phenomenon is not limited to the United States. It is widespread. For instance, a similar

situation is described in an analysis of student grades in Italy (Doz, 2021):

“..[T]he results showed a statistically significant difference in pre- and post-COVID-19
quarantine grades. End-of-year grades were higher than those before the COVID-19 confinement.
Furthermore, the results indicated that more than half of the students in the sample achieved a
higher grade at the end of the school year. ... The findings suggest that greater caution should be
paid in interpreting students’ grades pre- and post-COVID-19 confinement, since it cannot be
excluded that such students’ achievements are inflated. Excessively high students’ grades that do
not represent their actual knowledge and competencies could give educators and legislators
misleading and even false information about the quality of distance learning and students’
knowledge.”

Indeed, grade inflation has been happening for a while, that is, COVID-19 amplified an existing
trend. As researchers from ACT, Inc. describe, high school grade point averages (HSGPA) have
increased while standardized test scores - not just aptitude-oriented tests like the SAT, but also
achievement-oriented tests like the ACT, the NAEP, and even end-of-course exams - have not
(Sanchez & Moore, 2022).


https://www.researchgate.net/profile/Daniel-Doz/publication/357457647_Students'_Mathematics_Achievements_A_Comparison_between_Pre-and_Post-COVID-19_Pandemic/links/61cefe48e669ee0f5c787faf/Students-Mathematics-Achievements-A-Comparison-between-Pre-and-Post-COVID-19-Pandemic.pdf
https://files.eric.ed.gov/fulltext/ED621326.pdf
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“..[A] mismatch between HSGPA and test scores suggests grade inflation is most likely present.
HSGPA across time has been compared to ACT® (Bejar & Blew, 1981; Bellott, 1981) and SAT
scores (Godfrey, 2011), NAEP data (U.S. Department of Education, National Assessment of
Educational Progress [NAEP], Long-Term Trend Reading Assessments, 2020), and end-of-course
exams (Gershenson, 2018). Consistently, analyses have shown that HSGPA has steadily increased
over the last several decades, but standardized assessment scores have remained stagnant or have
fallen (Bejar & Blew, 1981; Gershenson, 2020).”

As elaborated by Gershenson (2018):

“..[Rlising high school grade point averages (GPAs) have been accompanied by stagnant SAT,
ACT, and NAEP scores, strongly suggesting lowered classroom standards. And in higher
education, As are now the most common grade awarded, despite constituting just 15 percent of
grades in the early 1960s.”

“While many students are awarded good grades, few earn top marks on the statewide
end-of-course exams for those classes. ... In fact, more than one-third of the students who received
Bs from their teachers in Algebra 1 failed to score ‘proficient’ on the EOC exam.”

“..[Elarning a good grade in a course is no guarantee that a student has learned what the state
expects her to have learned in that course. Results show that even students who earn the best
grades often fail to demonstrate mastery of key skills and knowledge when measured on the state
test. Recall that just 21 percent of A students and 3 percent of B students attain the ‘superior’
designation on the EOC, and more than one-third of B students don’t reach proficiency at all.”

> Why Grade Inflation is a Problem

Gershenson (2018) mentions that grade inflation can create a “vicious cycle” of students being

set up for failure in future courses:

“That’s clearly a problem since receiving an A or B in a course signals academic success to most
students and their families. When students earn passing grades despite not mastering the
academic material, a vicious cycle can follow, whereby they’re set up for failure via unmerited
promotion to the next course or grade level.”

“...[GJrade inflation results in promoting students to subsequent grades and later accepting them to
postsecondary institutions for which they are academically ill-prepared. Consequently, they
struggle and risk dropping out.

[Glrade inflation may have the political consequence of encouraging families to believe everything

is going well at school, even when a school is troubled and needs reform. It is easy for parents to
ignore systemic mediocrity when their children’s grades seem strong.”

This concern is echoed by the Goldhaber & Young (2023):


https://files.eric.ed.gov/fulltext/ED598893.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
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“Public opinion surveys point to a discrepancy between what parents believe about their student’s
level of achievement, i.e., that students have recovered academically, and what test results like
NAEP suggest about their achievement (Esquivel, 2022; Kane & Reardon, 2023; Vidzquez Tonnes,
2023).

Algebra 1 - the course for which we noted the greatest weakening in the relationship between test
scores and grades - is seen as a gateway to more advanced math concepts (Snipes & Finkelstein,
2015). ... Schools use grades in classes such as Algebra 1 to determine whether students need extra
support, remediation, or even if they must repeat a course before moving on. If this signal is no
longer accurately conveying a student’s level of achievement, school systems risk under-supporting
students who need help.

Likewise, families and students use grades as a signal of how a student is doing in school; the
expectation is that if a student is having academic trouble, that trouble will show up in their
grades. Decisions such as whether to enroll a child in after school tutoring or summer school may
rest on a belief that the grades on a report card accurately reflect a student’s levels of achievement.
As we noted above, many parents are under the impression that their children are not suffering
from learning loss due to the pandemic; however, test scores indicate otherwise. It is possible that
without a grade that signals trouble, parents may not choose to get needed extra academic
support.”

In short, parents typically think that an “A” indicates mastery of grade-level standards, but it
often doesn’t. If a student’s school says that theyre doing fine in math, then it does not
automatically follow that the student is keeping college and career doors open that depend on
mathematical proficiency. Different schools sometimes have their own interpretations of what it
means for their students to be doing fine in math, and that doesn’t always match up with

grade-level standards, much less what is expected by colleges and careers.

This is a problem because it sets students up for failure later in life when it matters most. Every
year, countless first-year college students decide to major in aerospace engineering or
astrophysics or some other super-cool-sounding subject, only to have that dream crushed when
they realize they can’t even pass an entry-level math course like Calc II (not even with the help
of a tutor). These problems can be remedied when students are young, before their knowledge
deficits grow too large - but problems can only be fixed after they are detected, and grades are

no longer a reliable tool for detecting these problems.

| Resistance to Objective Measurement
> Radical Constructivism Rejects the Idea of Measuring Learning Objectively
As discussed above, there is overwhelming evidence that grades have increased while

standardized test scores have not. However, because remedying grade inflation and its

downstream effects requires lots of extra effort from all parties involved (including teachers,
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students, parents, administrators), there is opposing pressure to reject the idea that grade
inflation is occurring. Given the evidence, the only way to argue against the existence of grade

inflation is to argue against the very idea of measuring learning objectively.

As prominent psychologists John Anderson, Lynne Reder, and Herbert Simon describe (1998),

this is indeed a tenet of an educational philosophy known as radical constructivism:

“The denial of the possibility of objective evaluation is perhaps the most radical and far-reaching
of the constructivist claims. ... D. Charney documents that empiricism has become a four-letter
word in deconstructionist writings. D. H. Jonassen describes the issue from the perspective of a
radical constructivist:

If you believe, as radical constructivists do, that no objective reality is uniformly interpretable by
all learners, then assessing the acquisition of such a reality is not possible.”

Take it from Ernst von Glasersfeld (1984) himself, who is widely regarded as the philosopher

who first formulated radical constructivism:

“Radical constructivism, thus, is radical because it breaks with convention and develops a theory
of knowledge in which knowledge does not reflect an ‘objective’ ontological reality, but exclusively
an ordering and organization of a world constituted by our experience.”

To concretely understand the radical constructivist position in the context of grade inflation,
recall that in the absence of accountability and incentives, public spaces will become filled with
trash. Logically, the existence of excessive trash in a public space provides an argument for
increasing accountability and incentives surrounding littering and janitorial work. However, a
radical constructivist will resist this conclusion on the grounds that “one person’s trash is
another person’s treasure” and therefore it is impossible to objectively measure the amount of

trash on the ground.

Clearly, this counterargument is ridiculous and nobody would actually espouse it in the context
of trash. People who enter a space can see, and agree, about how much trash is on the ground.
However, the counterargument persists in the context of education because “seeing the trash for
oneself” often requires a combination of expertise in the subject matter - which most people do
not have, especially in the context of mathematics. And even those who do see the trash often
turn a blind eye to it out of convenience because they don’t want to put in the extra effort to fix
the situation, especially when their efforts will be met with griping from others who do not see
the trash.

As Anderson, Reder, and Simon (1998) elaborate, the radical constructivists’ rejection of

objective reality leads to other problematic conclusions:


https://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://en.wikipedia.org/wiki/Radical_constructivism
https://app.nova.edu/toolbox/instructionalproducts/ITDE_8005/weeklys/1984-vonGlaserfeld_RadicalConstructivism.pdf
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“Another sign of the radical constructivists’ discomfort with evaluation manifests itself in the
motto that the teacher is the novice and the student the expert. The idea is that every student
gathers equal value from every learning experience. The teacher’s task is to come to understand
and value what the student has learned. As J. Confrey writes:

‘Seldom are students’ responses careless or capricious. We must seek out their systematic qualities
which are typically grounded in the conceptions of the student. ... [Flrequently when students’
responses deviate from our expectations, they possess the seeds of alternative approaches which
can be compelling, historically supported and legitimate if we are willing to challenge our own
assumptions.’

Or, as Cobb, Wood, and Yackel write:

‘The approach respects that students are the best judges of what they find problematical and
encourages them to construct solutions that they find acceptable given their current ways of
knowing’

If the student is supposed to move, in the course of the learning experiences, from a lower to a
higher level of competence, why are the student’s judgments of the acceptability of solutions
considered valid? While the teacher is valued who can appreciate children’s individuality, see
their insights, and motivate them to do their best and to value learning, definite educational goals
must be set. More generally, if the ‘student as judge’ attitude were to dominate education, when
instruction had failed and when it had succeeded, when it was moving forward and when
backward, would no longer be clear.

Understanding why the student, at a particular stage, is doing what he or she is doing is one thing.
Helping the student understand how to move from processes that are ‘satisfactory’ in a limited
range of tasks to processes that are more effective over a wider range is another matter. As L. B.
Resnick argues, many concepts that children naturally come to (for example, that motion implies
force) are not what the culture expects of education and in these cases ‘education must follow a
different path: still constructivist in the sense that simple telling will not work, but much less
dependent on untutored discovery and exploration.”

> Radical Constructivism is a Present Force in Education

Radical constructivism might seem so outlandish that it is hard to imagine anyone seriously
supporting it. However, it is indeed a present force in education. For instance, one document
that circulated among educators during the 2021-22 school year (the year that most schools
returned to in-person instruction after the COVID-19 pandemic) is Where Is Manuel? A Rejection
of ‘Learning Loss’, which, in a refusal to accept the reality that some socioeconomic (and
consequently racial) groups were more affected by pandemic-induced learning losses than

others, outright rejects the idea that learning loss occurred during the pandemic.


https://www.todos-math.org/assets/images/Where%20Is%20Manuel_.pdf
https://www.todos-math.org/assets/images/Where%20Is%20Manuel_.pdf
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The document makes a number of outlandish claims, some of are factually incorrect, and others
of which are so vague that they can neither be proven or falsified (which effectively renders

them meaningless):

“It is important to note that we believe that learning takes place everywhere and always. ..
Funding and attention to “fix learning loss” disregards our essential and suggested actions [to
move toward antiracist mathematics education for all students].

This farce embodies the assumption that learning didn’t happen, or that it didn’t happen enough.
This assumption is an insult to educators and families alike. ... When teachers could not connect,
students continued their learning and growing with and within their families and communities.
Some of this learning was closely matched to traditional school standards, and some of this
learning was not as aligned to school standards but went deeper and was more authentic than
anything that could have been learned through a computer screen or even in a school building.
This learning may be different, but it is not any less important and should not be treated as if it is
wrong or insufficient.

Let’s revisit Manuel. With persistence, the educators would have discovered that Manuel’s days
away from class were rich with learning experiences. Instead of attending class remotely, he went
with his father to work and helped with his younger siblings and animals on the family farm. ...
Manuel and his siblings did some work assigned by their teachers, but they were more motivated
and engaged in the learning that was acquired outside of school. Manuel has not lost learning.
The flexibility of remote learning has allowed him to supplement his studies from school with a
rich mathematical understanding of the world.

Resist the thinking that students like Manuel are behind, and instead remind yourself that they are
right where they should be after a pandemic. Resist deficit thinking and do not send deficit
messages to the students like Manuel, and others who did attend daily, and instead look for what
knowledge they gained and how they grew. ... Resist making the assumption that the learning
students like Manuel experienced was not enough, and instead assume their experiences
contributed to their present and future success in ways that are just as good, if not better, than
what could have been learned through school.”

The organization producing this document, TODOS: Mathematics for ALL, is not just a fringe
group. Between 2020-23, its leadership has included members of the Riverside and Santa Clara
County Offices of Education and as well as professors from numerous universities including
UCLA, UT Austin, The Ohio State University, University of Arizona, San Francisco University,
University of Alberta, University of Missouri, Iowa State University, East Carolina University,
University of New Mexico, Texas State University, and Utah Valley University. Furthermore,
TODOS is a member of the Conference Board of the Mathematical Sciences (CBMS), which
means that it is recognized by the International Mathematical Union (IMU) as one of the 19
national mathematical societies for the United States. For reference, IMU awards some of the
highest honors in the mathematical profession, including the Fields Medal, which is widely

considered to be the mathematical equivalent of the Nobel Prize.


https://www.todos-math.org/
https://en.wikipedia.org/wiki/Conference_Board_of_the_Mathematical_Sciences
https://en.wikipedia.org/wiki/International_Mathematical_Union
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TODOS has released numerous other documents espousing similar viewpoints. For instance, in
The Mo(ve)ment to Prioritize Antiracist Mathematics: Planning for This and Every School Year (2020),
released shortly before Where is Manuel, TODOS stated the following:

“Following school closure due to COVID-19, we have noted a resurgence of deficit views of
students when they are described as ‘behind’ or ‘unable to catch up since they missed so much
school” We believe this description of students is harmful. It frames students as individually
responsible for a loss of learning and detracts from the broader issues of students and families
surviving through a pandemic. Mathematics learning is a messy web of interconnected concepts.
So we assert that instead of being distracted by framing students as lacking skills, we use the fall to
start anew from an asset-based perspective. We urge policymakers, school district administrators,
teachers, curriculum developers, and software developers to avoid playing into the fear-inciting
discourses of students falling behind and ranking them by perceived ability.

To take it a step further, in this moment we must rethink what counts as valid mathematical
knowledge. ... [W]e must expand our understanding of what it means to be good at mathematics,
make space for alternative ways of knowing and doing mathematics based in the community, and
acknowledge the brilliance, both in mathematics and beyond, of BIPOC [Black, Indigenous, and
People of Color] in our classrooms.”

Likewise, in the joint position statement between TODOS and the National Council of
Supervisors of Mathematics (NCSM) from 2016:

“..[Deficit views of historically marginalized children can arise from] the continuous labeling of
children’s readiness to learn mathematics via standardized tests and other institutional tools that
position and sanction specific forms of mathematics knowledge. ... A social justice priority in
mathematics education is to openly challenge deficit thinking and the institutional tools and
practices that perpetuate static views about children and their mathematics competencies.

Second, deficit thinking implies that students “lack” knowledge and experiences expected by the
dominant group. Deficit thinking ignores, dismisses, or casts as barriers mathematical knowledge
and experiences children engage with outside of school every day. A social justice approach to
mathematics education assumes students bring knowledge and experiences from their homes and
communities that can be leveraged as resources for mathematics teaching and learning (Civil,
2007; Gonzalez et al., 2005; Leonard & Martin, 2013; Turner et al., 2012).

Mathematics achievement, often measured by standardized tests, has been used as a gatekeeping
tool to sort and rank students by race, class, and gender starting in elementary school (Davis &
Martin, 2008; Ellis, 2008; Spielhagen, 2011).”

Note that while we have discussed radical constructivism at a high level in this chapter, our
general critique cuts deeper and will continue in chapter 8, where we emphasize that effective

practice requires direct instruction as opposed to unguided instruction.


https://www.todos-math.org/assets/images/The%20Movement%20to%20Prioritize%20Antiracist%20Mathematics%20final%203.0_v6.pdf
https://www.todos-math.org/assets/docs2016/2016Enews/3.pospaper16_wtodos_8pp.pdf
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Math Academy is Held Accountable for Student Learning

Math Academy’s existence depends on its ability to make students learn. If a student gets stuck
and can’t make progress in our system, then we’re out of a job. If the learning on our system
doesn’t show up in students’ grades and test scores outside of our system, then we’re out of a
job. We are properly incentivized to maximize student learning - real learning, not just the

perception of it.

For this reason, we have no choice but to hold the line on what it means to truly learn
something. When a student learns a topic on our system, they have to demonstrate that they
really understand it. They have to solve real problems - successfully - and not just the simplest

cases.

Perhaps surprisingly, this turns out to be one of our competitive advantages: we hold students
accountable for learning, and they hold us accountable for providing material that is easy to
learn from. More generally, we hold our users accountable for getting value out of our product,

and our users hold us accountable for creating a valuable product.

This differentiates us from other free and ultra-low-cost online learning platforms whose
dependence on a massive user base forces them to employ ineffective learning strategies that do
not repel unserious students. Such platforms often cover only the simplest cases of each topic,
and allow students to move on to more advanced topics despite poor performance on
prerequisite topics. They are like teachers who go through the motions and check boxes,
whereas Math Academy is like a tutor whose livelihood depends on the actual learning

outcomes of its students.

Granted, we do sometimes have to deliver unfortunate news to incoming students and their
parents who mistakenly believe, on the basis of their good grades, that they are comprehensively
proficient in the mathematical subjects that they have taken at school. We can’t promise that
students and parents will be happy with their diagnostic results. It’s not uncommon for our
diagnostic test to expose that a student needs to relearn some things that they supposedly
“already know” (but don’t actually know) from school. But we can promise that, if our diagnostic
test reveals any gaps in a student’s knowledge, then we will automatically add those gaps to their

learning plan to get them back on track.
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

Ericsson, K. A., Krampe, R. T., & Tesch-Romer, C. (1993). The role of deliberate practice in

the acquisition of expert performance. Psychological review, 100(3), 363.

Importance: Deliberate practice requires effort and is not inherently enjoyable. Individuals are motivated to
practice because practice improves performance. In other words, maximal learning does not happen naturally
as a result of maximizing other things like enjoyment, comfort, convenience, and ease of practice. In fact,

maximal learning is at odds with some of these things. Sacrifices must be made.

Subirana, B., Bagiati, A., & Sarma, S. (2017). On the Forgetting of College Academics: at"
Ebbinghaus Speed''?. Center for Brains, Minds and Machines (CBMM).

Importance: While it’s true that college rankings can be viewed as some kind of incentive structure, it’s
learning is not the basis of such rankings. Major university ranking methodologies consistently lack any
objective measure of what content knowledge and skills students retain from college education in the long term.

The rankings may incentivize other things, but not learning.
Kuhfeld, M., Soland, J., & Lewis, K. (2022). Test score patterns across three
COVID-19-impacted school years. Educational Researcher, 51(7), 500-506.

Importance: The learning loss experienced by students during COVID-19 was even more extreme than that

experienced by evacuees during Hurricane Katrina, one of the deadliest hurricanes to hit the United States.

Goldhaber, D., & Young, M. G. (2023). Course Grades as a Signal of Student Achievement:
Evidence on Grade Inflation Before and After COVID-19. CALDER Research Brief No. 35.

Doz, D. (2021). Students’ mathematics achievements: A comparison between pre-and
post-COVID-19 pandemic. Education and Self Development, 16(4), 36-47.


https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://cbmm.mit.edu/sites/default/files/publications/CBMM%20Memo%20068-On%20Forgetting%20-%20June%2018th%202017%20v2.pdf
https://cbmm.mit.edu/sites/default/files/publications/CBMM%20Memo%20068-On%20Forgetting%20-%20June%2018th%202017%20v2.pdf
https://edworkingpapers.com/sites/default/files/ai22-521.pdf
https://edworkingpapers.com/sites/default/files/ai22-521.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
https://caldercenter.org/sites/default/files/CALDER%20Brief%2035-1123.pdf
https://www.researchgate.net/profile/Daniel-Doz/publication/357457647_Students%27_Mathematics_Achievements_A_Comparison_between_Pre-and_Post-COVID-19_Pandemic/links/61cefe48e669ee0f5c787faf/Students-Mathematics-Achievements-A-Comparison-between-Pre-and-Post-COVID-19-Pandemic.pdf
https://www.researchgate.net/profile/Daniel-Doz/publication/357457647_Students%27_Mathematics_Achievements_A_Comparison_between_Pre-and_Post-COVID-19_Pandemic/links/61cefe48e669ee0f5c787faf/Students-Mathematics-Achievements-A-Comparison-between-Pre-and-Post-COVID-19-Pandemic.pdf
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Importance: During the COVID-19 pandemic, grades skyrocketed and remained elevated even after most
schools returned to normal in-person instruction after the pandemic. This is a widespread phenomenon
occurring beyond the United States. Grade inflation prevents learning issues from being detected, and schools

and families risk under-supporting students who need help.

e Sanchez, E. 1., & Moore, R. (2022). Grade Inflation Continues to Grow in the Past Decade.
Research Report. ACT, Inc.

Gershenson, S. (2018). Grade Inflation in High Schools (2005-2016). Thomas B. Fordham

Institute.

Importance: Grade inflation has been happening for a while. High school grade point averages (HSGPA) have
increased while standardized test scores - not just aptitude-oriented tests like the SAT, but also
achievement-oriented tests like the ACT, the NAEP, and even end-of-course exams — have not. Grade inflation

can create a “vicious cycle” of students being set up for failure in future courses.

e Anderson, J. R, Reder, L. M., Simon, H. A., Ericsson, K. A., & Glaser, R. (1998). Radical

constructivism and cognitive psychology. Brookings papers on education policy, (1), 227-278.

Von Glasersfeld, E. (1984). An introduction to radical constructivism. The invented reality,
1740, 28.

TODOS: Mathematics for All (2020). Where Is Manuel? A Rejection of ‘Learning Loss’.

del Rosario Zavala, Maria, Ma Bernadette Andres-Salgarino, Zandra de Araujo, Amber G.
Candela, Gladys Krause, and Erin Sylves (2020). The Mo(ve)ment to Prioritize Antiracist
Mathematics: Planning for This and Every School Year. TODOS: Mathematics for All.

National Council of Supervisors of Mathematics and TODOS: Mathematics for ALL. (2016).
Mathematics education through the lens of social justice: Acknowledgment, actions, and

accountability. Joint Position Paper.

Importance: Given the evidence, the only way to argue against the existence of grade inflation is to argue
against the very idea of measuring learning objectively. Indeed, this outlandish position is taken by proponents
of the radical constructivist philosophy of education, such as TODOS: Mathematics for ALL.


https://files.eric.ed.gov/fulltext/ED621326.pdf
https://files.eric.ed.gov/fulltext/ED598893.pdf
http://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
http://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://app.nova.edu/toolbox/instructionalproducts/ITDE_8005/weeklys/1984-vonGlaserfeld_RadicalConstructivism.pdf
https://www.todos-math.org/assets/images/Where%20Is%20Manuel_.pdf
https://www.todos-math.org/assets/images/The%20Movement%20to%20Prioritize%20Antiracist%20Mathematics%20final%203.0_v6.pdf
https://www.todos-math.org/assets/images/The%20Movement%20to%20Prioritize%20Antiracist%20Mathematics%20final%203.0_v6.pdf
https://www.todos-math.org/assets/docs2016/2016Enews/3.pospaper16_wtodos_8pp.pdf
https://www.todos-math.org/assets/docs2016/2016Enews/3.pospaper16_wtodos_8pp.pdf
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II. ADDRESSING CRITICAL MISCONCEPTIONS
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Chapter 6. The Persistence of Neuromyths

Summary: Scientifically inaccurate beliefs about the brain endure even among professional
educators. They persist because they sound scientific and are convenient to believe, especially if
they provide a level of comfort, such as reinforcing one’s preconceptions or offering false hope of a

“quick fix” to someone who is facing a problem.

Neuromyths are Common Misconceptions about the Brain

Despite the cognitive processes in the brain being fairly well understood at a high level, there
are countless myths that persist despite decisive evidence to the contrary - even among

professionals in the field of education. As Grospietsch & Lins (2021) emphasize:

“Numerous empirical studies reveal widespread endorsement of such misconceptions on the topic
of learning and the brain both among the public at large and among pre-service and in-service
teachers (e.g., Dekker et al., 2012; Ferrero et al., 2016). Even school principals, award-winning
teachers and university instructors widely endorse neuromyths like ‘we only use 10% of our brains’,
‘learning differences due to hemispheric use’, or the ‘existence of learning styles’ (Horvath et al.,
2018; Zhang et al., 2019).”

As Pasquinelli (2012) notes, even high-ranking government officials are not immune to these

myths:

“In 1998, the state of Florida passed a bill for day-care centers to play classical music to children.
The same year, the Georgia governor asked for $105,000 for the production and distribution of
classical music to newborns. He did so because he had read that listening to Mozart’s music can
boost IQ scores. Too good to be true.”

These misconceptions are so common that they have acquired a special name: neuromyths
(Grospietsch & Lins, 2021).

“The term ‘neuromyth’ was coined by the neurosurgeon Alan Crockard in the 1980s to describe
scientifically inaccurate understandings of the brain in medical culture (Howard-Jones, 2010). The
Organisation for Economic Co-operation and Development (Organisation for Economic
Co-operation and Development [OECD], 2002) defines-neuromyths as “misconception]s]
generated by a misunderstanding, a misreading, or a misquoting of facts scientifically established
(by brain research) to make a case for use of brain research in education and other contexts” (p.
111)”


https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-228X.2012.01141.x
https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
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Why Neuromyths Persist

Neuromyths can often be characterized as the oversimplification, misinterpretation, and/or

misapplication of a nuanced complex scientific finding.

“Grospietsch (2019) came to define neuromyths as misconceptions based on a kernel of ‘truth’,
meaning that they take a scientific term or research finding (= neurofact) as a starting point for
their argumentation, which morphs into a no-longer-scientifically-accurate implication for
teaching and learning (= neuromyth) through a series of erroneous conclusions and logical
fallacies.”

Despite being at best useless, and at worst detrimental, neuromyths persist because they sound
scientific and are convenient to believe, especially if they provide a level of comfort, such as
reinforcing one’s preconceptions or offering false hope of a “quick fix” to someone who is facing

a problem. As Pasquinelli (2012) explains:

“..[W]hy do neuromyths persist independently of their falsity and poor applicative value? It is
likely that under the urge of application, educators are susceptible of turning toward easy-fixes

that are presented in a respectable, scientific jargon and are loosely inspired by neuroscience
(Hirsh-Pasek & Bruer, 2007).

Certain neuromyths for instance seem to fulfill a “soothing” function. .. Bangerter & Heath
(2004) have shown that the interest in the Mozart effect ... positively correlates with lower
teachers’ salaries and low national tests scores per pupil spending. ... [Those] that are more in need
of good education are easy prey to scientific legends about learning

Another feature of the human mind that might favor neuro- and other myths is confirmation bias,
that is, the tendency to seek or interpret fresh information in a way that confirms previous beliefs
(Nickerson, 1998).

Finally, it is largely accepted that both adults and children behave as if they had intuitions about
laws of physics, biology, and psychology (diSessa, 1993). These intuitions are in many cases
misconceptions that interfere with scientific instruction while preceding and influencing the
acquisition of knowledge (Bloom & Weisberg, 2007).”

To understand how learning can be optimized in an adaptive learning platform like Math
Academy, it is important to first remedy any misconceptions about learning that could

otherwise turn into sources of confusion.


https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-228X.2012.01141.x
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

Grospietsch, F., & Lins, I. (2021, July). Review on the prevalence and persistence of
neuromyths in education-Where we stand and what Is still needed. In Frontiers in Education
(Vol. 6, p. 665752). Frontiers Media SA.

Betts, K., Miller, M., Tokuhama-Espinosa, T., Shewokis, P. A., Anderson, A., Borja, C., ... &
Dekker, S. (2019). International Report: Neuromyths and Evidence-Based Practices in Higher

Education. Online Learning Consortium.

Pasquinelli, E. (2012). Neuromyths: Why do they exist and persist?. Mind, Brain, and
Education, 6(2), 89-96.

Importance: Despite the cognitive processes in the brain being fairly well understood at a high level, there are
countless myths that persist despite decisive evidence to the contrary - even among professionals in the field of
education. These “neuromyths” can often be characterized as the oversimplification, misinterpretation, and/or
misapplication of a nuanced complex scientific finding. Despite being at best useless, and at worst detrimental,
neuromyths persist because they sound scientific and are convenient to believe, especially if they provide a level
of comfort, such as reinforcing one’s preconceptions or offering false hope of a “quick fix” to someone who is

facing a problem.


https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
https://files.eric.ed.gov/fulltext/ED599002.pdf
https://files.eric.ed.gov/fulltext/ED599002.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-228X.2012.01141.x
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Chapter 7. Myths & Realities about

Individual Differences

Summary: Different people generally have different working memory capacities and learn at
different rates, but people do not actually learn better in their preferred “learning style.” Instead,
different people need the same form of practice but in different amounts. Additionally, not
everybody can learn every level of math, but most people can learn the basics. In practice,
however, few people actually reach their full mathematical potential because they get knocked off
course early on by factors such as missing foundations, ineffective practice habits, inability or

unwillingness to engage in additional practice, or lack of motivation.

People Differ in Learning Speed, Not Learning Style

Myth: Everybody has the same working memory capacity and learns at the same rate,

but different people learn differently depending on their preferred learning style.

Reality: The exact opposite is true. Different people generally have different working memory
capacities and learn at different rates. While people may have preferred learning “styles” (e.g.
visual vs verbal), they do not actually learn better when given information in their preferred
style. The myth is that different people need the same amount of practice but in different forms
- whereas the reality is that different people need the same form of practice but in different

amounts.

| Learning Style Preferences are Irrelevant

One of the most widespread - and most widely debunked - neuromyths is that people learn
better when they receive information in their preferred “learning style.” To quote the authors of
one of the largest and most comprehensive studies on the persistence of neuromyths (Betts et
al., 2019):

“Learning styles is one of the most widespread myths in education (Pashler, McDaniel, Rohrer &
Bjork, 2008; Reiner & Willingham, 2010; Roher & Pashler, 2012). Despite repeated testing of
hypotheses relating to learning styles, there is no evidence to date showing that individuals learn


https://files.eric.ed.gov/fulltext/ED599002.pdf
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better when they receive information in their preferred learning styles (Newtown & Miah, 2017;
Newtown & Miah, 2017).

In 2006, a learning styles challenge was put forth by a team of underwriters offering $1,000 and
then moving it up to $5,000 to provide scientific evidence supporting this myth (Wallace, 2014). To
date, there has not been a payout.”

As Grospietsch & Lins (2021) elaborate:

“According to Grospietsch and Mayer (2021b), the kernel of truth behind this neuromyth is that
people differ in the mode in which they prefer to receive information (visually or verbally; e.g.,
Héffler et al., 2017).

The first erroneous conclusion that can be drawn from this kernel of truth is that there are
auditory, visual, haptic and intellectual learning styles, as Vester (1975) suggested in the German
context.

The next erroneous conclusion drawn is that people learn better when they obtain information in
accordance with their preferred learning style.

Finally, the third erroneous yet widely disseminated conclusion is that teachers must diagnose
their students’ learning styles and take them into account in instruction. ... [T]here is no empirical
evidence confirming the effectiveness of considering students’ learning styles in instruction
(Willingham et al., 2015).”

As Kirschner & Hendrick sum it up (2024, pp.108):

“These so-called learning styles have been exposed as nonsense in research time after time. There
are no ‘image thinkers’ or ‘language thinkers. Everyone thinks with both systems and everyone
benefits from using both. The more often you use the two systems together, the stronger the trace
in your memory and the better you will remember and thus learn.”

| Working Memory Capacity (WMC) Differences are Relevant

However, one aspect of the brain that has been widely documented not only to vary between
people, but also to affect people’s general cognitive performance, is working memory capacity
(WMC). As Conway et al. (2007) describe:

“A fundamental characteristic of WM [working memory| is that it has a limited capacity, which
constrains cognitive performance, such that individuals with greater capacity typically perform
better than individuals with lesser capacity on a range of cognitive tasks.

For example, older children have greater capacity than younger children, healthy adults have
greater capacity than patients with frontal-lobe damage or disease, younger adults have greater
capacity than elderly adults, and in all such cases, those individuals with greater WM capacity


https://www.frontiersin.org/articles/10.3389/feduc.2021.665752/full
https://www.taylorfrancis.com/books/mono/10.4324/9781003395713/learning-happens-paul-kirschner-carl-hendrick
https://www.researchgate.net/profile/Michael-Kane-15/publication/285631970_Variation_in_Working_Memory_An_Introduction/links/56e80f6408aea51e7f3b0d8e/Variation-in-Working-Memory-An-Introduction.pdf
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out-perform individuals with lesser capacity in several important cognitive domains, including
complex learning, reading and listening comprehension, and reasoning.

In short, we know that variation in WM capacity exists and that this variation is important to
everyday cognitive performance.”

These differences in working memory capacity have been characterized not only at a
psychological level, but also at the physical level of brain activity measures. Vogel & Machizawa
(2004) have found that brain activity reaches a plateau when people attempt to perform tasks
that meet or exceed their WMC, and people with high WMC reach this plateau much later than
people with low WMC:

“Here, we provide electrophysiological evidence for lateralized activity in humans that reflects the
encoding and maintenance of items in visual memory. The amplitude of this activity is strongly
modulated by the number of objects being held in the memory at the time, but approaches a limit
asymptotically for arrays that meet or exceed storage capacity.

Indeed, the precise limit is determined by each individual’s memory capacity, such that the
activity from low-capacity individuals reaches this plateau much sooner than that from
high-capacity individuals. Consequently, this measure provides a strong neurophysiological
predictor of an individual’s capacity, allowing the demonstration of a direct relationship between
neural activity and memory capacity.

That is, simply by measuring the amplitude increase across memory array sizes, we could
accurately predict an individual’s memory capacity.”

Engstrom, Landtblom, & Karlsson (2013) have explained why this happens: the higher one’s
WMC, the less neural activity their brain requires to perform the task - in other words, the task

is less taxing on their brain.

“Low- and high-capacity participants showed an increase in activity as a function of increasing
demands but differed in that high-capacity participants started from a lower level.”

> WMC Impacts Perceived Effort

It comes as no surprise, then, that people with higher WMC will generally perceive a given task
to be easier than people with lower WMC. Indeed, this has been demonstrated experimentally in
a study that measured how difficult people found it to identify spoken words in the presence of
background noise (Rudner et al., 2012):

“..[Plarticipants were asked to rate effort at SNRs [signal-to-noise ratios, i.e. difficulty levels]
individually adapted to their speech recognition performance. Thus, individual differences in
speech recognition ability were taken into account in the ratings of perceived effort; even so WM
capacity explained variance in perceived effort between conditions.


https://dept.wofford.edu/neuroscience/neuroseminar/pdfsFall2007/Vogel_nature04.pdf
https://www.frontiersin.org/articles/10.3389/fnhum.2013.00140/full
https://www.academia.edu/download/66897130/Working_Memory_Capacity_May_Influence_Pe20210504-5840-pvird5.pdf
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[T]he difference in perceived listening effort in modulated and steady state noise at relatively
favorable SNRs is a function of WM capacity. ... [Plersons with greater WM capacity find
listening in noise less effortful than persons with lower WM capacity across all three levels and
noise types.

[R]atings of listening effort may be an indicator of the relative degree of engagement of explicit
processing resources in WM. Thus, a relation between WM and rated effort may indicate that
persons with greater WM capacity are using fewer explicit processing resources”

> WMC Impacts Abstraction Ability

Similarly, it has also been shown that high WMC facilitates abstraction, that is, seeing “the
forest for the trees” by learning underlying rules as opposed to memorizing example-specific
details (McDaniel et al., 2014). This is unsurprising, given that understanding large-scale

patterns requires balancing many concepts simultaneously in WM.

“..[Alfter training (on a function-learning task), participants either displayed an extrapolation
profile reflecting acquisition of the trained cue-criterion associations (exemplar learners) or
abstraction of the function rule (rule learners; Studies 1a and 1b).

Studies 1c and 2 examined the persistence of these learning tendencies on several categorization
tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori
by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in
generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the
exemplar learners performed well on a novel categorization task (transfer) after training on an
abstract coherent category.

[W]orking memory capacity (as measured by Ospan following Wiley et al., 2011) was a significant
and unique predictor of the tendency to rely on rule versus exemplar processes in the function
learning task, such that higher working memory capacity was related to reliance on rule learning.

For a number of reasons, greater working memory capacity could facilitate abstracting the
function rule during learning, including the ability to maintain and compare several stimuli
concurrently (Craig & Lewandowsky, 2012), to partition the training stimuli into two linear
segments and switch back and forth between them during learning (Erickson, 2008; Sewell &
Lewandowsky, 2012), and to reject or ignore initial biases (e.g., a positive linear) in order to
discern the given function (cf,, Wiley et al., 2011).

Thus, learners enjoying greater working memory capacity might be more inclined to engage
processes that would support rule learning (relating several training trials, partitioning training
trials, ignoring initial biases) than would learners with more limited working memory capacity.”

Abstracting underlying rules improves one’s ability to extrapolate knowledge to new contexts, a
skill that is widely assessed in academic settings. Indeed, individual differences in abstraction

ability have been shown to impact educational outcomes (McDaniel et al., 2018):


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890377/
https://www.sciencedirect.com/science/article/abs/pii/S2211368117301973
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“Students may do well answering exam questions that are similar to examples presented in class.
Yet, some of these students perform poorly on exam questions that require applying instructed
concepts to a new problem whereas others fare better on such questions.

Our hypothesis is that these performance differences reflect, in part, individual differences in
learners’ tendencies to focus on acquiring the particular exemplars and responses associated with
the training exemplars (exemplar learners) versus attempting to abstract underlying regularities
reflected in particular exemplars (abstraction learners). ... [Wle differentiated students on this
dimension, and then tracked their final exam performances in introductory chemistry courses.

Abstraction learners demonstrated advantages over exemplar learners for transfer questions but
not for retention questions. The results converge on the idea that individual differences displayed
in how learners acquire and represent concepts persist from laboratory concept learning to
learning complex concepts in science courses.”

> WMC Impacts Learning Speed

As one might infer from the impact of WMC on perceived effort and abstraction ability, WMC
has also been shown to impact speed of learning, that is, the rate at which one’s ability to
perform a task improves over the course of exposure, instruction, and practice on the task
(though the impact of WMC on task performance is lessened after the task is learned to a

sufficient level of performance).

Multiple studies have linked individual differences in speed of learning and WMC in the context

of categorization tasks (see McDaniel et al, 2014 for a summary):

“..[A]cross several types of categorization tasks, Craig and Lewandowsky (2012) and
Lewandowsky (2011) reported significant correlations between speed of learning and working
memory capacity. In the present study, we found a similar general association between speed of
learning in the function task and working memory capacity as indexed by Ospan alone.

Learning the function rule presumably requires maintaining and comparing stimuli across trials
(“comparative hypothesizing”, Klayman, 1988) and possibly partitioning the stimuli into subsets
for the different slopes and switching back and forth across these partitioned segments during
training (Lewandowsky et al., 2002; Sewall & Lewandowsky, 2012), and these processes require
working memory capacity (both from a theoretical perspective, Craig & Lewandowsky, 2012; and
based on empirical findings, Sewall & Lewandowsky, 2012). Consequently, for participants
attempting to abstract the function rule, higher working memory capacity (as indexed by Ospan
scores), would facilitate learning.”

“The implication is that for the rule learners, those with higher working memory capacity were
able to more effectively support the processing needed to determine the functional relation among
the training points, thereby supporting faster learning.”

Another study reported that reducing WMC slowed learning during a puzzle (Reber & Kotovsky,
1997):


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3890377/
https://bpb-us-e1.wpmucdn.com/sites.northwestern.edu/dist/8/4164/files/2012/11/ReberKotovsky1997.pdf
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“Participants solving the Balls and Boxes puzzle for the first time were slowed in proportion to the
level of working memory (WM) reduction resulting from a concurrent secondary task. On a second
and still challenging solution of the same puzzle, performance was greatly improved, and the same
WM load did not impair problem-solving efficiency. Thus, the effect of WM capacity reduction
was selective for the first solution of the puzzle, indicating that learning to solve the puzzle, a vital
part of the first solution, is slowed by the secondary WM-loading task.”

The impact of WMC on learning speed is not limited to puzzles in academic laboratories - it
extends to real-life contexts of academics and professional expertise. For instance, in a study of
piano players, WMC was a significant predictor of performance even for experts who had logged
thousands of hours of practice - that is, high-WMC pianists attained the same level of
performance with fewer hours of practice, or a greater level of performance with the same hours

of practice, compared to low-WMC pianists (Meinz & Hambrick, 2010).

“In evaluating participants having a wide range of piano-playing skill (novice to expert), we found
that deliberate practice accounted for nearly half of the total variance in piano sight-reading
performance. However, there was an incremental positive effect of WMC, and there was no
evidence that deliberate practice reduced this effect. Evidence indicates that WMC is highly
general, stable, and heritable, and thus our results call into question the view that expert
performance is solely a reflection of deliberate practice.”

To be clear, the variation in ability was explained primarily by the amount of effective practice,
but WMC was indeed a significant secondary factor. As Kulasegaram, Grierson, & Norman

(2013) summarize:

“Although all studies support extensive DP [deliberate practice] as a factor in explaining expertise,
much research suggests individual cognitive differences, such as WM capacity, predict expert
performance after controlling for DP. The extent to which this occurs may be influenced by the
nature of the task under study and the cognitive processes used by experts. The importance of WM
capacity is greater for tasks that are non-routine or functionally complex.”

At the other end of the spectrum, Swanson & Siegel (2011) found that students with learning
disabilities generally have lower WMC:

“We argue that in the domain of reading and/or math, individuals with LD have smaller general
working-memory capacity than their normal achieving counterparts and this capacity deficit is
not entirely specific to their academic disability (i.e., reading or math). .. We find that in
situations that place high demands on processing, individuals with LD have deficits related to
controlled attentional processes (e.g., maintaining task relevant information in the face of
distraction or interference) when compared to their chronological aged-matched counterparts.

One conclusion from the experimental literature is that individual differences in WM (of which
executive processing is a component) are directly related to achievement (e.g., reading
comprehension) in individuals with average or above average intelligence (e.g., Daneman &
Carpenter, 1980). Thus, children or adults with normal IQs have difficulty (or efficiency varies) in


https://journals.sagepub.com/doi/abs/10.1177/0956797610373933
https://asmepublications.onlinelibrary.wiley.com/doi/full/10.1111/medu.12260
https://www.researchgate.net/profile/Linda-Siegel-4/publication/284802542_Learning_disabilities_as_a_working_memory_deficit/links/5bfde0e84585157b8172a11e/Learning-disabilities-as-a-working-memory-deficit.pdf
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executive processing and that such difficulties are not restricted to those with depressed
intelligence

Our conclusions from approximately two decades of research are that WM deficits are
fundamental problems of children and adults with LD. Further, these WM problems are related to
difficulties in reading and mathematics, and perhaps writing. Although WM is obviously not the
only skill that contributes to academic difficulties [e.g., vocabulary and syntactical skills are also
important (Siegal and Ryan, 1988)], WM does play a significance role in accounting for individual
differences in academic performance.”

| Lack of Evidence for WMC Training

While it is possible to train and improve on tasks that are typically used to measure WMC,
evidence is currently lacking that these task-specific performance improvements actually
represent an increase in WMC that can be transferred to more general contexts. As described by
Redick et al. (2015):

“Despite the promising results of initial research studies, the current review of all of the available
evidence of working memory training efficacy is less optimistic. Our conclusion is that working
memory training produces limited benefits in terms of specific gains on short-term and working
memory tasks that are very similar to the training programs, but no advantage for academic and
achievement-based reading and arithmetic outcomes.

Previous work has shown that manipulations can increase a person’s score on a working memory
measure (e.g., re-taking a test, motivation, strategy instruction), but this improvement in the
individual’s working memory score may not reflect a true change in underlying working memory
ability. For example, Ericsson et al. (1980) demonstrated a subject who, through mnemonic
strategies, was able to increase his serial recall of digits to 79 in a row, though when tested on
memory span measures that did not include digits, his scores were in the normal range (7 + 2).

The bulk of the evidence from studies with rigorous methodology provide little evidence for the
efficacy of working memory training in improving academic and achievement outcomes such as
reading, spelling, and math. The observation of positive near transfer to working memory and lack
of academic or achievement test far transfer corresponds with previous meta-analyses
(Melby-Lervag & Hulme, 2013; Rapport et al., 2013), and indicates that contrary to popular belief,
the evidence for the educational benefit of working memory training is lacking.”

However, as Anderson (1987) points out, training domain-specific skills can effectively turn

long-term memory into an extension of working memory:

“Chase and Ericsson (1982) showed that experience in a domain can increase capacity for that
domain. Their analysis implied that what was happening is that storage of new information in
long-term memory, became so reliable that long-term became an effective extension of short-term
memory.”


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667976/
https://files.eric.ed.gov/fulltext/ED264257.pdf
https://apps.dtic.mil/sti/tr/pdf/ADA114634.pdf
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It comes as no surprise, then, that Redick et al. (2015) recommend that students focus on

training subject-specific skills directly:

“We recommend that in contrast to unstructured, unguided, general interventions such as
cognitive training and videogame training, more research should be focused on training specific
skills and abilities that are likely to exhibit near transfer to very similar academically relevant
outcomes - for example, training specific language skills in children with text comprehension
difficulties (Clarke, Snowling, Truelove, & Hulme, 2010), or computer-assisted instruction of
reading and math skills (Rabiner, Murray, Skinner, & Malone, 2010).”

These recommendations are echoed (Anderson et al., 1998) by K. Anders Ericsson, one of the

most influential researchers in the field of human expertise and performance:

“..[MJodern educators have trained many generalizable abilities such as creativity, general
problem-solving methods, and critical thinking. However, decades of laboratory studies and
theoretical analyses of the structure of human cognition have raised doubts on the possibility of
training general skills and processes directly, independent of specific knowledge and tasks.

For example, research on thinking and problem solving show that successful performance depends
on special knowledge and acquired skills, and studies of learning and skill acquisition show that
improvements in performance are primarily limited to activities in the specific domain.”

The recommendations are also echoed by researchers Amanda VanDerHeyden and Robin S.
Codding (2020), who have extensive experience researching academic intervention in

mathematics:

“The evidence summarized and analyzed in meta-analytic studies illustrates that (a) although
cognitive measures correlate with mathematics achievement, these measures do not correlate with
student responsiveness to intervention; (b) using cognitive assessment tools does not provide the
information necessary to improve academic skill weaknesses; and (c) cognitive interventions do
very little to improve academic performance outcomes (Burns, 2016).

[Jacob and Parkinson (2015)] concluded that there are very few rigorous intervention studies
examining the causal link between executive function interventions and academic outcomes. ...
these existing studies showed improvements on measures of executive function but no
improvements on academic achievement. Thus, the notion that executive function training can
bring about gains in mathematics proficiency is not consistent with existing evidence. The
evidence serves as a reminder that the most effective way to address a math skill deficit is to
directly remediate math skills rather than trying to improve working memory or executive
functioning as a means to address math skill deficits.”

| Different Students Need Different Amounts of Practice

The takeaway from all of this is that an adaptive learning system should focus on

subject-specific learning tasks and adapt to a student’s observed learning speed, not their


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667976/
https://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://eric.ed.gov/?id=EJ1238887

The Math Academy Way - Working Draft | 97

preferred learning style. Each student needs to be given enough practice to achieve mastery on
each learning task - and that amount of practice may vary depending on the particular student

and the particular learning task.

While this may seem like a disappointing truth for students who generally need more practice
than others, we re-emphasize a study quoted earlier in this chapter, which showed that the
impact of WMC on task performance was lessened after the task was learned to a sufficient level
of performance (Reber & Kotovsky, 1997).

“Participants solving the Balls and Boxes puzzle for the first time were slowed in proportion to the
level of working memory (WM) reduction resulting from a concurrent secondary task. On a
second and still challenging solution of the same puzzle, performance was greatly improved,
and the same WM load did not impair problem-solving efficiency. Thus, the effect of WM
capacity reduction was selective for the first solution of the puzzle, indicating that learning to
solve the puzzle, a vital part of the first solution, is slowed by the secondary WM-loading task.”

More generally, as Unsworth & Engle (2005) explain:

“.[IIndividual differences in WM capacity occur in tasks requiring some form of control, with
little difference appearing on tasks that required relatively automatic processing.”

In this view, extra practice should not be viewed as limiting the progress of students who are
slower to learn, but rather as empowering them to develop greater automaticity and lessen the
impact of the cognitive difference responsible for their slower learning, thereby allowing

continued learning on more advanced material.

We emphasize that this is fully compatible with, and in fact a necessary part of maintaining a
growth mindset. Nobody’s current level of knowledge is “fixed” or set in stone, and in order to
support every student and maximize their learning, it’s necessary to provide some students with
more practice than others. The whole goal of adapting the amount of practice to individual
differences in student learning speeds is to support maximum student growth. In fact, in the

absence of such adaptivity student growth would certainly be stunted:

e If a student is catching on slowly, and you don’t give them enough practice and instead
move them on to the next thing before they are able to do the current thing, then you’ll
soon push them so far out of their depth that they’ll just be struggling all the time and
not actually learning anything, thereby stunting their growth.


https://bpb-us-e1.wpmucdn.com/sites.northwestern.edu/dist/8/4164/files/2012/11/ReberKotovsky1997.pdf
https://link.springer.com/content/pdf/10.3758/BF03195310.pdf

98 | The Math Academy Way - Working Draft

e Likewise, if a student picks up on something really quickly and you make them practice
it for way longer than they need to instead of allowing them to move onward to more

advanced material, that’s also stunting their growth.
To maximize each individual student’s growth on each individual skill that they're learning,

Math Academy gives each student enough practice to achieve mastery and allows them to move

on to more advanced skills immediately after mastering the prerequisites.

Your Mathematical Potential Has a Limit, but it’s Likely Higher
Than You Think

Myth: Everybody can learn every level of math.
Reality: Most people can learn basic math like arithmetic and some algebra - but beyond that,
higher levels of math become increasingly abstract and technical, and fewer people have the

cognitive resources to learn it quickly enough to make a career out of it, much less get to that

point relatively early in their lives.
| Levels of Math
One problem with this myth is that most people do not understand just how deep the levels of
mathematics can go, and how cognitively taxing it is to learn the deepest levels. Arithmetic is a
completely different ballpark from graduate-level math (and beyond). Most people consider
calculus to be “really advanced math,” but calculus is not even halfway to the level at which
expert mathematicians operate.
For reference, we offer a loose formulation of the levels of mathematics below:

1. Arithmetic - seldom considered “hard math”

2. Algebra - often considered “hard math” by people who disliked math in school

3. Calculus - considered “hard math” by the general public
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4. Real Analysis, Abstract Algebra, Partial Differential Equations, etc. - considered “hard math”

by most college students majoring in math

5. Algebraic Topology, Differential Geometry, etc. - considered “hard math” by most graduate

students doing PhDs in math, as well as many research professors in math

6. The math underlying solutions to the most famous problems in modern mathematics, e.g. Ricci
Flow with Surgery which underlies the proof of Poincaré Conjecture) - considered “hard math”

by the world’s most top mathematicians
To put these levels in perspective, it can be helpful to draw an analogy to athletics:
e Learning arithmetic is like basic ambulatory movement: almost everyone can do it.

e Learning calculus is like being able to run several miles without stopping: by training

effectively and consistently, many people can accomplish it.

e Learning research-level mathematics is like qualifying for the 100-meter dash at the
Olympics: it requires a certain genetic predisposition coupled with the commitment of

thousands of hours to the most grueling forms of training.

The reason why this is harder to accept in the context of mathematics than in the context of
athletics is that we cannot observe the makeup and functioning of our brains as clearly as we
can our bodies. But, as elaborated earlier in this chapter, individual differences in brains do exist
(e.g. working memory capacity) and are relevant to key mathematical skills (e.g. abstraction

ability).

| The Abstraction Ceiling

To help lend some concreteness to something as abstract as “abstraction ability,” it may help to
hear the famed Douglas Hofstadter (2012) recount his firsthand experience of running up against

an “abstraction ceiling” in his own brain while pursuing a PhD in mathematics:

‘I am a ‘mathematical person’, that's for sure, having grown up profoundly in love with math and
having thought about things mathematical for essentially all of my life (all the way up to today),
but in my early twenties there came a point where I suddenly realized that I simply was incapable
of thinking clearly at a sufficiently abstract level to be able to make major contributions to
contemporary mathematics.


https://www.jstor.org/stable/24767514
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I had never suspected for an instant that there was such a thing as an ‘abstraction ceiling’ in my
head. I always took it for granted that my ability to absorb abstract ideas in math would continue
to increase as I acquired more knowledge and more experience with math, just as it had in high
school and in college.

I found out a couple of years later, when I was in math graduate school, that I simply was not able
to absorb ideas that were crucial for becoming a high-quality professional mathematician. Or
rather, if I was able to absorb them, it was only at a snail's pace, and even then, my understanding
was always blurry and vague, and I constantly had to go back and review and refresh my feeble
understandings. Things at that rarefied level of abstraction ... simply didn't stick in my head in the
same way that the more concrete topics in undergraduate math had ... It was like being very high
on a mountain where the atmosphere grows so thin that one suddenly is having trouble breathing
and even walking any longer.

To put it in terms of another down-home analogy, I was like a kid who is a big baseball star in
high school and who is consequently convinced beyond a shadow of a doubt that they are destined
to go on and become a huge major-league star, but who, a few years down the pike, winds up
instead being merely a reasonably good player on some minor league team in some random
podunk town, and never even gets to play one single game in the majors. ... Sure, they have oodles
of baseball talent compared to most other people — there's no doubt that they are highly gifted in
baseball, maybe 1 in 1000 or even 1 in 10000 - but their gifts are still way, way below those of
even an average major leaguer, not to mention major-league superstars!

On the other hand, I think that most people are probably capable of understanding such things as
addition and multiplication of fractions, how to solve linear and quadratic equations, some
Euclidean geometry, and maybe a tiny bit about functions and some inklings of what calculus is
about.”

As Hofstadter describes, the abstraction ceiling is not a “hard” threshold, a level at which one is
suddenly incapable of learning math, but rather a “soft” threshold, a level at which the amount
of time and effort required to learn math begins to skyrocket until learning more advanced math
is effectively no longer a productive use of one’s time. That level is different for everyone. For
Hofstadter, it was graduate-level math; for another person, it might be earlier or later (but

almost certainly earlier).

| Learning Energy vs Level of Math

The central insight is that the further you go in math, the more energy it requires to learn the
next level up. Whether they realize it or not, everybody who learns math is on an exponential
curve of energy (time and effort) versus the level of math. (A key feature of exponential curves is
that they can look fairly flat at the beginning, but appear to skyrocket later on, despite there

being a constant “multiplier” to get from one point to the next.)
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Energy (Time and Effort)
Required to Learn

A

1 I I 1 1 —» Level of Math
1 2 3 4 5 6

As we described earlier in this chapter, people with lower working memory capacities generally
perceive cognitive skills to require more effort and more practice to master. It is as if there is a

“multiplier” on the amount of energy required.

Energy (Time and Effort)
Required to Learn

A

1 1 1 {—» Level of Math
3 4 5 6

N 4+—|-=-=-=->
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Another key feature of exponential curves is that vertical scaling is equivalent to horizontal

translation. For instance, if we take the curve 2 and multiply it by 8 (representing a person who

requires 8 times more energy to learn math), then we have the curve 8 - 2° which is also
. 3+x . .

equivalent to 2, a horizontal shift 3 levels to the left.

Energy (Time and Effort)
Required to Learn

A

1 1 1 —» Level of Math

At the beginning (at the left), the two graphs are not that different, but as we look further to the
right (progressively more levels of math), they quickly separate, and one graph skyrockets much
earlier than the other. Everybody is on this exponential curve of energy (time and effort required
to learn) versus level of abstraction, but everyone’s curve is shifted horizontally depending on
their cognitive ability and degree of motivation/interest. For some people, math doesn’t get hard
until graduate-level Algebraic Topology; for others, it becomes hard as early as high school

algebra.

| All Can Learn Some, Many Can Learn More, but Few Can Learn All

> Nature or Nurture? Both Matter

This characterization is compatible with the usual findings of studies into the effects of nature

and nurture on skill acquisition: both matter. Talent - the top speed at which one can acquire
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skills in a particular domain matters, and so does hard work. As Kirschner & Hendrick describe
(2024, pp.142):

“If you are trying to convince students that innate ability accounts for 0% of success and effort
accounts for 100% of success then you are misleading them. Instead of saying to students ‘talent
doesn’t matter, only effort matters’, what we should be saying to students is ‘yes, talent and natural
ability play a big part in success but effort matters on the margins, and the marginal gains can go

B3]

on to yield significant gains’

Lack of talent does not necessarily mean “you can’t do this,” but it does mean that someone
lacking talent will need to work much harder, possibly to an infeasible extent, as compared to
someone with talent. But because the human lifespan is so limited and human talents can be so
diverse, “you need to work much harder than others to accomplish this” effectively means the
same thing “you probably won’t do this because you’ll find more efficient, productive, and

fulfilling uses of your time doing other things.”

As prominent psychologist Dean Keith Simonton summarizes (2007):

“..[T]he concept of talent does not require the existence of ‘innate constraints to the attainment of
elite achievement’ On the contrary, genetic endowment may merely influence the rate at which
domain-specific expertise is acquired without imposing any upper or lower bounds on attainment.
Thus, empirical research indicates that outstanding creative individuals require less time to
master the requisite knowledge and skill than do less creative individuals (Simonton, 2000).

In addition, talent may affect the magnitude of performance for individuals with the same
acquired level of expertise. Talented persons may ‘get more bang for the buck’ out of a given
quantity of declarative and procedural knowledge. But, again, this enhancement effect does not

B33}

amount to the imposition of any ‘innate constraints’

Elsewhere, Simonton elaborates (2013, pp.17-26) further on the importance of both nature and
nurture to the development of expert performance. It has been well established that expert
performance is contingent upon favorable sociocultural conditions, family and education

circumstances, and massive amounts of deliberate practice:

“Environmental factors play a major role in the development of greatness. Furthermore, these
factors are extremely diverse. They include the larger sociocultural conditions ... as well as more
proximate circumstances, such as family background and education ... In addition, it has been
well established in a wide range of achievement domains that greatness is contingent on what has
been called ‘deliberate practice’ (e.g., Ericsson, Krampe, & Tesch-Romer, 1993; Krampe &
Ericsson, 1996).

If any of these [essential environmental factors| attain levels of zero, and thus become totally
unsupportive of greatness, then greatness will fail to materialize. A violinist who never practices
will never become a virtuoso violinist, and probably not even a decent amateur player. The same
holds for sociocultural factors.”


https://www.taylorfrancis.com/books/mono/10.4324/9781003395713/learning-happens-paul-kirschner-carl-hendrick
https://eric.ed.gov/?id=EJ768516
https://books.google.com/books?id=tF4VVre_I4MC
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However, many critical traits underlying expert performance have been shown to have a

significant genetic component:

“Reasonably precise heritability coefficients have been estimated for many critical intellectual,
dispositional, and physical variables (Bouchard, 2004; Bouchard, Lykken, McGue, Segal, &
Tellegen, 1990). ... [O]ften genetics accounts for at least one-third of the variation, and sometimes
more than half.

This is not to say that there do not exist abilities or traits that lack significant heritabilities ... It’s
just that the latter represent the exception rather than the rule. Certainly most major cognitive
abilities are inherited to a very substantial degree, and heritabilities are moderately high for all
dispositional variables associated with the attainment of greatness.”

While the development of expert performance depends on favorable environmental
conditions and massive amounts of deliberate practice, the speed of development can be

accelerated (or decelerated) by genetic factors:

“.[Jt is far more fruitful to define innate talent in terms of expertise acquisition (Simonton,
2008b). This definition starts by viewing talent as a set of cognitive abilities, dispositional traits,
and (where necessary) physical attributes ... [T]his variable set in whole or in part must either (a)
accelerate the rate at which domain-specific expertise is acquired (i.e., “better faster” effect) or (b)
enhance domain-specific performance for a given amount of acquired expertise (i.e., “more bang
for the buck” effect). ... Nature is what facilitates and accentuates nurture.

This definition allows us to explain four facts that would otherwise be inexplicable. First,
individuals vary immensely in how long it takes to acquire the expertise requisite for greatness
(Simonton, 2000). ... Second, those who take less time to acquire expertise are actually better off
than those who take more time (Simonton, 2000). ... Third, greatness is positively associated with
broad interests, hobbies, and even versatility (e.g., Root-Bernstein, Bernstein, & Garnier, 1995;
Root-Bernstein et al., 2008; Simonton, 1976; Sulloway, 1996). ... [I]t would seem impossible for
anyone to become a great polymath if every domain always required a full decade to acquire
sufficient expertise. Fourth and last, empirical research in both behavioral genetics and
differential psychology has conclusively identified sets of abilities and traits that feature both
substantial heritability coefficients and sizeable predictive validities (Bouchard & Lykken, 1999;
Simonton, 2008b).”

> Speed of Skill Acquisition Matters Because Time is Limited

Because humans are subject to so many real-world constraints like limited lifespans and the
need to learn a marketable skill quickly enough to get a job that affords basic life amenities, and
also so many other opportunities to do things that we might find come to us easier and are at
least as interesting, we tend to be pulled in other directions once we enter a range where
developing further expertise in a domain becomes overwhelmingly arduous. We switch to other

things that we (often, correctly) feel are a better use of our limited time.
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As prominent psychologist Robert Sternberg recounts (2014):

“Most people who want to become experts — whether as violinists, skiers, physicists, or whatever -
do not make it. They drop out along the way. They try and discover that, for whatever reason, it is
not the way for them to go. I know, because as soon as I made the transition from high school to
college, I found that I could not realistically compete as a cellist in the much stiffer competition I
found in college compared with high school. Eventually I, like many others, decided that my time
would be better spent elsewhere.”

There are compounding factors, too: when something becomes hard and we stop doing as well,
we often like it less and lose interest/motivation, which makes it even more difficult. When we
are young children in school, our teachers and/or parents might force us to continue investing
effort into learning specific subjects like math even when we would prefer not to, but in high
school and beyond, parents and teachers are less involved in monitoring how much and how
effectively we practice. As we face greater responsibilities from life in general, we are met with
so many incentives to get good grades that we might shy away from taking classes that require
an outsized amount of effort. All of these factors converge to pull us towards an “off ramp” when

mathematics gets hard for us.

So, for all practical purposes, it is completely untrue that everyone can learn every level of math
and become a research mathematician - just like it is completely untrue that anyone can become
an Olympic sprinter, a professional basketball player, a world-famous comedian, a
Grammy-winning singer, etc. But at the same time, almost everybody can learn basic arithmetic
- just like almost everybody can learn to run, shoot a free throw, tell a joke, or hum a tune. And
with proper training, most people can learn some algebra - just like most people can run a 5k,

shoot a three-pointer, amuse an audience, or sing a soothing tune.

| Why the “All Can Learn All” Myth Persists

There are at least two reasons why the “all can learn all” myth persists. First, the reality that “all
can learn some, many can learn more, but few can learn all” can feel unfair and uncomfortable -
especially in the context of mathematics, since the students who are best at math tend to be

viewed as the smartest.

Second, people often overweight the importance of learning advanced math (and other technical
subjects) to general success in life. In reality, lots of jobs, even those that are well-respected and
lucrative, don’t require advanced math. For instance, how many doctors, lawyers, members of

Congress, and even university presidents can and do use calculus in their work? Few, if any. For
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professions like those, advanced math is not essential. (While it may be true that a
larger-than-expected minority of people in such careers may have learned advanced math at
some point, knowledge of advanced math itself is typically not one of the relevant factors

contributing to one’s ability to secure and maintain such a career.)

What’s important is that everyone gain basic math skills, and people with quantitative talent
who are interested in math and want to go into professions that use advanced math - not just
aspiring mathematicians but also aspiring physicists, bioinformaticians, rocket scientists,
machine learning engineers, etc. - don’t take the “off ramp” too early and miss out on the
opportunity to build a career around something they enjoy and are good at. We will address this

idea more thoroughly in the next myth.

As a final part of debunking the current myth, it’s important to realize that even professional
educators and coaches who train students are susceptible to promote the myth that anyone can

do anything with a bit of hard work.

Trainers, like parents, often don’t want to tell their children that they're not gifted/talented
enough in an area to build a career out of it - which is understandable because not only does it
feel mean, but it may not even be true: new and unexpected gifts/talents can emerge as a child

develops.

However, for trainers in particular, there are also other incentives at play that are important to
be aware of. For a trainer, there is no upside to telling a student’s parents that their child is not
gifted/talented enough in an area to build a career out of it. It just makes parents and students
really upset (even though professional trainers are probably correct more often than not) and, in
the context of private training, often leads to loss of business. So, trainers are incentivized to

avoid this treacherous territory and instead take one of the following false positions:

1. Gifts/talents are meaningless and anyone can do anything with a bit of hard work.

2. Gifts/talents are important, but there is no way to know whether a gift/talent might
emerge as a young student develops, so there is no use basing any sort of decision around

them.

In debunking the current myth, we demonstrated that the first position cannot be held
rationally. However, believing in it can feel so empowering, and in turn so convincing, that it can

be an effective position for a trainer to take to keep students and parents happy.
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Likewise, in the second position, while it is true that even professional trainers don’t know with
absolute certainty how their students (especially young students) will develop over time, they do
generally have some or even a lot of information about whether a student has a gift/talent - and if
not, then how likely it is that the gift/talent might emerge later in the child’s development.
Leveraging that information can be a critical part of helping a child enter an area where they

have both the gifts/talents and the level of interest to eventually build a career that they enjoy.

| Struggle Does Not Imply Inability

Myth: If you do poorly in a math class, it means you are incapable of learning that level

of math.

Reality: If you do poorly in a math class, it doesn’t necessarily mean that you are incapable of
learning that level of math. There are a number of reasons that could be the root cause of your
struggle. While it’s true that everyone’s mathematical potential has a limit, in practice the
ceilings we hit rarely represent our true “abstraction ceiling” as described by Hofstadter. All
sorts of factors can artificially lower our ceilings, such as missing foundations, ineffective

practice habits, inability or unwillingness to engage in additional practice, or lack of motivation.

> Struggle Can Be Caused by Missing Foundations

When people age, they accumulate biological damage that eventually reaches a tipping point
and leads to a cascade of catastrophic health issues. The same thing happens to students

learning mathematics.

Students accumulate weaknesses and knowledge gaps as they progress through math - even a
grade of B+ or A- means that there are things in the course that the student never completely
grasped, much less mastered. Additionally, gaps can be created if a student takes a course that is
not comprehensive and does not cover some topics that are assumed to be prior knowledge in
higher-level courses. Once a student has accumulated a critical number of gaps (and by the way,
a gap begets more gaps), then the student is doomed to struggle unless proper remediation is

enacted to fill in those gaps.

Math Academy automatically takes steps to detect and remediate each individual student’s gaps
in knowledge. However, remediation is extremely difficult to accomplish outside the context of

an adaptive, automated learning system. It rarely happens in the classroom - teachers just don’t
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have the bandwidth to spend enough time with each student to figure out exactly which pieces
of foundational knowledge are missing. And while remediation can often be performed by a
skilled tutor, it generally requires many tutoring sessions over a long period of time, continuing
indefinitely into the future to prevent new gaps from forming, which makes it prohibitively

expensive for most families.

Students usually stop taking math classes once they amass a critical number of knowledge gaps.
The usual sequence of events starts with students trying to imitate procedures cookbook-style,
without really understanding what’s going on, because they can’t intuitively grasp any of the
new material that they're being taught. Soon after that, they find themselves unable to solve any

problems that involve critical thinking or many steps.

It's similar to how professional athletes usually retire not because they're too old, but because
they've accumulated too many injuries. As Indiana Jones once put it: "it's not the years, it's the
mileage." Or as math writer/cartoonist Ben Orlin humorously described, it’s the “law of the

broken futon™: a single missing part can, over time, warp an entire futon and render it unusable.

Students will almost assuredly accumulate these deficits in traditional classrooms. It's only the
most gifted and motivated students who are able and willing to identify and “self-repair” their

gaps on their own.

e In traditional classrooms, students often get stuck on foundational topics but are
required to complete homework on more advanced topics, leading them to "scrape by"

without really understanding the subject matter.

e Students also do not review material learned in previous years, and often do not even
review material from the course that they're in unless they are preparing for a test. This
leads them to quickly forget what they've learned, requiring re-learning scratch if and

when those topics show up again in the future.

e Often, traditional courses are not even comprehensive! It’s not uncommon for
instructors to run out of time before the end of the year and skip sections of the
textbook.

Math Academy, however, remedies these issues so that students never end up with knowledge

holes.
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e By practicing mastery learning, we ensure that students are not required to complete
more advanced topics until they have demonstrated proficiency on the prerequisites.

This way, students are always ready to properly absorb the new concepts being learned.

e We also engage in spaced repetition, a systematic way of reviewing previously learned
material at appropriate intervals to retain knowledge. This way, students don’t forget

what they’ve learned.

e Our courses are fully comprehensive. When developing our courses, we look at all the
major textbooks to ensure that we cover all of their combined content. Any topic that

you could reasonably expect to find in some version of a course, you'll find in our system.

Even if students enter Math Academy with knowledge holes, we automatically take steps to
detect and repair them. Our diagnostic exams not only assess course content, but also
lower-grade foundations, so that we can identify and fill in every individual student’s gaps in

foundational knowledge.

> Struggle Can Be Caused by Ineffective Practice

As we explained when summarizing the science of learning, effective learning feels like a
workout with a personal trainer. It should center around deliberate practice, a type of active
learning in which individualized training activities are specially chosen to improve specific

aspects of performance through repetition and successive refinement.

We will cover active learning and deliberate practice in more depth in later chapters, but below

are some key points:

e Effective learning is active, not passive. It is not effective to attempt to learn by passively

watching videos, attending lectures, reading books, or re-reading notes.

e Deliberate practice requires repeatedly practicing skills that are beyond one’s repertoire.
However, this tends to be more effortful and less enjoyable, which can mislead

non-experts to practice within their level of comfort.

e Classroom activities that are enjoyable, collaborative, and non-repetitive (such as group
discussions and freeform/unstructured project-based or discovery learning) can

sometimes be useful for increasing student motivation and softening the discomfort
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associated with deliberate practice - but they are only supplements, not substitutes, for

deliberate practice.

e Deliberate practice must be a part of a consistent routine. The power of deliberate
practice comes from compounding of incremental improvements over a longer period of
time. It is not a “quick fix” like cramming before an exam.

On Math Academy, students spend the entirety of their time engaged in deliberate practice by
solving problems (and receiving feedback) on new topics and topics most in need of review. We
intersperse active problem-solving with instruction so that students receive minimum effective
doses of information right before they use it to actively solve problems and receive feedback.

> Struggle Can Be Caused by Insufficient Practice

Struggle can be caused by needing more practice than other students (or, equivalently, the pace
of the class might be too fast). This is not necessarily a catastrophic issue in itself because it can
usually be remedied by engaging in further practice. However, it can cause problems if coupled
with other factors such as the following:

e The instructional material is not highly scaffolded.

e Few practice problems are available.

e Exam problems are substantially different from homework problems.

e The additional practice required exceeds the amount of effort that you are willing to put

forth to learn the material.
Math Academy remedies all but the last of these issues:
e Our content is about 10x more finely scaffolded than what you'd find elsewhere.

e If a student struggles during a task, we give more questions - that is, more chances to

learn and demonstrate their learning.
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We have quick, frequent quizzes where questions are similar to (but not the same as)

those learned during lessons.

We even tailor the speed of the spaced repetition process to every separate student on
every separate topic to ensure that students are getting just enough review to retain

information over the long term.

> Struggle Can Be Caused by Lack of Motivation

Properly motivated students are usually driven by one or more of the following factors:

They are intrinsically interested in the material. Some students truly love math and see
beauty in the way various mathematical ideas fit together and give rise to new

perspectives.

The material is highly relevant to their future goals. For instance, an aspiring rocket scientist
might not love math but might be motivated to learn it because of how useful it is for
getting rockets into space. Likewise, an aspiring doctor might not love math but might
be required to evidence a baseline level of mathematical knowledge when applying to
medical school. Even students who do not have specific future goals might feel strongly
about keeping potential career doors open which would otherwise be shut by not

learning enough math.

They enjoy competing in mathematical exams and science fairs. Some students have neutral
feelings about math, but find that they are good at it, and that they enjoy learning more

advanced mathematics to provide a competitive edge in exams and science fairs.

Their parents have motivated them with a meaningful extrinsic reward. Sometimes, a student
may not fall into any categories above, but their parents (often rightfully so) want them to
fully take advantage of any opportunities to learn math while they are still in school. For
some students, this may mean learning the basic math they need to get by in life after
school; for other students, this may mean learning more advanced math to open a wide
variety of career doors. If a student is highly interested in other activities like reading
novels, playing video games, or even something as simple as going out for dessert,
offering them extrinsic rewards in return for meeting checkpoints in their math learning

can often provide sufficient motivation to keep them from “checking out” during
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learning.

If a student is not driven by any of the motivational factors above, they may “check out” or

otherwise struggle due to a lack of interest in learning the material.
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of deliberate practice, the speed of development can be accelerated (or decelerated) by genetic factors. Lack of
talent does not necessarily mean “you can’t do this,” but it does mean that someone lacking talent will need to

work much harder, possibly to an infeasible extent, as compared to someone with talent.



The Math Academy Way - Working Draft | 117

Chapter 8. Myths & Realities about

Effective Practice

Summary: The most effective learning techniques require substantial cognitive effort from
students and typically do not emulate what experts do in the professional workplace. Direct
instruction is necessary to maximize student learning, whereas unguided instruction and group
projects are typically very inefficient. Effortful processes like testing, repetition, and computation

are essential parts of effective learning, and competition is often helpful.

Effective Practice Does Not Emulate the Professional Workplace

Myth: Effective methods of practice emulate what experts do in the professional

workplace.

Reality: A well-known phenomenon in cognitive psychology is that instructional techniques
that promote the most learning in experts, promote the least learning in beginners, and vice
versa. This is called the expertise reversal effect (first introduced by Sweller et al., 2003). As
Kirschner & Hendrick summarize (2024, pp.67):

“As the novice is not a miniature expert, it’s important to realize that what may work very well for
an expert (e.g. discovery learning, problem-based learning [in the sense of working in groups to
solve an open-ended problem], inquiry learning) usually doesn’t work well or is even harmful and
counterproductive for the novice (and vice versa).”

Additionally, in the professional workplace, employees engage in activities that maximize group
output, which is totally different - and in some ways, opposite - from maximizing individual

learning.
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| Direct Instruction is Needed
> Definition and Importance

It is true that many highly skilled professionals spend a lot of time solving open-ended
problems, and in the process, discovering new knowledge as opposed to obtaining it through
direct instruction. However, this does not mean that beginners should do the same. The
expertise reversal effect suggests the opposite - that beginners (i.e. students) learn most

effectively through direct instruction.

Direct instruction is intuitively obvious. If a coach is trying to get a student to become a great
chess player or pianist, they don’t tell the student “go play around and come back with
something insightful” Rather, the coach explicitly demonstrates a skill and then provides
corrective feedback to the student as they practice the skill. As Kirschner & Hendrick describe
(2024, pp.68):

“While an expert can be given a problem to be solved after having been taught a certain technique
or principle, a novice should be given a more structured approach to using that principle for
solving the same problem, for example in the form of a worked example.”

Indeed, this is backed up by decades of research. As prominent psychologists Richard Clark,

Paul Kirschner, and John Sweller summarize (2012):

“Decades of research clearly demonstrate that for novices (comprising virtually all students),
direct, explicit instruction is more effective and more efficient than partial guidance. So, when
teaching new content and skills to novices, teachers are more effective when they provide explicit
guidance accompanied by practice and feedback, not when they require students to discover many
aspects of what they must learn.

We also have a good deal more experimental evidence [since the 1960s] as to what constitutes
effective instruction: controlled experiments almost uniformly indicate that when dealing with
novel information, learners should be explicitly shown all relevant information, including what to
do and how to do it. We wonder why many teacher educators who are committed to scholarship
and research ignore the evidence and continue to encourage minimal guidance when they train
new teachers.

After a half century of advocacy associated with instruction using minimal guidance, it appears
that there is no body of sound research that supports using the technique with anyone other than
the most expert students. Evidence from controlled, experimental (a.k.a. “gold standard”) studies
almost uniformly supports full and explicit instructional guidance rather than partial or minimal
guidance for novice to intermediate learners. These findings and their associated theories suggest
teachers should provide their students with clear, explicit instruction rather than merely assisting
students in attempting to discover knowledge themselves.”
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> Unguided Instruction has a History of Pseudoscience

Clark, Kirschner, & Sweller (2012) explain that unguided instruction persists by cloaking itself in

a different disguise each time it is debunked:

“Richard Mayer (a cognitive scientist at the University of California, Santa Barbara) examined
evidence from studies conducted from 1950 to the late 1980s comparing pure discovery learning
(defined as unguided, problem-based instruction) with guided forms of instruction. He suggested
that in each decade since the mid-1950s, after empirical studies provided solid evidence that the
then-popular unguided approach did not work, a similar approach soon popped up under a
different name with the cycle repeating itself.

Each new set of advocates for unguided approaches seemed unaware of, or uninterested in,
previous evidence that unguided approaches had not been validated. This pattern produced
discovery learning, which gave way to experiential learning, which gave way to problem-based and
inquiry learning, which has recently given way to constructivist instructional techniques.”

As they elaborate elsewhere (Kirschner, Sweller, & Clark, 2010), these unguided approaches are

often based on modeling the activities of professionals:

“Examples of applications of these differently named but essentially pedagogically equivalent
approaches include science instruction in which students are placed in inquiry learning contexts
and asked to discover the fundamental and well-known principles of science by modeling the
investigatory activities of professional researchers (Van Joolingen, de Jong, Lazonder, Savelsbergh,
& Manlove, 2005).”

They also explain that the current formulation, constructivist instruction, uses scientific

camouflage but is not actually scientific itself:

“Turning again to Mayer’s review of the literature, many educators confuse ‘constructivism,’
which is a theory of how one learns and sees the world, with a prescription for how to teach.

In the field of cognitive science, constructivism is a widely accepted theory of learning; it claims
that learners must construct mental representations of the world by engaging in active cognitive
processing. Many educators (especially teacher education professors in colleges of education) have
latched on to this notion of students having to ‘construct’ their own knowledge, and have assumed
that the best way to promote such construction is to have students try to discover new knowledge
or solve new problems without explicit guidance from the teacher.

Unfortunately, this assumption is both widespread and incorrect. Mayer calls it the ‘constructivist

teaching fallacy. ... Learning requires the construction of knowledge. Withholding information
from students does not facilitate the construction of knowledge.”

In his critical review, Mayer (2004) had plenty more to say:

“The research in this brief review shows that the formula constructivism hands-on activity is a
formula for educational disaster.
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Like some zombie that keeps returning from its grave, pure discovery continues to have its
advocates.

Pure discovery did not work in the 1960s, it did not work in the 1970s, and it did not work in the
1980s, so after these three strikes, there is little reason to believe that pure discovery will somehow
work today.

[T]he issue addressed in this article is not whether constructivism is a good idea for education. but
rather whether the educational implications attributed to constructivism are good ideas. In the
case of discovery methods, the implications attributed to constructivism are not good ideas.

The debate about discovery has been replayed many times in education, but each time, the
research evidence has favored a guided approach to learning.”

These interpretations are echoed throughout the literature. As other prominent psychologists
John Anderson, Lynne Reder, and Herbert Simon state (1998):

“A consensus exists within cognitive psychology that people do not record experience passively but
interpret new information with the help of prior knowledge and experience. ... However, denying
that information is recorded passively does not imply that students must discover their knowledge
by themselves, without explicit instruction, as claimed by radical constructivists.”

“Radical constructivism emphasizes discovery learning, learning in complex situations, and
learning in social contexts, while strongly distrusting systematic evaluation of educational
outcomes. ... [Clertain of its devotees exhibit an antiscience bias that, should it prevail, would
devote any hope for progress in education.

Little positive evidence exists for discovery learning and it is often inferior. Discovery learning,
even successful in enabling the acquisition of the desired construct, may require a great deal of
valuable time that could have been spent practicing the construct (which is an active process, t0o)
if it had been learned from instruction. Because most learning only takes place after the construct
has been discovered, when the search is lengthy or unsuccessful, motivation commonly lags. As D.
P. Ausubel wrote in 1968, summarizing the findings from the research on discovery learning:

‘Actual examination of the research literature allegedly supportive of learning by discovery reveals
that valid evidence of this nature is virtually nonexistent. It appears that the various enthusiasts of
the discovery method have been supporting each other research-wise by taking in each other’s
laundry, so to speak, that is, by citing each other’s opinions and assertions as evidence and by
generalizing wildly from equivocal and even negative findings.”

> Unguided Instruction is Logically and Scientifically Inconsistent

Anderson, Reder, & Simon (1998) also explain that opponents of direct instruction are,

ultimately, opponents of extensive practice - a position that is clearly problematic:

“Some argue that direct instruction leads to ‘routinization’ of knowledge and drives out
understanding:
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‘The more explicit I am about the behavior I wish my students to display, the more likely it is that
they will display the behavior without recourse to the understanding which the behavior is meant
to indicate; that is, the more likely they will take the form for the substance.’

An extension of this argument is that excessive practice will also drive out understanding. This
criticism of practice (called ‘drill and kill, as if this phrase constituted empirical evaluation) is
prominent in constructivist writings. Nothing flies more in the face of the last 20 years of research
than the assertion that practice is bad.

All evidence, from the laboratory and from extensive case studies of professionals, indicates that
real competence only comes with extensive practice. By denying the critical role of practice, one is
denying children the very thing they need to achieve competence. ... the grain of truth in the
drill-and-kill criticisms [is that]: Students need to be engaged when they are studying.”

Likewise, there are critical issues with the idea of learning primarily from complex situations:

“First, a learner who is having difficulty with many of the components can easily be overwhelmed
by the processing demands of the complex task. Second, to the extent that many components are
well mastered, the student will waste a great deal of time repeating those mastered components to
get an opportunity to practice the few components that need additional practice.

A large body of research in psychology shows that part training is often more effective when the
part component is independent, or nearly so, of the larger task. .. Practicing one’s skills
periodically in full context is important to motivation and to learning to practice, but not a reason
to make this the principal mechanism of learning.”

Along these lines, Clark, Kirschner, & Sweller (2012) further explain that, in addition to being
supported by a mountain of experimental evidence, the superiority of direct instruction follows

intuitively from modern understandings of working and long-term memory:

“These two facts — that working memory is very limited when dealing with novel information, but
that it is not limited when dealing with organized information stored in long-term memory -
explain why partially or minimally guided instruction typically is ineffective for novices, but can
be effective for experts. When given a problem to solve, novices’ only resource is their very
constrained working memory. But experts have both their working memory and all the relevant
knowledge and skill stored in long-term memory.”

> Unguided Instruction Leads to Major Issues in Practice

Clark, Kirschner, & Sweller (2012) also describe what actually happens in classrooms that do not

use direct instruction:

“In real classrooms, several problems occur when different kinds of minimally guided instruction
are used.
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First, often only the brightest and most well-prepared students make the discovery.

Second, many students, as noted above, simply become frustrated. Some may disengage, others
may copy whatever the brightest students are doing - either way, they are not actually discovering
anything.

Third, some students believe they have discovered the correct information or solution, but they are
mistaken and so they learn a misconception that can interfere with later learning and problem
solving. Even after being shown the right answer, a student is likely to recall his or her discovery -
not the correction.

Fourth, even in the unlikely event that a problem or project is devised that all students succeed in
completing, minimally guided instruction is much less efficient than explicit guidance. What can
be taught directly in a 25-minute demonstration and discussion, followed by 15 minutes of
independent practice with corrective feedback by a teacher, may take several class periods to learn
via minimally guided projects and/or problem solving.”

These issues are also backed up by numerous studies:

“Hardiman, Pollatsek, and Weil (1986) and Brown and Campione (1994) noted that when
students learn science in classrooms with pure-discovery methods and minimal feedback, they
often become lost and frustrated, and their confusion can lead to misconceptions. Others (e.g.,
Carlson, Lundy, & Schneider, 1992; Schauble, 1990) found that because false starts are common in
such learning situations, unguided discovery is most often inefficient.”

To emphasize, these issues are so problematic that they can actually result in negative

educational progress:

“Not only is unguided instruction normally less effective; there is also evidence that it may have
negative results when students acquire misconceptions or incomplete or disorganized knowledge.”

But despite these issues, the students who learn least in unguided settings still tend to prefer it

because it feels less effortful:

“..[W]hen learners are asked to select between a more-guided or less-guided version of the same
course, less-skilled learners who choose the less-guided approach tend to like it even though they
learn less from it. It appears that guided instruction helps less-skilled learners by providing
task-specific learning strategies. However, these strategies require learners to engage in explicit,
attention-driven effort and so tend not to be liked, even though they are helpful to learning.”

Of course, experienced, effective teachers are well acquainted with these issues and (rightfully

so) brush off any recommendations to use unguided learning:

“..[M]any experienced educators are reluctant to implement - because they require learners to
engage in cognitive activities that are highly unlikely to result in effective learning. As a
consequence, the most effective teachers may either ignore the recommendations or, at best, pay
lip service to them (e.g., Aulls, 2002).”
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This sentiment is sharply echoed by Mayer (2004):

“..[T]he contribution of psychology is to help move educational reform efforts from the fuzzy and
unproductive world of educational ideology - which sometimes hides under the banner of various
versions of constructivism - to the sharp and productive world of theory-based research on how
people learn.”

To top it all off, as Kirschner, Sweller, & Clark (2010) summarize, even on the rare occasion that a
student does manage to learn in an unguided setting, their learning tends to be shallower than it

would have been in a strongly guided setting:

“Moreno (2004) concluded that there is a growing body of research showing that students learn
more deeply from strongly guided learning than from discovery. Similar conclusions were reported
by Chall (2000), McKeough, Lupart, and Marini (1995), Schauble (1990), and Singley and
Anderson (1989).

Klahr and Nigam (2004), in a very important study, not only tested whether science learners
learned more via a discovery versus direct instruction route but also, once learning had occurred,
whether the quality of learning differed. Specifically, they tested whether those who had learned
through discovery were better able to transfer their learning to new contexts. The findings were
unambiguous. Direct instruction involving considerable guidance, including examples, resulted in
vastly more learning than discovery. Those relatively few students who learned via discovery
showed no signs of superior quality of learning.”

As Kirschner & Hendrick summarize (2024, pp.76):

“..[Ilf you want your students to learn to solve problems, they first need both the declarative and
procedural knowledge within the subject area of the problem in question. This is also true if you
want to teach them to communicate, discuss, write, or whatever twenty-first century skill people
are talking about. You can’t communicate about something, write about something, discuss or
argue about something, etc., without first knowing about that something and then also knowing
the rules (i.e. the procedures) for doing it.”

| Many Hands Make Light Work... and Light Learning

Professionals often work in groups because it gives them an economic advantage. Real-world
projects are often extremely complex and require a massive amount of highly skilled labor
across a wide variety of disciplines. The amount of work necessary to bring the project to
fruition might exceed what one person can put forth over their entire lifetime, and the number
of skill domains covered by the work might be more than any one person can hope to master in a

single lifetime. This problem is solved by constructing a team where each member is highly
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skilled in one or more of the relevant domains, and there are enough members to complete the

workload in a feasible amount of time.

The goal of division of labor in the professional workplace is to maximize the output of a team.
On the surface, it might seem like a tempting strategy to apply in the classroom: won’t
maximizing the output of a classroom effectively maximize the learning of individual students?
But the answer is a resounding no. Division of labor is division of learning, which means that it

actually minimizes the learning of individual students.

To maximize the learning of individual students, it is necessary to actively engage every
individual student on every single piece of material to be learned. Division of labor is the
complete opposite of that, since each student actively learns only the material that corresponds
to their individual responsibility in the division of labor. The rest of the project, they observe
only passively, if at all. At best, each student only learns a tiny fraction of the material. At worst,

one student ends up doing all the work while the rest of the group learns nothing.

As Anderson, Reder, & Simon (1998) summarize:

“Some of the learning contexts recommended in radical constructivist writings involve tasks that
can be solved by a single problem solver, but the movement more and more is to convert these to
group learning situations. ... While a person must learn to deal with the social aspects of jobs, all
skills required for these jobs do not need to be trained in a social context. ... Training independent
parts of a task separately is preferable, because fewer cognitive resources will be required for
performance, thereby reserving adequate capacity for learning.

A review by the National Research Council (NRC) Committee on Techniques for the
Enhancement of Human Performance noted that ... relatively few studies ‘have successfully
demonstrated advantages for cooperative versus individual learning,’ and that a number of
detrimental effects arising from cooperative learning have been identified - the ‘free rider, the
‘sucker’ [reducing effort to avoid being taken advantage of by free riders], the ‘status differential’
[low-ability team members lose social status and reduce effort] and ‘ganging up’ [directing group
effort towards circumventing the intended efforts of the task] effects [Salomon & Globerson, 1989].

The NRC review of cooperative learning notes a substantial number of reports of no-differences,
but, unfortunately, a huge number of practitioner-oriented articles about cooperative learning
gloss over difficulties with the approach and treat it as an academic panacea. It is applied too
liberally without the requisite structuring or scripting to make it effective. ... A reported practice
among some students is to divide the labor across classes so that one member of a group does all
of the work for a project in one class, while another carries the burden for a different class. Clearly
these are not the intended outcomes of cooperative learning but will occur if thoughtful
implementation and scripting of the learning situation are not evident.”

Granted, fun, collaborative group activities can sometimes be useful for increasing student

motivation and softening the discomfort associated with intense, individualized deliberate
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practice. However, they do not directly move the needle on student performance - rather, they
“grease the wheels” and reduce psychological friction during the process of deliberate practice.

Performance improvements come directly from deliberate practice.

Effective Practice Requires Effort
| There is No Such Thing as Effortless Learning

Myth: There exist effective methods of practice that require low or no effort.

Reality: Talent development takes work - not just a little work, but a lot of work. There is
absolutely no confusion about this in the talent development community. Can you imagine
asking an athletic coach to help you become a star player using training methods that don’t tire

you out and make you sweat?

A common theme in the science of learning is that effective learning feels like a workout with a
personal trainer. It should center around deliberate practice, a type of active learning in which
individualized training activities are specially chosen to improve specific aspects of
performance through repetition and successive refinement. These practice activities are done
entirely for the purpose of pushing one’s limits and improving performance; consequently, they

tend to be more effortful and less enjoyable.

Unfortunately, many types of training methods are ineffective, but require little effort, and can
therefore seem attractive to even the most well-intentioned, hardworking students because they
create an illusion of competence (e.g. Karpicke, Butler, & Roediger, 2009; also called an illusion
of comprehension in earlier works reviewed in e.g. Bjork & Bjork, 2023). Examples include
looking at notes, rereading course materials, and highlighting. In a review of scientific studies
on various methods of practice, low-effort methods like these were found to have the lowest
utility in terms of promoting learning, retention, and application of knowledge (Dunlosky et al.,
2013):

Utility Techniques

) Practice testing
High .. .
Distributed Practice

Moderate Interleaved Practice
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Elaborative interrogation

Self-explanation

Summarization
Highlighting

Low The keyword mnemonic
Imagery use for text learning

Rereading

On the other hand, the two highest-utility methods - practice testing and distributive practice -
are particularly effortful. The benefits of practice testing come from effortful retrieval of
information, and the benefits of distributed practice come from spreading out practice sessions
to allow for some amount of forgetting to set in between them (which thereby increases the level
of effort required during subsequent practice sessions). As Brown, Roediger, & McDaniel (2014,

pp-48) summarize:

“Spacing out your practice feels less productive for the very reason that some forgetting has set in
and you’ve got to work harder to recall the concepts. It doesn’t feel like you're on top of it. What
you don’t sense in the moment is that this added effort is making the learning stronger.”

And as Kang (2016) describes, these two high-effort methods are even more effective (and, of

course, even more effortful) when combined:

“Testing or spaced practice, each on its own, confers considerable advantages for learning. But,
even better, the two strategies can be combined to amplify the benefits: Reviewing previously
studied material can be accomplished through testing (often followed by corrective feedback)
instead of rereading.”

To be clear, this is not to say that passively reading or re-reading material should be completely
avoided. It is useful to familiarize oneself with instructional material before engaging in
effortful practice, and it is also useful to revisit that material if one runs into issues while
attempting to carry out the effortful practice. However, it is not until effortful practice that true

learning actually occurs.

Familiarizing oneself with instructional material is similar to warming up before a workout: the
warmup does not actually lead to improvements in strength or endurance, but it does help
maximize performance and avoid injury during the workout. No matter what skill is being

trained, improving performance is always an effortful process.

As Qadir & Imran (2018) summarize, learning is all about creating desirable difficulties:
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“While we intuitively dislike difficulties and thus try to avoid them, many difficulties (but not all)
have a positive effect on learning. The well-known cognitive psychologist Bob Bjork coined the
term ‘desirable difficulties’ for such difficulties that have a positive effect on learning.

Learning - i.e., actual learning that requires the ability to remember and transfer concepts in the
long term - requires effort .. Research has shown that while retrieval is harder with spaced
learning and interleaving, resulting in the feeling that the learning is less accomplished, the
resulting learning is actually deeper and will lead to easier retrieval in the future.”

| To Oppose Effortful Practice is to Oppose Talent Development
Myth: Testing, repetition, computation, and competition detract from learning.

Reality: In the world of talent development, nobody is confused about the importance of these
methods. Can you imagine telling an athletic coach that things like competitive tryouts,
repetitious drills, exhausting physical conditioning, and assigning playing time based on
performance during scrimmage and competitive games against other teams, detract from

developing athletic talent?

> Testing and Repetition are Necessary

As we covered while debunking the previous myth, practice testing and distributed practice (also
known as spaced repetition) are widely understood by researchers to be two of the most effective
practice techniques. We have also discussed the importance of deliberate practice,
individualized training activities specially chosen to improve specific aspects of a student’s
performance through repetition and successive refinement, which has been shown to be one of
the most prominent underlying factors responsible for individual differences in performance,

even among highly talented elite performers.

It is not possible to rationally argue that one can maximize learning without engaging in testing
and repetition. If someone attempts to argue that position, what they are really saying is that
they disagree with the premise of maximizing learning. And that is fine - plenty of people would
prefer for their education to maximize other things like fun and entertainment while, as a
secondary concern, meeting some low bar for shallowly learning some surface-level basic skills.

But that is a completely different and opposite thing from talent development.
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What’s more, in a subject as hierarchical as math, where each advanced skill requires many
simpler skills to be applied in complex ways, avoiding testing and repetition can lead to major
struggle. To learn a complex skill, a student must first be fluent with the simpler component
skills - and to comfortably perform the complex skill, a student must be fully automatic with the
simpler component skills. If a student does not develop fluency and eventual automaticity on
each skill, they will be doomed to struggle on the more advanced skills of which those simpler
skills are components. Testing and repetition are the two learning strategies that most directly
build fluency and eventual automaticity. (To be clear, repetition does not mean giving students
excessive practice past the point of mastery, but rather, giving students enough practice to

achieve mastery before moving them on to more advanced skills.)

> Computation is Necessary
There are several reasons why practicing computation is a necessary part of learning math.

1. In the absence of computation, it’s easy to lose touch with the concrete meaning of
various symbols, procedures, and ideas. Computation keeps learners aware of what these
things mean in terms of concrete numbers. In fact, the whole point of an abstract idea is
to streamline and unify existing knowledge of concrete examples. Computational

examples are to mathematics as experiences are to life.

2. Is someone a talented basketball player if they can talk about the strategy of the game
but cannot actually make any shots? No. The same applies to someone who can talk

about mathematical ideas but is unable to perform computations.

3. It is impossible to gain a full, holistic understanding of a subject without knowing the
component skills. If someone can’t shoot a basketball, how can they possibly understand
how different shots compare in terms of difficulty, and what plays might open up good

shots? The same is true in mathematics.

4. Computation often helps build conceptual understanding. Math is full of ideas that
cannot be properly understood without experience carrying out computations. (One of
the clearest examples of this is the concept of the discriminant of a quadratic equation: if
a student has experience computing solutions to quadratic equations using the quadratic
formula, then they will find it much easier to observe that the b’-4ac term, known as the

discriminant, controls the number of solutions.)
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> Competition Can be Helpful and is Unavoidable in the Big Picture

While competition is not inherent to the learning process, appropriately structured competition
does not necessarily detract from it either, and in many cases, can incentivize learners to
increase the quantity and quality of practice to maximize their level of achievement. For
instance, many Math Academy students are highly motivated by weekly leaderboards to

maintain a consistent practice schedule.

Of course, this is not to say that every student must compete in order to learn productively.
Some students prefer not to participate in Math Academy’s weekly leaderboards, and that is
totally fine. Similarly, this is not to say every form of competition promotes learning. The key
phrase is appropriately structured competition. It is easy to imagine disaster scenarios arising
from inappropriately structured competition (e.g. the student with the highest score gets an A

and all others fail the class).

That said, if a student is serious about developing their talent to a high enough level to build a
career around it, then competition is a reality that they must eventually face. In talent
development, anyone who seriously attempts to reach any level of success in a sport, instrument,
etc, knows that they have to work really hard and compete against other people (who are also
working really hard) for limited positions. Mathematics is no exception. There is a limited
number of professorships available for mathematics and related disciplines, and outside
academia, there is a limited number of positions available for jobs that involve solving hard

problems using advanced mathematics.

It's worth emphasizing that while competition gets a bad rap, its purpose is positive: generally
speaking, the purpose of competition is to assign responsibilities to the people most capable of
performing them and motivate those people to continue working hard and improving. The bad
rap tends to be vocalized by people who are not aligned with this process - for instance, people
who confuse their enjoyment of a job with their capability or value to society in performing it,
or people who wait until the last minute to begin developing a talent and then experience a rude

awakening when they realize that their level of capability is far behind that of other people.
> Why the Myth Persists in Education (But Not in Talent Development)
Why does this myth persist in the practice of education, whereas there is no confusion in the

field of talent development? One key factor is that in talent development, the optimization

problem is clear: an individual’s performance is to be maximized, so the methods used during
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practice are those that most efficiently convert effort into performance improvements. On the
other hand, in education, there are many other factors (especially bureaucratic ones) that
constrain and cloud the optimization problem. The end result is that teachers are incentivized
to use easy, fun, low-accountability, hard-to-measure practice techniques that keep students,
parents, and administrators off their back. Unfortunately, these practice techniques tend to be

ineffective.

For instance, consider the idea of testing. In talent development, all parties involved are
proponents of testing. If a child is training to play a sport at a high level, such as becoming an
Olympic sprinter, then the child, their parents, and their coach will all want to see regular
measurements of the child’s 100-meter dash time. If that time is going down, then practice is
working and everybody is happy. If the time is not going down, then it signals that something
needs to be adjusted in the practice routine and nobody is happy until the problem is solved.
The act of measuring performance is critical because it tells everyone whether the child is

making progress towards achieving their goal.

In education, however, many people are against testing. Typically, parents want their children to
get high grades and learn a bit without feeling too stressed, their children want to minimize the
amount of work they have to do to satisfy (or, perhaps, not anger) their parents, and
administrators want parents to be happy and test scores to be sufficiently high. Teachers are
squeezed by pressure on both sides - getting as many kids as possible over some threshold test

score, while assigning as high grades and as little work as possible.

In this position, it is easy to dislike testing - if testing were to go away, then it would be easy to
satisfy all parties involved by centering the class around discussions and fun activities. Students
wouldn’t have to work too hard, they would learn a little bit, they would receive good grades on
the basis of participation, parents would be happy that their children are getting high grades
and learning a bit without feeling too stressed, and administrators would be happy that parents
are happy. It is only natural for those in this position to oppose testing and instead argue for the
existence and importance of subjective forms of learning that cannot be objectively measured,

even though such forms of learning are unscientific by definition.

> Why Talent Development is Important in Math

Practitioners of talent development tend to be found in hierarchical skill domains like sports

and music, where each advanced skill requires many simpler skills to be applied in complex
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ways. This is because it's hard to climb up the skill hierarchy without intentionally trying to do

SO.

To learn an advanced skill, you must be able to comfortably execute its prerequisite skills, and
the prerequisite skills underlying those, and so on. Getting to the point of comfortable execution
on any skill takes lots of practice over time - and even after you get there, you have to continue

practicing to maintain your ability.

None of this happens naturally. If you don't carefully manage the process, then you struggle.
Nobody gets to be really good at a sport or instrument without taking their talent development

seriously and intentionally trying to maximize their learning.

Conveniently, most students aren't expected to achieve a high level of success in sports or
music, so they can get away with de-prioritizing talent development. If every student in gym
class were expected to be able to do a backflip by the end of the year, things would have to
change - but the expectations are so low that meeting them does not require talent

development.

When it comes to math, however, things become problematic. Like sports and music, math is an
extremely hierarchical skill domain, so achieving a high level of success requires a dedication to
talent development. However, unlike sports and music, most students are expected to achieve a
relatively high level of success in math: many years of courses increasing in difficulty,
culminating in at least algebra, typically pre-calculus, often calculus, and sometimes even higher
than that.

As a result, in math, de-prioritizing talent development leads to major issues. When students do
the mathematical equivalent of playing kickball during class, and then are expected to do the
mathematical equivalent of a backflip at the end of the year, it's easy to see how struggle and

general negative feelings can arise.
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Chapter 9. Myths & Realities about

Mathematical Acceleration

Summary: Students often become mathematically accelerated by working on Math Academy, and
there are many misconceptions surrounding educational acceleration. Acceleration does not lead
to adverse psychological consequences in capable students; rather, whether a student is ready for
advanced mathematics depends solely on whether they have mastered the prerequisites.
Acceleration does not imply shallowness of learning; rather, students undergoing acceleration
generally learn - in a shorter time - as much as they would otherwise in a non-accelerated
environment over a proportionally longer period of time. Accelerated students do not run out of
courses to take and are often able to place out of college math courses even beyond what is tested
on placement exams. Lastly, for students who have the potential to capitalize on it, acceleration is
the greatest educational life hack: the resulting skills and opportunities can rocket students into
some of the most interesting, meaningful, and lucrative careers, and the early start can lead to

greater career success.

Acceleration is Often Misunderstood

On a system like Math Academy, where students can learn math multiple times as efficiently as
in a traditional classroom, students who continue working at a normal “school workload” pace
of an hour or more per weekday throughout the year will learn multiple years of math in one

year - in a fully comprehensive curriculum, without skipping any content.

While this may seem unexpected and even shocking to those unfamiliar with academic
acceleration (the practice of allowing students to learn academic material at a younger age
and/or faster rate than is typical), this is a normal and expected consequence of increased
learning efficiency: if a student’s learning becomes 4x more efficient, and they continue putting

forth the same amount of time into learning, then they will learn 4x as much material.

The benefits of mathematical acceleration are as numerous as the misconceptions surrounding

it. As lamented by researcher James Borland (1989, pp.185):

“Acceleration is one of the most curious phenomena in the field of education. I can think of no
other issue in which there is such a gulf between what research has revealed and what most
practitioners believe. The research on acceleration is so uniformly positive, the benefits of
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appropriate acceleration so unequivocal, that it is difficult to see how an educator could oppose
it.”

The purpose of this chapter is to clear up misconceptions and, at the same time, communicate

the benefits of mathematical acceleration.

Developmental Appropriateness
| Advanced Study is Appropriate Once Prerequisites Have Been Mastered

Myth: Learning math early is not appropriate for students’ social/emotional and

cognitive/academic development.

Reality: Educational acceleration does not lead to adverse psychological consequences in
capable students. For instance, according to a study titled Academic Acceleration in Gifted Youth
and Fruitless Concerns Regarding Psychological Well-Being: A 35-Year Longitudinal Study that
followed thousands of accelerated students throughout their lives over the course of 35 years
(Bernstein, Lubinski, & Benbow, 2021):

“The amount of educational acceleration did not covary with psychological well-being. Further,
the psychological well-being of participants in both studies was above the average of national
probability samples. Concerns about long-term social/femotional effects of acceleration for
high-potential students appear to be unwarranted, as has been demonstrated for short-term

effects.

These findings are consistent with research on the effects of academic acceleration on
psychological well-being. That is, there is little evidence that academic acceleration has negative
consequences on the psychological well-being of intellectually talented youth (Assouline et al.,
2015; Benbow & Stanley, 1996; Colangelo et al., 2004; Gross, 2006; Robinson, 2004).

These findings do not support the frequently expressed concerns about the possible long-term
social and emotional costs of acceleration by counselors, parents, and administrators. ... Those
who were accelerated had few regrets for doing so. Indeed, if anything, they tended to wish that
they had accelerated more.”

Whether a student is ready for advanced mathematics depends solely on whether they have
mastered the prerequisites. If a student has mastered prerequisites, then it is appropriate for
them to continue learning advanced math early, and not appropriate to stunt their development

by holding them back. As the study authors note:

“Many fear negative possibilities of moving a gifted child to a more advanced class. Yet it also is
important to consider the negative possibilities of holding children back in classes aiming to teach
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subject matter that they have already mastered (Benbow & Stanley, 1996; Gross, 2006; Stanley,
2000). Choosing not to accelerate is as much of a decision as choosing to do so ...

This is particularly important given the extensive empirical literature showing positive effects of
acceleration on academic achievement (Kulik & Kulik, 1984, 1992; Lubinski, 2016; Rogers, 2004;
Steenbergen-Hu et al., 2016) and creativity (Park et al., 2013; Wai et al., 2010). ... Presenting
students with an educational curriculum at the depth and pace with which they assimilate new
knowledge is beneficial. Other studies have shown that academic acceleration tends to enhance
professional and creative achievements before age 50 (Park et al., 2013; Wai et al., 2010).”

Numerous other studies on the long-term effects of educational acceleration have drawn similar

conclusions. As Wai (2015) summarizes:

“for many decades there has been a large body of empirical work supporting educational
acceleration for talented youths (Colangelo & Davis, 2003; Lubinski & Benbow, 2000;
VanTassel-Baska, 1998). Although neglecting this evidence seems increasingly harder to do (Ceci,
2000; Stanley, 2000), putting research into practice has been challenging due to social and
political forces surrounding educational policy and implementation (Benbow & Stanley, 1996;
Gallagher, 2004; Stanley, 2000).

The educational implications of these studies are quite clear. They collectively show that the
various forms of educational acceleration have a positive impact. The key is appropriate
developmental placement (Lubinski & Benbow, 2000) both academically and socially. ..
Educational acceleration is essentially appropriate pacing and placement that ensures advanced
students are engaged in learning for life. Every student deserves to learn something new each day
(Stanley, 2000). The evidence clearly supports allowing students who desire to be accelerated to do
so, and does not support holding them back.

[T]he long-term studies reviewed here show that adults who had been accelerated in school
achieved greater educational and occupational success and were satisfied with their choices and
the impact of those choices in other areas of their lives.”

| Why the Myth of Developmental Inappropriateness Persists

This myth of acceleration being developmentally inappropriate may be perpetuated in part by
convenience. In schools, each grade typically progresses through the math curriculum in
lockstep, which means that accelerated students would need to be placed in above-grade

courses. This can lead to major logistical challenges.

For instance, if above-grade course is not offered by the school (which would certainly be the
case for accelerated 5th graders in elementary schools, 8th graders in middle schools, and 12th

graders in high schools), then either
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e the students would need to take the class at another school (which introduces

transportation, scheduling, and administrative issues) or

e the school would need to hire a teacher who is capable of teaching the higher-grade
material (and it’s hard enough for schools to hire teachers who are capable of teaching

grade-level mathematics).

And even if the above-grade course is offered by the school, there may be schedule conflicts
with grade-level courses that mathematically accelerated students still need to take. (Course
schedules are typically optimized to minimize conflicts within grade levels, but not across grade

levels.)

Besides logistical issues, there are other factors that can disincentivize acceleration and lead the
myth to be perpetuated out of convenience. As Steenbergen-Hu, Makel, & Olszewski-Kubilius
(2016) describe:

<«

E]ducation administrators may have perverse incentives to avoid acceleration. For example,
although acceleration can often actually save schools money because students spend fewer years
in school, it can also ‘cost’ schools money. Because school funding is often allocated based on
headcounts and accelerated students spend fewer years in school, schools receive fewer dollars
overall, or in the case of dual enrollment, may have to spend some of those dollars outside the
district.

Similarly, in states that offer open enrollment, students could leave a district for one where their
needs are better met. Moreover, in the age of accountability via test score performance, keeping
students who could be accelerated with their same-age peers can boost average test scores,
regardless of whether the students are learning.”

Even in schools that do offer acceleration, typically only a small portion of students per grade
are accelerated. Given how many logistical challenges and other disincentivizing factors there
are, how few students are typically accelerated, and how easy it is to imagine a young student
struggling socially when they are placed in a class with older students away from age-level

friends, it is not surprising that the myth persists.

On Math Academy, however, all of these issues and concerns vanish. Students can accelerate
their mathematical learning - even to the point of learning highly advanced university-level

math - entirely through our system from the comfort of their home or grade-level classroom.
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Depth of Learning
| Accelerated Students Learn More Material, Just as Deeply

Myth: Mathematically accelerated students become accelerated by rushing through

watered-down courses, leading to shallower learning.

Reality: It is well documented in the literature of academic acceleration studies that students
undergoing acceleration generally learn - in a shorter time - as much as they would otherwise in

a non-accelerated environment over a proportionally longer period of time.

For instance, Kulik & Kulik’s well-known review (1984) of 26 academic acceleration studies
found that talented students who were accelerated by one year (i.e. they learned two years’ worth
of material in one year) performed as well as students one year older who were equivalently

talented but not accelerated:

“First, talented youngsters who were accelerated into higher grades performed as well as the
talented, older pupils already in those grades. Second, in the subjects in which they were
accelerated, talented accelerates showed almost a year's advancement over talented same-age
nonaccelerates.”

As Kulik & Kulik (1984) noted, “most [other] reviewers of the controlled studies have reached favorable
conclusions about the effects of acceleration.” Furthermore, many of these conclusions were
expressed with a level vehemence that is rare to find in academic literature, except out of
frustration when a result so clearly supported by science is ignored by the education system for

no reason other than the inertia of tradition:

e  “In her 1958 review, Goldberg pointed out that it was hard to find a single research study showing
acceleration to be harmful and that many studies proved acceleration to be a satisfactory method
of challenging able students.”

e  “A 1964 review by Gowan and Demos concluded simply that ‘accelerated students do better than
non-accelerated students matched for ability’ (p. 194).”

e “Gold (1965) echoed their [Gowan and Demos’s] sentiments and added, ‘No paradox is more
striking than the inconsistency between research findings on acceleration and the failure of our
society to reduce the time spent by superior students in formal education’ (p. 238).”

e  "Perhaps what is needed,"” Gallagher suggested in 1969, "is some social psychologist to explore why
this procedure [of academic acceleration] is generally ignored in the face of such overwhelmingly
favorable results" (p. 541).
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e  “Dillon in 1973 also lamented the lack of interest in acceleration and offered a social psychological
explanation: ‘Apparently the cultural values favoring a standard period of dependency and formal
education are stronger than the social or individual need for achievement and independence. This
is an instance of the more general case one remarks throughout education: When research findings
clash with cultural values, the values are more likely to prevail, (p. 717).”

e “In a review of research on acceleration in mathematics, Begle (1976) concluded that accelerated
students scored higher than comparable controls in almost all comparisons and almost never scored
lower. The accelerated students also did better than average, nonaccelerated, older students, and
when they did not do as well as talented older students, they did not lag far behind.”

This review (Kulik & Kulik, 1984), considered together with about a dozen more recent others,
gave rise to the following conclusion in the second-order review titled What one hundred years of
research says about the effects of ability grouping and acceleration on K-12 students' academic
achievement (Steenbergen-Hu, Makel, & Olszewski-Kubilius, 2016):

“..[Tlhe conversation needs to evolve beyond whether such interventions [of academic
acceleration] can ever work. There is not an absence of evidence, nor is there evidence of absence
of benefit. The preponderance of existing evidence accumulated over the past century suggests
that academic acceleration ... can greatly improve K-12 students’ academic achievement.”

| How We Ensure Comprehensive, Deep Learning

Even beyond the academic literature, Math Academy uses specific techniques to ensure that

even the most accelerated students are learning comprehensively and deeply:

e Math Academy’s courses are more comprehensive than typical courses in traditional

classrooms, and

e completing a Math Academy course requires a student to demonstrate a degree of

knowledge greater than that necessary to pass the course in a traditional classroom.

To ensure that our courses are fully comprehensive, we perform curriculum comparisons to
ensure that our courses provide a superset of content covered by major textbooks. That is to say:
given a major textbook, our corresponding course not only covers the content found within the
textbook, but also covers additional content found in other major textbooks. Our courses are the
“real thing,” and they cover all the content that one could reasonably expect to find in any major

textbook or standard class syllabus.

Yes, this means that we have invested a lot of time, effort, and money developing an absolute

mountain of content. Our courses are the product of nearly a decade of work by a team of more
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than 10 PhD mathematicians. We have over 2500 fully-scaffolded lessons each consisting of an
introduction, 3-4 fully-worked examples called Knowledge Points or KPs, and 10+ questions
(with full solutions) within each KP. In total, we have a bank of over 150,000 questions. These

counts continue to increase.

On the other hand, typical courses in traditional classrooms are seldom comprehensive.
Textbooks usually aim to cover a vast array of everything that an instructor might want to teach
(because if they miss any material that an instructor wants to cover, they’ll lose the instructor to
a different textbook). But instructors generally pick and choose from that material. While the
basics of most math courses are generally agreed upon, what’s covered beyond the basics can

vary from one instructor to another depending on various factors such as the following:

e the class schedule - due to many schedule interruptions throughout the year (e.g.
standardized testing, field trips, school assemblies), teachers have less class time than
one would imagine, so they have to prioritize and streamline what they’re going to teach

in order to avoid running out of time before the end of the year.

e the instructor’s interests — different classes often cover different offshoots from the core
material and may go deeper in some areas than others, depending on what the instructor

finds most interesting or is most comfortable teaching.

Additionally, unlike traditional classrooms where students can pass their courses despite not
having mastered all of the material covered, Math Academy is a mastery-based learning system
in which students do not move forward until they demonstrate mastery of topics. As a result, a
student who completes a course on Math Academy must have demonstrated mastery on 100% of
the topics in the course - whereas a student who gets an A, B, C, or D in a course in a traditional

classroom may have only mastered 90%, 80%, 70%, or 60% of the material.

Continuity of Courses
| Accelerated Students Don’t Run out of Math Courses

Myth: If a student takes math classes early, they will run out of math classes to take.

Reality: While many people think calculus is the “end of the road” for math, it is but an

entry-level requirement for university-level math courses. There are even more university-level
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math courses above calculus than there are high school courses below calculus, and many of

these university-level math courses are available on Math Academy.

After a single-variable calculus course (like AP Calculus BC), most serious students who study
quantitative majors like math, physics, engineering, and economics have to take core
“engineering math” courses including Linear Algebra, Multivariable Calculus, Differential
Equations, and Probability & Statistics (the advanced calculus-based version, not the simpler
algebra-based version like AP Statistics). Beyond those core “engineering math” courses,

different majors include plenty of specialized courses that branch off in various ways.

There are so many university-level math courses that a student could not fit them all into a
standard 4-year undergraduate course load even if they overloaded their schedule every year -
however, the more of these courses a student is able to take, the more academic opportunities

and career doors are open to them in the future.

| Advanced Students Can Place Out of College Courses Beyond Placement Tests

Myth: There’s no use in learning math past calculus in high school because you’ll have to
take it again in college (since advanced placement courses and college math placement

tests only go up through calculus).

Reality: When the most advanced students place out of classes, it is not through transfer credit
or placement exams. Generally, they are placing out of courses that are beyond what’s tested on

the placement exam.

They do this by not only learning the material beforehand, but also taking the initiative to
schedule a meeting with an undergraduate advisor or coordinator for the math department.
Some schools have a policy of arranging undergraduate for-credit exams, while others may have
a less formal process, such as arranging a meeting with a professor who will determine the
student’s placement by discussing mathematics with them, getting a sense of their background

and knowledge, and maybe having them solve some problems at the board.

If you want to learn math ahead of time and place into more advanced courses, there are a

couple pitfalls to watch out for:

1. If you learn material ahead of time, but not comprehensively, then you might not be able

to evidence enough knowledge to place out of it. Or, if you manage to place out of a
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course without having learned the material comprehensively, you might end up way out

of your depth in the more advanced course that you end up taking.

2. If you learn material ahead of time, but do not continually review that material, then you

will likely become rusty and unable to evidence enough knowledge to place out of it.

In order to avoid these pitfalls, you need to learn material comprehensively and continually

review it after learning it. Math Academy does both of these things.

Relevance to Students’ Futures

| Learning Math Early Reduces Risk and Opens Doors to Opportunities

Myth: Learning math early can be impressive, but it’s just a party trick. It doesn’t have
much real impact on a student’s future, especially if they’re going into something other

than engineering.

Reality: You know how, when you take a language class, there’s often a couple kids who speak
the language at home and think the class is super easy? You can do that with math. Learning
math ahead of time basically guarantees an A and guards against all sorts of risks such as the
teacher not knowing the content very well or otherwise not being able to explain it well. This is
especially helpful at university, when lectures are often unsuitable for a first introduction to a

topic.

Of course, the natural objection is “won’t you be bored in class?” - but if you do super well in
advanced classes, especially at university, then that opens all kinds of doors to recommendations
for internships, research projects with professors, etc. Even if you aren’t a genius, you appear to
be one in everyone else’s eyes, and consequently you get a ticket to those opportunities reserved
for top students. Students who receive and capitalize on these opportunities can launch
themselves into some of the most interesting, meaningful, and lucrative careers that are

notoriously difficult to break into.

Learning math early also gives students the opportunity to delve into a wide variety of
specialized fields that are usually reserved for graduates with strong mathematical foundations.
This fast-tracks students towards discovering their passions, developing valuable skills in those

domains, and making professional contributions early in their careers, which ultimately leads to
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higher levels of career accomplishment. As described by the authors of a 40-year longitudinal

study of thousands of mathematically precocious students (Park, Lubinski, & Benbow, 2013):

“The relationship between age at career onset and adult productivity, particularly in science,
technology, engineering, and mathematics (STEM) fields, has been the focus of several researchers
throughout the last century (Dennis, 1956; Lehman, 1946, 1953; Simonton, 1988, 1997;
Zuckerman, 1977), and a consistent finding is that earlier career onset is related to greater
productivity and accomplishments over the course of a career. All other things being equal, an
earlier career start from acceleration will allow an individual to devote more time in early
adulthood to creative production, and this will result in an increased level of accomplishment over
the course of one’s career.

[In this study] Mathematically precocious students who grade skipped were more likely to pursue
advanced degrees and secure STEM accomplishments, reached these outcomes earlier, and
accrued more citations and highly cited publications in STEM fields than their matched and
retained intellectual peers.”

And while it’s true that students don’t need to know much beyond algebra to get a job in fields
like computer science, medicine, etc. - the people in such fields who do also know advanced
math are extra valuable and in demand because they can work on projects that combine domain

expertise and math.

| Higher-Grade Math is Typically More Productive than Grade-Level

| Competition Problems

Myth: If a student learns their grade-level math and wants to do more math, it is more
productive to have them work on extremely challenging competition math problems at
their current grade level than to continue learning more advanced math that they would

normally learn in higher grade levels.

Reality: When a middle or high school teacher has a bright math student, and the teacher
directs them towards competition math, it’s usually not because that’s the best option for the
student. Rather, it’s the best option for the teacher. It gives the student something to do while

creating minimal additional work for the teacher.

Competition math problems generally don’t require students to learn new fields of math. Rather,
the difficulty comes from students needing to find clever tricks and insights to arrive at
solutions using the mathematical tools that they have already learned. A student can wrestle
with a competition problem for long periods of time, and all the teacher needs to do is give a

hint once in a while and check the student’s work once they claim to have solved the problem.


https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/826/2013/02/14084633/Park-Lubinski-Benbow-2013.pdf
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But if you look at the kinds of math that most quantitative professionals (like rocket scientists
and Al developers) use on a daily basis, those competition math tricks show up rarely, if ever.
What does show up everywhere is university-level math subjects like linear algebra,
multivariable calculus, differential equations, and (calculus-based) probability and statistics.
Given that most students who enjoy math end up applying math in some other field (as opposed
to becoming pure mathematicians), it would be more productive for them to get a broad view of

math as early as possible so that they can sooner apply it to projects in their field(s) of interest.

Of course, the countering view is that “students should go ‘deep’ with the math that they've
already learned - they’ll learn the other math subjects when they're ready.” But, in practice, the
second part of that claim is not true. There are so many other math subjects that even most

math majors only learn a tiny slice of all the math that’s out there.

Students generally can’t learn other math subjects “on the job” after graduation, either - if
you’re trying to solve cutting-edge problems that nobody has solved before, then there is no
“known path” that can tell you what additional math you need. And to even realize that a field of
math can help you solve your problem, you generally need to have learned a substantial amount
of that field in the first place.

In practice, the only way for students to “learn the other math subjects when they're ready” is to

learn as much math as possible during school.
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

Bernstein, B. O., Lubinski, D., & Benbow, C. P. (2021). Academic acceleration in gifted youth
and fruitless concerns regarding psychological well-being: A 35-year longitudinal study.
Journal of Educational Psychology, 113(4), 830.

Importance: Concerns about long-term social/emotional effects of acceleration for high-potential students
appear to be unwarranted, as has been demonstrated for short-term effects. Those who were accelerated had

few regrets for doing so. Indeed, if anything, they tended to wish that they had accelerated more.

Wai, J. (2015). Long-term effects of educational acceleration. A nation empowered: Evidence

trumps the excuses holding back America’s brightest students, 2, 73-83.

Importance: For many decades there has been a large body of empirical work supporting educational
acceleration for talented youths. Educational acceleration is essentially appropriate pacing and placement that
ensures advanced students are engaged in learning for life. Adults who had been accelerated in school achieved
greater educational and occupational success and were satisfied with their choices and the impact of those
choices in other areas of their lives. The evidence clearly supports allowing students who desire to be

accelerated to do so, and does not support holding them back.

Kulik, J. A., & Kulik, C. L. C. (1984). Effects of accelerated instruction on students. Review of
educational research, 54(3), 409-425.

Importance: Students undergoing acceleration generally learn - in a shorter time - as much as they would
otherwise in a non-accelerated environment over a proportionally longer period of time. Specifically, talented
students who were accelerated by one year (i.e. they learned two years’ worth of material in one year) performed

as well as students one year older who were equivalently talented but not accelerated.

Park, G., Lubinski, D., & Benbow, C. P. (2013). When less is more: Effects of grade skipping

on adult STEM productivity among mathematically precocious adolescents. Journal of


https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/826/2013/02/05122845/Article-JEP-Bernstein-2020-F.pdf
https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/826/2013/02/05122845/Article-JEP-Bernstein-2020-F.pdf
https://www.researchgate.net/profile/Jonathan-Wai/publication/277403890_Long-term_effects_of_educational_acceleration/links/556a024908aec22683035cd7/Long-term-effects-of-educational-acceleration.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=7fd7055e6c35d59a85b3db4ccb9306101ee5a19a
https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/826/2013/02/14084633/Park-Lubinski-Benbow-2013.pdf
https://cdn.vanderbilt.edu/vu-my/wp-content/uploads/sites/826/2013/02/14084633/Park-Lubinski-Benbow-2013.pdf
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Educational Psychology, 105(1), 176.

Importance: All other things being equal, an earlier career start from acceleration will allow an individual to
devote more time in early adulthood to creative production, and this will result in an increased level of
accomplishment over the course of one’s career. Mathematically precocious students who grade skipped were
more likely to pursue advanced degrees and secure STEM accomplishments, reached these outcomes earlier,
and accrued more citations and highly cited publications in STEM fields than their matched and retained

intellectual peers.
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ITI. COGNITIVE LEARNING STRATEGIES
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Chapter 10. Active Learning

Summary: It is a decisive finding in the literature that students learn better when they are actively
engaged in learning exercises as opposed to passively consuming educational content. True active
learning requires every individual student to be actively engaged on every piece of the material to

be learned.

Definition and Importance

It is a common misconception that the fastest way to learn math is by watching videos,
attending lectures, reading books, or re-reading notes. This is false. As hundreds of studies have
shown, passively consuming educational content leads to significantly worse educational
outcomes than active learning, where students are actively performing learning exercises
(Freeman et al., 2014).

In a passive learning scenario like watching a video, students may believe they are effectively
learning if they can understand the video and follow along. However, following along and
understanding the video's contents isn't learning, even if students claim that it is. As discussed
in chapter 3, learning is a positive change in long-term memory. In order for students to have
learned something, they need to be able to consistently reproduce that information and use it to
solve problems. None of these things happen when students watch a video, even if they
understand it perfectly. The same reasoning applies to attending lectures, reading books,

re-reading notes, and all other passive learning techniques.

The superiority of active learning is so robust across subjects and experimental methodologies

that a highly-cited meta-analysis states, verbatim (Freeman et al., 2014):

“..[Clalls to increase the number of students receiving STEM degrees could be answered, at least
in part, by abandoning traditional lecturing in favor of active learning.

Given our results, it is reasonable to raise concerns about the continued use of traditional
lecturing as a control in future experiments.”

Like lecturing, re-reading does not count as active learning either. As Brown, Roediger, &
McDaniel (2014, pp.10) describe:


https://www.pnas.org/doi/10.1073/pnas.1319030111
https://en.wikipedia.org/wiki/Passive_learning
https://en.wikipedia.org/wiki/Active_learning
https://www.pnas.org/doi/10.1073/pnas.1319030111
https://www.hup.harvard.edu/books/9780674729018
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“The finding that rereading textbooks is often labor in vain ought to send a chill up the spines of
educators and learners, because it’s the number one study strategy of most people - including
more than 80 percent of college students in some surveys — and is central in what we tell ourselves
to do during the hours we dedicate to learning.

Rereading has three strikes against it. It is time consuming. It doesn’t result in durable memory.
And it often involves a kind of unwitting self-deception, as growing familiarity with the text comes
to feel like mastery of the content. The hours immersed in rereading can seem like due diligence,
but the amount of study time is no measure of mastery.”

It’s important to realize that true active learning means every individual student is engaged in
activity, not just the class as a whole. For instance, although a class-wide discussion might seem
like active learning on the surface, it does not immediately follow that each student is active.
Often, it is only a proportionally small number of enthusiastic, vocal students who participate in
all parts of the discussion and can be considered truly active. Even if the instructor cold-calls on
students who have not been participating, most students will only pay attention enough that

they won’t look foolish or be embarrassed if called upon.

Moreover, true active learning requires every individual student to be actively engaged on every
piece of material to be learned. Divide-and-conquer group projects do not count as fully active
learning because each student is only actively learning the material that corresponds to their
individual responsibility in the division of labor. The rest of the project, they observe only

passively, if at all.

Math Academy’s approach to math education is entirely centered around true active learning -
on every single topic in their course, students are solving problems within minutes of starting
the lesson (following a minimum effective dose of initial explanation). They spend the vast

majority of their time engaged in active problem-solving.

Case Studies

| Case Study 1: Why Active Learning is Obvious

To get a clear, concrete picture of what active learning entails and why it is so beneficial, it’s
helpful to go through a case study in what is perhaps the most familiar setting for active

learning: learning a new sport.
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Suppose that you want to learn how to play tennis. You go to your local tennis club, where there
is a coach who used to play tennis professionally. They offer personal lessons for a pricey
$100/hour, but you really want to learn from the best, as efficiently as possible, so you fork over

the money for a lesson the following week.

The next week, you show up for your lesson. The coach greets you and begins the hour-long

session. It proceeds as follows:

[5 minutes] Coach talks about the beauty of tennis and why it’s a great sport to learn.

[5 minutes] Coach demonstrates a tennis stance and explains the specific components of the
stance: bent knees, forward lean, racket in front of you, etc.

[5 minutes|] Coach demonstrates the ideal place to stand when receiving a volley: near the
baseline, in the middle of the court, so that you’re back far enough that your opponent can’t hit
the ball behind you, but you're close enough to the net to launch forward towards any shorter
volleys.

[10 minutes| Coach demonstrates a forehand swing, explains how the force should come from the
legs and the twisting of the body (rather than the arm) and emphasizes the importance of “follow
through” on the swing.

[20 minutes] Coach demonstrates a backhand swing, breaks down the components, and shares
stories about historic moments in tennis when a player had no time to position themself for a
forehand and therefore had to rely on their backhand to win the game. Coach demonstrates a
one-arm backhand, an advanced move that looks particularly cool.

[15 minutes] Coach demonstrates serving and shows off some lightning-fast, precisely targeted
serves that seem impossible to return. Again, these are advanced moves that look really cool.

When the session ends, the coach asks if you want to schedule another session the following

week.

What do you do? Are you a happy customer? Do you want to schedule another session? Heck no!
The coach just waxed philosophical and showed you moves the whole time. You didn’t actually
learn anything. You might as well have just watched tennis on TV. You signed up for a tennis
lesson to become a better tennis player — not to watch the coach hit the ball. You just wasted

$100 on a complete waste of time and you want your money back.

Of course, this situation is unlikely to occur in real life athletic training because coaches know
that continued employment depends on their ability to make students learn. They are held
accountable for improving the performance of their students. They need to get real,

demonstrable results, and get them fast - and if they can’t, then they’re going to lose a client and
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develop a reputation as a grifter who tricks people into paying a lot of money for a service that

just doesn’t work.

In real life athletic training, a coach is going to have their students actively performing moves
within the first couple minutes of the session. Sure, the coach might take a minute to
demonstrate and break down a new move as the student watches, but for the next 10+ minutes
after that, the student is going to be actively practicing that new move. The coach will observe
the student and point out areas where they need to correct their form to be more effective - and
as the student gets better at the new move, they will experience a real, demonstrable
improvement in their athletic performance. Maybe they’ll be able to hit the ball faster or more
precisely. Maybe they’ll be able to return a tricky volley that originally kept going past them at

the beginning of the session. Whatever the improvement, it will be tangible and reproducible.

It’s worth emphasizing: in a personal coaching session, when does the learning occur? It’s not
when you pay the coach the money. It’s not when you watch the coach demonstrate a move. It’s
when you actually start doing things that you weren’t able to do before. It’s when you attempt a
move, the coach corrects your form, and you attempt the move again with better results. The
learning is the incremental gain in your ability to perform a skill. If you're not getting those

gains, you're not learning.

The same reasoning applies if you're getting a lesson on piano or guitar. You're not just
absorbing information - you're developing skills. Mathematics, too, is skill-based. Learning how
to solve a new type of equation is totally different from, say, learning some new history about the
life of Napoleon. At the core, the keys to effective training in mathematics are the same as the

keys to effective training in athletics or music.

| Case Study 2: Most Students Don’t Even Pay Attention During Lectures

As he details in an interview, Peter Reinhardt, co-founder and CEO of the customer data
platform Segment, learned the hard way that most students aren’t even paying attention during
lecture (Y Combinator, 2018).

According to Reinhardt, Segment’s original product was actually a classroom lecture tool:

“The idea was to give students this button to push to say, “I'm confused.” The professor would get
this graph over time of how confused the students were. We thought it was a really cool idea. We
were college students at the time and we had a bunch of professors who were excited about it at
MIT and elsewhere. ... [W]e talked to like 20 other professors and they were all excited about it.”


https://www.ycombinator.com/blog/peter-reinhardt-on-finding-product-market-fit-at-segment/
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However, despite all the excitement from professors, when testing the tool in an actual
classroom at Boston University, it was a total disaster - not because the tool didn’t work, but

because the students weren’t even paying attention to what the professor was saying.

Instead, most students were either partially or fully engrossed with scrolling through Facebook.
The lecture was, effectively, just a charade: the students weren’t even passively learning; they

were just sitting there doing other stuff.

“It was just a total disaster. All the students opened their laptops and they all went straight to
Facebook.

The way we discovered this is we were standing in the black of the classroom and just counting
laptop screens. We'd be looking over the shoulders of the students and going one, two, three and
we discovered at the beginning of class, about 60% of the students were on Facebook and by the
end about 80% were on Facebook. Oh my God.

Standing in the back of a BU classroom. It was an anthropology class. And I remember arriving at
the 60% and the 80% and we went up and apologized to the professor and walked out.”

The situation seemed so hopeless that - despite having gone through an months-long startup
incubator program, building out a highly sophisticated product consisting of hundreds of
thousands of lines of code, and raising over half a million dollars in investments literally a week
before - they completely abandoned the product and called up their investors to return the

investment money.

“We went through the whole YC [startup incubator] with this idea. Built it out. Hundreds of
thousands of lines of code. Super-complicated classroom lecture tool product. It had presentation
view and people could ask questions. It was very complicated. We actually even raised money at
Demo Day with this idea. About [$]600K.

We had just gotten wires for these checks, for this money, literally a week before. We called back
all the investors and we were like, ‘Well, it turns out this is a terrible idea. So what do you want us
to do with the money?’ Almost all of them said, well, we invested for the team so go find
something else.”

As fate would have it, most of the investors were willing to retain the investment if the team
pivoted to solving a more promising problem - so the team pivoted to building a web analytics
tool that would help other developers avoid this kind of catastrophe by getting a better

understanding of how users were behaving on their apps.

“We realized, we should have been able to figure out some of this analysis by not just standing in
the back of the classroom. Like, we should have been able to see some of this digitally. You
couldn’t see it in the analytics metrics at all. We decided, hey, let’s build an analytics tool.”
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| Case Study 3: How Active Learning Saved MIT’s Physics Classes

In the early 2000s, MIT solved issues with its physics courses by switching from passive to
active learning. The problem, according to John Belcher, the MIT professor who spearheaded
the effort, was that a staggering number of undergraduates were failing their freshman

(first-year) physics course, a general education requirement (Dori & Belcher, 2005):

“Teaching freshman courses in a large lecture hall with over 300 students ... is based on the
assumption that the instructor can ‘pour out’ knowledge from his or her vast reservoir into the
empty glasses of the students’ minds.

If this were true, students at MIT would not fail these large required classes. The high failure rates
in these courses at MIT, approaching 15%, and the low attendance in lectures at the end of the
term, less than 50%, suggest that there is a basic flaw in this model of instruction.”

Keep in mind that MIT is one of the most selective universities in the world, known especially
for admitting students with extremely high mathematical capabilities and passion for
quantitative subjects like physics. With a yearly cohort of about 1000 students, a 15% failure rate
means that, roughly, a staggering 150 MIT students were failing those courses each year. If this
many highly-qualified MIT admits are failing a first-year general education requirement, then

clearly the problem lies in the delivery of the course, not the ability of the students.

The problem, as Belcher and colleagues characterized it, was that the physics courses were
centered around passive learning. The solution, then, would be to switch the courses over to

active learning instead (Dori & Belcher, 2005).

“The thinking required while attending a lecture is low-level comprehension of factual knowledge
that goes from the ear to the writing hand (Towns & Grant, 1997). Johnson et al. (1998) pointed
out that students’ attention to what the instructor was saying decreased as the lecture proceeded.
... As Bybee and Ben-Zvi (1998) indicated, science educators have focused primarily on content
and secondarily on instruction, leaving assessment and implementations to others or completely
ignoring them.

Unitil the early 1990’s, most physics instructors were largely unaware of the outcomes of research
in physics education (Laws, Rosborough & Poodry, 1999). During the past 15 years, a number of
physics curricula have been developed that utilize educational research outcomes. ... The common
thread in all these curricula is that they emphasize elements of active learning and conceptual
understanding that build on making predictions, and observing and discussing the outcomes with
peers. Hake (1998) showed that the learning gains in undergraduate physics are almost double
when active learning is involved.”


https://web.mit.edu/edtech/casestudies/pdf/teal1.pdf
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The movement of these MIT physics courses from passive lectures to active learning classrooms
came to be known as the Technology Enhanced Active-Learning (TEAL) project, where TEAL

classes operated as follows:

“A typical [TEAL] class is comprised of mini lectures scattered throughout the class, separated by
periods in which students are engaged in hands-on desktop experiments, visualizations, problem
solving, and peer discussion.”

Indeed, Belcher and colleagues reported astounding results, with active learning reducing the

failure rate by nearly two-thirds:

“The failure rates in the two experimental groups were less than 5% in the small- and large-scale
experimental groups, respectively, compared with 13% in the traditional control group (Spring
2002)”

In a cohort of 1000 students, this would mean that, of the 130 students who would fail the
passive learning class, only 50 would still fail the active learning class, and the other 70 would be

rescued from failure and end up passing the class.

| Case Study 4: If You're Active Half the Time, That’s Still Not Enough

In a study (Deakin & Cobley, 2003, pp.115-136) of figure skaters who had been practicing for a
similar number of years, the proportion of active practice (relative to passive practice) was a
defining attribute separating the elite and non-elite skaters. The elite skaters spent a greater
proportion of their practice time actively practicing some of the trickiest, most taxing moves
(jumps & spins), and even when resting from those taxing activities, they were more likely to

continue actively practicing less taxing movements like footwork and arm positions.

The authors note specific percentage breakdowns, which we have organized into a table to

illustrate how each group of skaters would use 100 minutes of practice time.

“..[T]he elite group spent an average of 14% of their total on-ice practice time on rest; the
competitive group, 31%; and the test skaters, 46%. ... The elite and competitive skaters spent 68%
and 59% of their sessions practicing jumps whereas the test group was engaged in those activities
for only 48% of their on-ice time.

Not only did the elite group practice jumps and spins for a higher proportion of on-ice session, but
they also rested less and used the remaining 18% of their on-ice time to practice other elements of
their programs, such as footwork and arm positions.”


https://books.google.com/books?id=gl8nqUjyXWUC&printsec=frontcover#v=onepage&q&f=false
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Active Minutes . . Active Minutes
Group . . Passive Minutes . .
(= Taxing + Non-Taxing) per Passive Minute
Elite 86 (=68 +18) 14 6.1
Competitive Non-Elite 69 (=59 +10) 31 2.2
Non-Competitive 54 (=48 + 6) 46 1.2

In the table, we see that the elite skaters allocated their practice time far more efficiently:
during practice, the elite skaters were over 6 times more active than passive, while

non-competitive skaters were nearly as passive as they were active.

The key takeaway is that, while some amount of active learning is certainly better than no active
learning, the best outcomes are achieved by fully maximizing the amount of productive active
learning. (Of course, some passive instruction will generally be needed to demonstrate to a
learner what it is that they need to practice, but that passive instruction should be kept to a

minimum effective dose before launching into more extensive active learning.)

If we ballpark-estimate the proportion of time that a Math Academy student spends on active
learning, we get a similar proportion as the elite skaters. On average, a typical Math Academy
lesson might consist of 3 worked examples, each followed by about 3 practice questions (give or
take depending on how well the student does), and the lesson followed by several explicit
reviews (about 4 questions each, again give or take depending on performance) spaced into the
future. So, for every 3 worked examples that a student reads, they will be actively doing about 3 x
3 + 3 x 4 = 21 practice problems, putting the net ratio at about 7 active practice problems per

passive worked example.

Neuroscience of Active Learning

The effects of active learning can be seen quite literally in the brain: in brain imaging studies,

active learning consistently leads to more neural activation than passive learning.

For instance, in a study of students actively writing letters versus passively viewing them, the
active writing produced higher brain activity in the sensori-motor network and beyond (Kersey
& James, 2013):


https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00567/full?amp=1
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“Self-generated production of cursive letters during learning led to the recruitment of a
sensori-motor network known to also be active during letter perception and reading, however,
passive observation of a letter being formed did not. This finding adds to the growing literature
suggesting that self-generated writing is important for setting up reading networks in the
developing brain.

Further, when we directly compared active to passive learning of cursive letters, greater
recruitment of the bilateral insula and claustrum was shown during the perception of actively
learned letters than passively learned letters ... [This would suggest that] children were better able
to phonologically process letters that they learned by writing than those that they learned by
observing an experimenter write .. [and that] writing practice has led to more similar neural
representation between printed letters and those letters learned by writing.”

Not only does active performance produce more physical brain activity than passive viewing, as
described above, but researchers have also found that prior active performance can lead to
higher brain activity even during passive viewing later on, in a sense “carrying over” to make the

passive viewing more active within the brain.

Specifically, Calvo-Merino et al. (2006) demonstrated that when someone views another person
performing an action, the viewer experiences higher activation in motor areas if they have

frequently performed that action themself:

“We found greater premotor, parietal, and cerebellar activity when dancers viewed moves from
their own motor repertoire, compared to opposite-gender moves that they frequently saw but did
not perform.”

The same researchers elaborated more in an earlier paper (Calvo-Merino et al., 2005):

“Comparing the brain activity when dancers watched their own dance style versus the other style
therefore reveals the influence of motor expertise on action observation.

We found greater bilateral activations in premotor cortex and intraparietal sulcus, right superior
parietal lobe and left posterior superior temporal sulcus when expert dancers viewed movements
that they had been trained to perform compared to movements they had not.

Our results show that this ‘mirror system’ integrates observed actions of others with an

individual's personal motor repertoire, and suggest that the human brain understands actions by
motor simulation.”

Persistence of Misconceptions

Why do misconceptions about active and passive learning persist, despite clear intuition and

decisive evidence supporting active learning? Several reasons are obvious:


https://www.cell.com/current-biology/pdf/S0960-9822(06)01998-1.pdf
https://academic.oup.com/cercor/article/15/8/1243/304707
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1. Passive learning is more convenient for students and teachers alike. Teachers don’t have
to spend time and effort implementing learning activities, and students don’t have to
spend time and effort engaging those activities. Most teachers are happy to lecture about
the beautiful intricacies of their field of study and believe that their students are
learning, and most students are happy to lean back, relax, pay half attention (if that), and
believe that they are learning. (In general, it is always tempting to believe that which is

most convenient.)

2. It’s easy to mistakenly believe that you have learned a concept well enough to reason and
solve problems when you are not actually made to attempt those things. (For the same

reason, many people mistakenly believe that they can outrun a bear.)

3. Some teachers resist active learning methods like cold-calling out of fear that it will
make students uncomfortable - even though research has shown that cold-calling not
only heightens engagement but also increases voluntary participation and comfort over
time (Dallimore, Hertenstein, & Platt, 2013).

A fourth, less-obvious reason was discovered by a study (Deslauriers et al., 2019) on Harvard
physics classes, which not only measured educational outcomes in active versus passive learning

settings, but also measured students’ perceptions of their learning. As quoted in the study:

“Compared with students in traditional lectures, students in active classes perceived that they
learned less, while in reality they learned more.

Students rated the quality of instruction in passive lectures more highly, and they expressed a
preference to have ‘all of their physics classes taught this way, even though their scores on
independent tests of learning were lower than those in actively taught classrooms.

When students experienced confusion and increased cognitive effort associated with active
learning, they perceived this disfluency as a signal of poor learning, while in fact the opposite is
true.”

In other words, active learning produced more learning by increasing cognitive activation, but
students mistakenly interpreted that extra cognitive effort as an indication that they were not
learning as well, when in fact the opposite is true. Active learning creates a desirable difficulty
that makes class feel more challenging but improves learning. Passive learning, on the other
hand, promotes an illusion of competence in which students (and their teachers) overestimate

their knowledge because they are not made to exercise it.

That said, it’s dubious whether students and teachers - at their core - truly believe these

misconceptions, given that their behavior quickly changes to an active learning model of


https://www.researchgate.net/profile/Elise-Dallimore/publication/258153531_Impact_of_Cold-Calling_on_Student_Voluntary_Participation/links/02e7e536a25071b4f9000000/Impact-of-Cold-Calling-on-Student-Voluntary-Participation.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
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working through practice questions with direct and immediate feedback when they are held
accountable for demonstrating learning, such as when preparing for a standardized test like an

AP exam.

In a similar way, one might question whether students - at their core - actually dislike active
learning. Tharayil et al. (2018) note that students’ perceptions of active learning have not been

consistent across studies and are often positive:

“Although much of the published literature suggests that students often respond positively to
active learning strategies (Arce 1994; Armbruster et al. 2009; Carlson and Winquist 2011;
Hoffman 2001; Leckie 2001; Oakley et al. 2007; O’Brocta and Swigart 2013; Reddy 2000;
Richardson and Birge 1995), there are counterbalancing studies which show mixed student
responses (Bacon et al. 1999; Brent and Felder 2009; Goodwin et al. 1991; Hall et al. 2002; Kvam
2000; Rangachari 1991; Wilke 2003) or negative student responses (Lake 2001; Yadav et al.
2011).”

People often do not look forward to workouts, yet they don’t mind it once they actually begin
exercising, and then they feel proud of their efforts afterwards. If active learning is similar to
physical activity, then students may prefer passive to active learning simply because it’s easier (a
typical human behavior), but they may feel much more engaged during active learning (whereas
passive learning is pretty boring for students), and they may feel better about themselves after

doing actual work and knowing that they made real progress.


https://link.springer.com/article/10.1186/s40594-018-0102-y
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., &
Wenderoth, M. P. (2014). Active learning increases student performance in science,
engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23),
8410-8415.

Importance: Hundreds of studies have shown that passively consuming educational content leads to
significantly worse educational outcomes than active learning, where students are actively performing learning

exercises.

Dori, Y. J., & Belcher, J. (2005. How does technology-enabled active learning affect
undergraduate students' understanding of electromagnetism concepts?. The journal of the
learning sciences, 14(2), 243-279.

Importance: In the early 2000s, MIT solved issues with its physics courses by switching from passive to active

learning, which reduced the failure rate by nearly two-thirds.

Kersey, A. J., & James, K. H. (2013). Brain activation patterns resulting from learning letter
forms through active self-production and passive observation in young children. Frontiers in

psychology, 4, 567.

Importance: Active performance produces more physical brain activity than passive viewing.

Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or
doing? Influence of visual and motor familiarity in action observation. Current biology, 16(19),

1905-1910.

Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action

observation and acquired motor skills: an FMRI study with expert dancers. Cerebral cortex,


https://www.pnas.org/doi/10.1073/pnas.1319030111
https://www.pnas.org/doi/10.1073/pnas.1319030111
https://web.mit.edu/edtech/casestudies/pdf/teal1.pdf
https://web.mit.edu/edtech/casestudies/pdf/teal1.pdf
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00567/full?amp=1
https://www.frontiersin.org/articles/10.3389/fpsyg.2013.00567/full?amp=1
https://www.cell.com/current-biology/pdf/S0960-9822(06)01998-1.pdf
https://www.cell.com/current-biology/pdf/S0960-9822(06)01998-1.pdf
https://academic.oup.com/cercor/article/15/8/1243/304707
https://academic.oup.com/cercor/article/15/8/1243/304707
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15(8), 1243-1249.

Importance: Prior active performance can lead to higher brain activity even during passive viewing later on, in

a sense “carrying over” to make the passive viewing more active within the brain.

Deakin, J. M., & Cobley, S. (2003). A search for deliberate practice. Expert performance in
sports, 115-36.

Importance: In a study of figure skaters who had been practicing for a similar number of years, the proportion
of active practice (relative to passive practice) was a defining attribute separating the elite and non-elite

skaters.

Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K., & Kestin, G. (2019). Measuring
actual learning versus feeling of learning in response to being actively engaged in the
classroom. Proceedings of the National Academy of Sciences, 116(39), 19251-19257.

Importance: Active learning produces more learning by increasing cognitive activation, but students often
mistakenly interpret extra cognitive effort (such as productive struggle and occasional confusion) as an

indication that they are not learning as well, when in fact the opposite is true.


https://books.google.com/books?id=gl8nqUjyXWUC&printsec=frontcover#v=onepage&q&f=false
https://books.google.com/books?id=gl8nqUjyXWUC&printsec=frontcover#v=onepage&q&f=false
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
https://www.pnas.org/cji/doi/10.1073/pnas.1821936116
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Chapter 11. Deliberate Practice

Summary: Deliberate practice is the most effective form of active learning. It consists of
individualized training activities specially chosen to improve specific aspects of a student’s
performance through repetition and successive refinement. It is the opposite of mindless
repetition. The amount of deliberate practice has been shown to be one of the most prominent
underlying factors responsible for individual differences in performance across numerous fields,
even among highly talented elite performers. Deliberate practice demands effort and intensity,
and may be discomforting, but its long-term commitment compounds incremental improvements,

leading to expertise.

Definition and Importance

| Deliberate vs Non-Deliberate Practice

While active learning leads to significantly better educational outcomes than passive learning,
not all active learning strategies are created equal. The most effective type of active learning is
deliberate practice, which consists of individualized training activities specially chosen to
improve specific aspects of a student’s performance through repetition and successive

refinement.

Deliberate practice is the opposite of mindless repetition, and it has been shown to be one of the
most prominent underlying factors responsible for individual differences in performance, even
among highly talented elite performers (Ericsson, Krampe, & Tesch-Romer, 1993). K. Anders
Ericsson, first author of that study and one of the most influential researchers in the field of
human expertise and performance, elaborates further on what it means to engage in deliberate

practice (Ericsson, 2006):

“The core assumption of deliberate practice (Ericsson, 1996, 2002, 2004; Ericsson et al., 1993) is
that expert performance is acquired gradually and that effective improvement of performance
requires the opportunity to find suitable training tasks that the performer can master sequentially
- typically the design of training tasks and monitoring of the attained performance is done by a
teacher or a coach.

Deliberate practice presents performers with tasks that are initially outside their current realm of
reliable performance, yet can be mastered within hours of practice by concentrating on critical
aspects and by gradually refining performance through repetitions after feedback.


https://en.wikipedia.org/wiki/Practice_(learning_method)#Deliberate_practice
https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
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Hence, the requirement for concentration sets deliberate practice apart from both mindless,
routine performance and playful engagement, as the latter two types of activities would, if
anything, merely strengthen the current mediating cognitive mechanisms rather than modify them
to allow increases in the level of performance.”

Ericsson offers (2003, pp.72-73) a concrete and familiar example illustrating the distinction

between deliberate and non-deliberate practice in the context of music:

“As children, many people may have spent a lot of time practicing the piano with modest
improvements, or known other people who did. When parents forced them to practice, many piano
students would simply play the same piece repeatedly without full concentration on specific
aspects of their performance. Under those circumstances the existing performance level becomes
only more stable and ‘practice’ makes it permanent. The relation between current level of
performance and the number of hours of ‘practice’ is weak for this type of beginner (Lehmann,
1997).

Successful practice requires identifying specific goals for how to change the performance. ... Most
deliberate practice by music students is solitary as they attempt to master specific assignments,
often new pieces of music selected by their teachers to be of an appropriate difficulty level.
Musicians will encounter difficult passages while mastering a new piece of music. To achieve
mastery, the musician first identifies the source of the problem, often by playing the passage in a
slow tempo. ... With focused repetitions the pianist will generally reach mastery.

Sometimes the pianist will still experience difficulties and work on specific exercises that
eventually lead to desired changes. In music, there is a large body of training techniques that have
been designed to help musicians develop control over performance and attain the desired speed
and dexterity. The use of techniques designed to overcome weaknesses and increase control
exemplifies the essence of deliberate practice.”

Below is another example, also offered by Ericsson and colleagues, illustrating deliberate

practice the context of athletics (Plant et al., 2005):

“..[MJany people know recreational golf and tennis players whose performance has not improved
in spite of 20-30 years of active participation. The mere act of regularly engaging in an activity
for years and even decades does not appear to lead to improvements in performance, once an
acceptable level of performance has been attained (Ericsson, 2002).

For example, if someone misses a backhand volley during a tennis game, there may be a long time
before the same person gets another chance at that same type of shot. When the chance finally
comes, they are not prepared and are likely to miss a similar shot again. In contrast, a tennis
coach can give tennis players repeated opportunities to hit backhand volleys that are progressively
more challenging and eventually integrated into representative match play.

However, unlike recreational play, such deliberate practice requires high levels of concentration
with few outside distractions and is not typically spontaneous but carefully scheduled (Ericsson,
1996, 2002). A tennis player who takes advantage of this instruction and then engages in
particular practice activities recommended by the teacher for a couple of hours in deeply focused
manner (deliberate practice), may improve specific aspects of his or her game more than he or she
otherwise might experience after many years of recreational play.”


https://nibmehub.com/opac-service/pdf/read/The%20Psychology%20of%20Problem%20Solving.pdf#page=86
https://www.academia.edu/download/54133889/Why_study_time_does_not_predict_grade_po20170813-2588-hxvq2s.pdf
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| Deliberate Practice is Effective, Non-Deliberate Practice is Not

It’s important to realize that the effects of deliberate practice hold across a wide variety of

domains, not just music and athletics. As summarized by Reeves (2014):

“Since the original presentation of deliberate practice, the theory has been tested and applied to a
number of domains. Ericsson originally speculated that deliberate practice would be of particular
value in domains such as: chess, sports, mathematics, and sciences (Ericsson 1993). He has
personally investigated a number of these domains and their relationship to deliberate practice.
Domains in which he found significant evidence of deliberate practice being a predictor of elite
level of expertise include: problem-solving, dart throwing, rhythmic gymnastics, golf, education,
nursing, medical expertise, interpreting, and golf (Ericsson 1993, Ericsson 2000a, Ericsson 2000b,
Ericsson 2007a, Ericsson 2007b, Ericsson 2007¢, Ericsson 2008a, Ericsson 2008b).

Additionally, other academicians have taken this theory and successfully applied it to other
domains as well. Most recently, deliberate practice was found to be an effective tool for enhancing
microsurgical skills in surgeons (El Tecle 2013) as well as hysteroscopy skills in obstetrics and
gynecology residents (Rackow 2012). Outside of medicine, deliberate practice has been shown to
be significant in accelerating a wide variety of other skills, including: knowledge development
(Pachman 2013), critical thinking skills (Cahill 2012), team sports (Helson 1998), chess (Charness
2005), and advanced writing skills (Kellogg 2009) among others.”

The effectiveness of deliberate practice, and the ineffectiveness of non-deliberate practice, is so
strong that metrics of professional experience that combine the two (such as “years of
experience”) have been found to only weakly predict actual performance — whereas, on its own,
the amount of purely deliberate practice is a much stronger predictor. As summarized by
Ericsson (2008):

“Traditionally, professional expertise has been judged by length of experience, reputation, and
perceived mastery of knowledge and skill. Unfortunately, recent research demonstrates only a
weak relationship between these indicators of expertise and actual, observed performance. In fact,
observed performance does not necessarily correlate with greater professional experience.

Expert performance can, however, be traced to active engagement in deliberate practice (DP),
where training (often designed and arranged by their teachers and coaches) is focused on
improving particular tasks. DP also involves the provision of immediate feedback, time for
problem-solving and evaluation, and opportunities for repeated performance to refine behavior.”

Along these lines, Lehtinen et al. (2017) emphasize that in the context of academics in particular,
quantity of study time is not by itself a strong predictor of academic improvement - rather, the

quality of study time is the critical determinant.


https://repositories.lib.utexas.edu/server/api/core/bitstreams/c8cc4a4f-e641-462b-9a72-654e60f71485/content
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1553-2712.2008.00227.x
https://www.researchgate.net/profile/Jake-Mcmullen/publication/317035771_Cultivating_mathematical_skills_From_drill-and-practice_to_deliberate_practice/links/6192129bd7d1af224bef75bb/Cultivating-mathematical-skills-From-drill-and-practice-to-deliberate-practice.pdf
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“It is important to note that it is ‘deliberate’ practice that matters, not just any practice. For
example, Plant, Ericsson, Hill, and Asberg (2005) found that improvement in performance in
higher education did not significantly correlate with the amount of time spent studying. It did,
however, relate to concentrated learning aimed at specific performance goals.”

Furthermore, Debatin et al. (2023) note that high-quality deliberate practice requires complete

individualization, an aspect that is sometimes overlooked even by academics in the field:

“..[Some] authors have neglected the most important characteristic of deliberate practice:
individualization of practice. Many of the analyzed effect sizes derived from measures that did
not assess individualized practice and, therefore, should not have been included in meta-analyses
of deliberate practice.

In our study of 178 chess players, we found that at a high level of individualization and quality of
practice, the effect size of structured practice was more than three times higher than that found at
the average level”

Intuitively, the specific aspects of performance that one student is most in need of refining will
generally be different for another student, meaning that the most effective exercises on which to

spend practice time will differ from student to student.

Effort is Required

| Deliberate Practice Feels Like Exercising with a Personal Trainer
On Math Academy, students spend the entirety of their time engaged in deliberate practice by
solving problems (and receiving feedback) on new topics and topics most in need of review. We
intersperse active problem-solving with instruction so that students receive minimum effective
doses of information right before they use it to actively solve problems and receive feedback.
In this way, learning on Math Academy feels like exercising with a personal trainer:

1. The trainer quickly demonstrates an exercise, which you observe.

2. You attempt the exercise, and the trainer corrects anything that is wrong with your form.

3. You continue practicing the exercise, receiving feedback from the trainer, until you are

able to complete it comfortably with proper form.

4. The trainer introduces you to a more challenging exercise, and you go back to step 1.


https://link.springer.com/article/10.1007/s12144-021-02326-x
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Like exercise with a personal trainer, learning with Math Academy requires effort. Building
neural connections takes work, just like building muscle. We will challenge you, but we will not

ask you to do anything that you're unprepared for.

| Cycle of Strain and Adaptation

As Ericsson, Krampe, & Tesch-Romer (1993) describe, deliberate practice requires intense,

near-maximal-effort training. The goal is to push the limit of one’s performance capacity

forward during each practice session.

“Deliberate practice aimed at improving strength and endurance in sports clearly shows the
importance of near maximal effort during practice and the resulting fatigue. Physical activity and
exercise produce no benefit unless they are sufficiently intense ... elite athletes train at much higher

intensities to improve their performance.”
This creates a continual cycle of strain and adaptation. As Ericsson (2006) elaborates:

“Measurable increases in physical fitness do not simply result from wishful thinking. Instead
people have to engage in intense aerobic exercise that pushes them well beyond the level of
comfortable physical activity if they are to improve their aerobic fitness (Ericsson, 2003a; Ericsson
et al., 1993; Robergs & Roberts, 1997).

When the human body is put under exceptional strain, a range of dormant genes in the DNA are
expressed and extraordinary physiological processes are activated. Over time the cells of the body,


https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
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including the brain (see Hill & Schneider, Chapter 37) will reorganize in response to the induced
metabolic demands of the activity by, for example, increases in the number of capillaries
supplying blood to muscles and changes in metabolism of the muscle fibers themselves.

These adaptations will eventually allow the individual to execute the given level of activity
without greatly straining the physiological systems. To gain further beneficial increases in
adaptation, the athletes need to increase or change their weekly training activities to induce new
and perhaps different types of strain on the key physiological systems.”

Even in contexts outside of sports, these adaptations can be detected as physical changes in the

brain:

“..[A]thletic training involves pushing the associated physiological systems outside the comfort
zone to stimulate physiological growth and adaptation (Ericsson, 2001, 2002, 2003a, 2003c,
2003d). Furthermore, recent reviews (Gaser & Schlaug, 2003; Hill & Schneider, Chapter 37; Kolb
& Whishaw, 1998) show that the function and structure of the brain is far more adaptable than
previously thought possible.

Especially, early and extended training has shown to change the cortical mapping of musicians
(Elbert, Pantev, Wienbruch, Rockstoh, & Taub, 1995), the development of white matter in the
brain (Bengtsson et al., 2005), the development of “turn out” of ballet dancers, the development of
perfect pitch, and flexibility of fingers (Ericsson & Lehmann, 1996).

In sum, elite performers search continuously for optimal training activities, with the most
effective duration and intensity, that will appropriately strain the targeted physiological system to
induce further adaptation without causing overuse and injury.”

Discomfort is Required

Deliberate practice requires repeatedly practicing skills that are beyond one’s repertoire.
However, this tends to be more effortful and less enjoyable, which can mislead non-experts to

practice within their level of comfort.

For instance, this was observed as a factor differentiating intermediate and expert Gaeilic

football players (Coughlan et al., 2014):

“Expert and intermediate level Gaelic football players executed two types of kicks during an
acquisition phase and pre-, post-, and retention tests. During acquisition, participants
self-selected how they practiced and rated the characteristics of deliberate practice for effort and
enjoyment.

The expert group predominantly practiced the skill they were weaker at and improved its
performance across pre-, post- and retention tests. Participants in the expert group also rated their
practice as more effortful and less enjoyable compared to those in the intermediate group.


https://pubmed.ncbi.nlm.nih.gov/24001022/
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In contrast, participants in the intermediate group predominantly practiced the skill they were
stronger at and improved their performance from pretest to posttest but not on the retention test.”

Likewise, as described by Ericsson (2006) in the context of singing:

“In a recent study of singers Grape, Sandgren, Hansson, Ericsson, and Theorell (2003) revealed
reliable differences of skill in the level of physiological and psychological indicators of
concentration and effort during a singing lesson.

Whereas the amateur singers experienced the lesson as self-actualization and an enjoyable release
of tension, the professional singers increased their concentration and focused on improving their
performance during the lesson.”

And as Lehtinen et al. (2017) elaborate:

“The ‘art of deliberate practice’ obviously includes the ability and willingness to conduct highly
concentrated activities which might be, to some degree, aversive in nature. For example, maximal
capacity training in running is demanding and situationally unpleasant even for world-class
runners, but it is undeniably a necessary part of running training.

However, less experienced individuals like novices tend to focus their practice on more pleasant
levels of effort. For example, unexperienced musicians often practice pieces (or parts of pieces)
which they have already mastered. They try to avoid errors and failures and they do not challenge
their own learning. It is in response to this that trainers/mentors/guides etc. are most valuable.

In the realm of mathematics education, a distinction should also be made between routine
practice with existing skills and the types of deliberate practice that push students to develop their
emerging skills and knowledge structures. ... In geometry learning, Pachman, Sweller, and Kalyuga
(2013) ... found that more knowledgeable students even tended to choose achievable rather than
difficult problems if they had the opportunity to choose. Training with these geometrical tasks
resulted in minimal performance improvements. Only when a deliberate practice model was
applied and these more knowledgeable students were presented with designer-selected difficult
problems to solve did their skills improve.”

Long-Term Compounding

| Expertise is the Product of Incremental Improvements Over Time

Lehtinen et al. (2017) are careful to note that a single round of deliberate practice will not result
in instant expertise — rather, it is the compounding of these incremental improvements over a

longer period of time that lead someone to become an expert:

“The formation of expert-like practice activities is not a single event, but a long process in itself.
The acquisition of high level competence in complex domains such as mathematics is a laborious
process that needs deliberate practice during a number of years.”


https://clinica.ispa.pt/ficheiros/areas_utilizador/user11/4_-_the_influence_of_experience_and_deliberate_practice_on_the_development_of_superior_expert_performance.pdf
https://www.researchgate.net/profile/Jake-Mcmullen/publication/317035771_Cultivating_mathematical_skills_From_drill-and-practice_to_deliberate_practice/links/6192129bd7d1af224bef75bb/Cultivating-mathematical-skills-From-drill-and-practice-to-deliberate-practice.pdf
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Anderson, Reder, & Simon (1998) elaborate further:

“..[UInderstanding of a domain does not come in one fell swoop of insight but is built up bit by bit
over time.

For example, to say that a student has understood a concept such as fractions means that the
student can use that knowledge flexibly in many situations. Thus, the student can figure out how
much pizza each of three children will get if they have to share half a pizza; the student will
recognize that, when thirty-five people must be transported by busses that each hold twenty
people, two buses are required, not one-and-three-quarters; the student can explain why one
inverts a fraction to divide by it; and so on. A child does not suddenly acquire the ability to do all

of this.

The belief in moments of transformation in education is undoubtedly linked to the old belief in
developmental psychology that children transit abruptly between stages. ... Instead, as R. S. Siegler
documents with great care, development is always gradual and continuous. The same is true of
education.”

Consequently, as Ericsson, Krampe, & Tesch-Romer (1993) emphasize, long-term motivation and

commitment are essential:

“..[Dleliberate practice requires effort and is not inherently enjoyable. Individuals are motivated
to practice because practice improves performance. ... Thus, an understanding of the long-term
consequences of deliberate practice is important.”

| Motivational Supplements are Not Substitutes for Deliberate Practice

To this end, classroom activities that are enjoyable, collaborative, and non-repetitive (such as
group discussions and freeform/unstructured project-based or discovery learning) can
sometimes be useful for increasing student motivation and softening the discomfort associated

with deliberate practice.

However, it’s important to realize that these activities are only supplements, not substitutes, for
deliberate practice. Unlike deliberate practice, they do not directly move the needle on student
performance - rather, they “grease the wheels” and reduce psychological friction during the
process of deliberate practice. Performance improvements come directly from deliberate
practice, but occasional motivational activities can inspire students to continue engaging in

deliberate practice over the long term even when it feels difficult and uncomfortable.

Again, this is perhaps most obvious in the contexts of music and athletics:


https://www.andrew.cmu.edu/user/reder/publications/98_jra_lmr_has.pdf
https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
https://en.wikipedia.org/wiki/Project-based_learning
https://en.wikipedia.org/wiki/Discovery_learning
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e Musicians often enjoy fiddling around on their instruments and jamming with friends in
a freestyle, creative way. These are fun activities that can enhance motivation and
sometimes produce creative ideas that can be integrated into their defining style as
artists. But elite musicians know that an even more central component of their practice
routine is consistently pushing themselves beyond their repertoire, using intensely
focused effort to gain new skills and improve specific areas of weakness through

repetition and successive refinement.

e Athletes often enjoy the camaraderie of team bonding activities, which might include
“trick shot” competitions, group discussions about team goals and individual
expectations, and exchanging stories and perspectives over team dinners. Again, these
are fun activities that can help teammates fuel their passion for the game and feel
connected to one another. However, elite athletes know that at the end of the day, their
performance on the field comes from routinely pushing their physiological and mental
limits every day during practice, where they focus intensely on gaining new skills and

improving specific areas of weakness through repetition and successive refinement.

As is said about famous basketball player Kobe Bryant (Cacciola, 2020):

“At the team’s pre-Olympic training camp the following summer, Bryant was the first player to
arrive. In fact, he beat most members of the coaching staff - and was getting in workouts at 5:30
a.m. .. The foundation for all of Bryant’s feats — the 81-point game, the scoring titles, the
series-clinching jump shots, the three championships he had already won with the Lakers — was
his work ethic and desire. The spectacular was rooted in the mundane, in the monotony of hard
labor.”

The overall takeaway from this chapter is that by engaging in deliberate practice on Math
Academy, you will gain the ability to reason coherently and solve problems in levels of math that
you were previously unable to comprehend. But as any personal trainer will tell you: if you want
to achieve your goals, you have to put in the work. Excellence is the product of effective training
over a long period of time, and effective training requires intense effort focused in areas beyond

your repertoire.


https://www.nytimes.com/2020/05/26/sports/basketball/kobe-bryant-olympic-dream-team.html
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).
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Importance: It is “deliberate” practice that matters, not just any practice. Deliberate practice requires highly
concentrated activities which might be, to some degree, aversive in nature. However, less experienced
individuals like novices tend to focus their practice on more pleasant levels of effort. They practice things that

they have already mastered, they try to avoid errors and failures, and they do not challenge their own learning.
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For instance, in geometry learning, Pachman, Sweller, and Kalyuga (2013) found that more knowledgeable
students even tended to choose achievable rather than difficult problems if they had the opportunity to choose.
Training with these geometrical tasks resulted in minimal performance improvements. Only when a deliberate
practice model was applied and these more knowledgeable students were presented with designer-selected

difficult problems to solve did their skills improve.

Likewise, Plant, Ericsson, Hill, and Asberg (2005) found that improvement in performance in higher education
did not significantly correlate with the amount of time spent studying. It did, however, relate to concentrated

learning aimed at specific performance goals.

The formation of expert-like practice activities is not a single event, but a long process in itself. The acquisition
of high level competence in complex domains such as mathematics is a laborious process that needs deliberate

practice during a number of years.
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Additional Resources

e Parrish, S. The Ultimate Deliberate Practice Guide: How to Be the Best. FS.blog.
e Clear, ]J. The Beginner’s Guide to Deliberate Practice. JamesClear.com.

e Ericsson, K. A., Prietula, M. J., & Cokely, E. T. (2007). The making of an expert. Harvard
business review, 85(7/8), 114.


https://fs.blog/deliberate-practice-guide/
https://jamesclear.com/beginners-guide-deliberate-practice
https://hbr.org/2007/07/the-making-of-an-expert
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Chapter 12. Mastery Learning

Summary: By organizing its curriculum into a knowledge graph that keeps track of prerequisite
relationships between topics, Math Academy is able to implement mastery learning, a strategy in
which students demonstrate proficiency on prerequisites before advancing. While even loose
approximations of mastery learning have been shown to produce massive gains in student
learning, mastery learning faces limited adoption due to clashing with traditional teaching
methods and placing increased demands on educators. Math Academy implements true mastery
learning at a fully granular level, which requires fully individualized instruction and is only

attainable through one-on-one tutoring.

Mastery Learning is Underused

One of our main paradigms is mastery learning, also proposed by Bloom (1968), in which
students must demonstrate proficiency on prerequisite topics before moving on to more
advanced topics. True mastery learning at a fully granular level requires fully individualized

instruction, which is only attainable through one-on-one tutoring.

There are methods by which a single teacher can loosely approximate mastery learning, such as
Bloom’s Learning For Mastery (LFM) strategy and Keller’s Personalized System of Instruction
(PSI). As Kulik, Kulik, & Bangert-Drowns (1990) summarize:

“In both LFM and PSI courses, material to be learned is divided into short units, and students
take formative tests on each unit of material (Bloom, 1968; Keller, 1968). ... Lessons in LFM
courses are teacher presented, and students move through these courses at a uniform,
teacher-controlled pace. Lessons in PSI courses are presented largely through written materials,
and students move through these lessons at their own rates.”

However, as Bloom (1984) discovered when characterizing the two-sigma problem, a single
teacher practicing mastery learning with 30 students could only produce a one-sigma effect size
as compared to the two-sigma effect size of individual tutoring. And while numerous studies
reproduced the finding that even loose approximations of mastery learning (managed manually
by a single teacher) produce substantial learning gains, most studies were unable to reproduce
gains as strong as one sigma (the average effect size was about 0.5 standard deviations) (Kulik,
Kulik, & Bangert-Drowns, 1990):


https://en.wikipedia.org/wiki/Mastery_learning
https://files.eric.ed.gov/fulltext/ED053419.pdf
https://en.wikipedia.org/wiki/Mastery_learning#LFM_strategy
https://en.wikipedia.org/wiki/Keller_Plan
https://en.wikipedia.org/wiki/Keller_Plan
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
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“The data show that mastery learning programs have positive effects on student achievement. On
the average, such programs raise final examination scores by about 0.5 standard deviations, or
from the 50¢h to the 70th percentile, in colleges, high schools, and the upper grades of elementary
schools. Although PSI and LFM strategies differ on several points and the two teaching methods
have been studied in distinct ways, studies of PSI and LFM report similar results. PSI raised
examination scores by an average of 0.48 standard deviations; LFM raised examination scores by
an average of 0.59 standard deviations.”

Unfortunately, despite producing well-documented learning gains in classrooms, even loose
approximations of mastery learning were not widely adopted as they faced opposition for
deviating from traditional convention and requiring more effort from teachers and
administrators (Sherman, 1992). (It's true that a minority of teachers now attempt some degree of
differentiated instruction, but this is not the same as true mastery learning, which holds all

students to the same standard and is completely individualized.)

As lamented by John Gilmour Sherman (1992), who was a co-creator, researcher, and

practitioner of Keller’s Personalized System of Instruction (PSI):

“Some PSI courses have been prohibited in spite of their success. I know of several colleagues who
were given ‘cease and desist’ orders. Some are names prominent in the literature, their courses
effective, according to objective data.

I experienced this also. Avoiding a frontal attack, the chairman of the Psychology Department at
Georgetown declared by fiat that something on the order of 50% of class time must be devoted to
lecturing. By reducing the possibility of self-pacing to zero, this effectively eliminated PSI courses.

He issued this order on the grounds that in the context of lecturing ‘it is the dash of intellects in
the classroom that informs the student.” No data were presented on this point! The spectacle of
purporting to defend scholarship while deciding the merits of instructional methods by assertion is
silly.

The troubling aspect of all these cases was that data played no part in the decisions. It is
disturbing when one has to wonder whether research on the education process makes any

difference.”

As Buskist, Cush, & DeGrandpre (1991) elaborate, mastery learning methods like PSI were shot

down because they threatened the traditional educational establishment:

“The first and most important task of any institution is self-preservation. Once in place, its
primary goal must be to hold its ground or, if possible, advance. If this goal is not met, then its
demise is eminent. PSI poses certain implications that threaten the preservation of the
educational establishment and its guardians (department heads, deans, and academic
vice-presidents). According to Keller,

‘Suppose that a system such as PSI were to be given official approval for adoption throughout the
educational scale from top to bottom... With every student given individual treatment, when
would formal education start?... What would happen to the classroom hour, the college quarter,


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://en.wikipedia.org/wiki/Differentiated_instruction
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://link.springer.com/article/10.1007/BF00957005
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the semester, or the academic year?... Who would win the scholarships and prizes? Who would
make Phi Beta Kappa? Who would be the class valedictorian?... What changes would be made in
the payment of tuition when the period of course attendance varied? How would a course of study

be defined?’

In other words, the major impediment to educational reform is the educational system itself. That
is perhaps why all major efforts at educational reform in this century have been directed at
renovating curricula and not at changing how teachers teach (see, e.g., Skinner, 1984; McGovern,
1990).

Revamping curricula requires no revamping of the educational establishment. The curriculum
changes, but that is all. Courses are still taught by lecture within a term's time. Grade distributions
still approximate the normal curve and students enroll in upper division courses without first
mastering more fundamental material. Students still take about four years, give or take a term, to
finish what higher education demands of them.

The Keller Plan runs contrary to this strategy. It is a bold attempt to change how we teach, despite
what we teach. In an entirely PSI-based college, students might finish in two years, maybe sooner,
and learn a good deal more. Imagine what would happen if the entire educational system were
PSI-based: huge numbers of people, most still in the throes of puberty, might be graduating from
college-an unsettling thought for many educators. Indeed, PSI represents a threat to the
educational system and its guardians.

PSI simply does not fit well into our modern educational system. The longstanding tradition of
teaching by lecture has accumulated inertia that has proven difficult to dislodge. In the interests
of self-preservation, the educational establishment has backed reforms favoring what teachers
teach instead of how teachers teach.”

Implementing Mastery Learning

The traditional convention is to march students through a linear sequence of topics according to
a predetermined schedule (like that shown below). Any students who get lost are continually
asked to learn new topics despite not having mastered the prerequisites. As a result, those

students spend class time learning little to nothing and developing a general distaste for math.
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Unit 3: Adding & Subtracting Fractions

This Module 3.1: Adding and Subtracting Fractions and
Week | Whole Numbers

- Adding Fractions and Whole Numbers Using Models

- Adding Fractions and Whole Numbers

- Subtracting Fractions and Whole Numbers Using Models
- Subtracting Fractions and Whole Numbers

Next ) . . .
Week Module 3.2: Adding and Subtracting Fractions
- Adding Fractions With Unlike Denominators Using
Models
- Subtracting Fractions With Unlike Denominators Using
Models
- Adding Fractions With Unlike Denominators
- Subtracting Fractions With Unlike Denominators
Week
After | Module 3.3: Adding and Subtracting Mixed Numbers
Next

- Adding Mixed Numbers With Unlike Denominators
- Subtracting Mixed Numbers With Unlike Denominators

Math Academy, however, implements true mastery learning at a fully granular level. We
accomplish this by organizing topics into a knowledge graph that shows all the topics and
prerequisite relationships between them. In the knowledge graph below, arrows point from

simpler prerequisite topics to more advanced “post”-requisite topics.
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By overlaying a student’s progress on the knowledge graph, we can identify the topics that they
are ready to learn - that is, the topics for which they have demonstrated a sufficient level of
proficiency on the prerequisites. We only serve students lessons on these topics. If a student gets
stuck on a topic, they can try again another day, but in the meantime, they are allowed to learn

other topics that don’t depend on the problematic one.
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It is infeasible for a single teacher, who can only teach one topic at a time, to manually support
true mastery learning across a class full of students who all have different learning profiles. As
researchers have discovered, knowledge profiles vary immensely even across students in the

same grade (Pedersen, et al., 2023):

“our results suggest that nearly 38% and 49% of students in grade four and eight classrooms may
either struggle to understand ‘grade-level’ content or have already mastered the content,
respectively.”

However, Math Academy’s fully-automated interactive lessons support de-synchronized
learning where different students are simultaneously taught different topics. With a software
system that emulates the decisions of an expert tutor, we are able to provide fully individualized

instruction at scale and achieve true mastery learning at a fully granular level.

Knowledge Frontier as Zone of Proximal Development

Mastery learning is closely related to Vygotsky’s Zone of Proximal Development, which refers
to the range of tasks that a student is able to perform while supported, but cannot do on their

own. Students maximize their learning when they are completing tasks within this range.

In the context of an adaptive learning system, a student’s zone of proximal development
coincides with their knowledge frontier or edge of mastery, the set of new topics for which
they have mastered the prerequisites. Selecting new learning tasks from a student’s knowledge

frontier can lead to drastic improvements in learning.

For instance, another learning platform has reported (Zou et al., 2019) that even when a teacher
has access to student performance data chooses a new topic that they believe is appropriate for
the class, a student is about 3-4x as likely to be successful in mastering that topic if it lies along
their knowledge frontier (as opposed to residing beyond their frontier). This led the authors to

conclude that

“..[S[imply providing teachers with data is not always sufficient for good instructional decision
making. ... Optimizing learning outcomes requires correct teaching decisions that lead students on
the right path, based on the student’s ZPD [Zone of Proximal Development].”

A student’s knowledge frontier can be visualized as the edge of their knowledge profile, which,

loosely speaking, represents how “developed” their mathematical brain is. Every time they learn


https://osf.io/3r6a5/download
https://en.wikipedia.org/wiki/Zone_of_proximal_development
https://learninganalytics.upenn.edu/ryanbaker/AIED2019_paper_133.pdf
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a new math topic, it’s as if they grow a new brain cell and connect it to existing brain cells.

Initially, this new brain cell is weak and requires frequent nurturing, but over time it becomes
strong and requires less frequent care.

For instance, a knowledge profile for a second-semester calculus student is visualized below.
Learned topics are shaded (with darker shading indicating that more successful practice has

been completed), and arrows between topics represent prerequisite relationships.
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(Note that this visualization only shows a “subsystem” within the student’s full mathematical
brain - there are several hundred topics in the calculus course, but there are thousands of topics

in Math Academy’s entire mathematical curriculum, which spans elementary school through
university-level math.)

The knowledge frontier is the edge of the knowledge profile. It separates what the student
knows from what they don’t know.

e The student knows all the simpler topics below their knowledge frontier. That is, they

know all the prerequisites, the prerequisites of the prerequisites, and so on.

e However, they do not know any of the advanced topics at or above their knowledge
frontier.
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When a student first starts on the Math Academy system, we begin with a placement
diagnostic, a dynamic assessment that quickly estimates their knowledge frontier. Following
the diagnostic, whenever a student is served new lessons, those lessons always cover topics that
are on the student’s estimated knowledge frontier, and the estimated knowledge frontier quickly

becomes more accurate as the student completes those lessons.


https://en.wikipedia.org/wiki/Dynamic_assessment
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as

effective as one-to-one tutoring. Educational researcher, 13(6), 4-16.

Importance: The average tutored student performed better than 98% of the students in a traditional class, an
effect size of two sigmas (standard deviations). However, a single teacher practicing mastery learning with 30
students could only produce a one-sigma effect size as compared to the two-sigma effect size of individual

tutoring.

Kulik, C. L. C., Kulik, J. A., & Bangert-Drowns, R. L. (1990). Effectiveness of mastery learning

programs: A meta-analysis. Review of educational research, 60(2), 265-299.

Importance: Numerous studies reproduced the finding that even loose approximations of mastery learning
(managed manually by a single teacher) produce substantial learning gains, though generally not as high as one

sigma (the average effect size was about 0.5 standard deviations).

Sherman, J. G. (1992). Reflections on PSI: Good news and bad. Journal of Applied Behavior
Analysis, 25(1), 59.

Buskist, W., Cush, D., & DeGrandpre, R. J. (1991). The life and times of PSI. Journal of
Behavioral Education, 1, 215-234.

Importance: Despite producing well-documented learning gains in classrooms, Keller’s Personalized System of
Instruction (a method by which a single teacher can loosely approximate mastery learning) was not widely
adopted as it faced opposition for deviating from traditional convention and requiring more effort from

teachers and administrators.

Pedersen, B., Makel, M. C., Rambo-Hernandez, K. E., Peters, S. J., & Plucker, J. (2023). Most

mathematics classrooms contain wide-ranging achievement levels. Gifted Child Quarterly,


https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
https://www.uky.edu/~gmswan3/575/kulik_kulik_Bangert-Drowns_1990.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://link.springer.com/article/10.1007/BF00957005
https://osf.io/3r6a5/download
https://osf.io/3r6a5/download
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67(3), 220-234.

Importance: Knowledge profiles vary immensely even across students in the same grade: nearly 38% and 49%
of students in grade four and eight classrooms may either struggle to understand “grade-level” content or have

already mastered the content, respectively.

e Zou, X., Ma, W., Ma, Z., & Baker, R. S. (2019). Towards helping teachers select optimal
content for students. In Artificial Intelligence in Education: 20th International Conference, AIED
2019, Chicago, IL, USA, June 25-29, 2019, Proceedings, Part II 20 (pp. 413-417). Springer

International Publishing.

Importance: Another learning platform has reported that even when a teacher has access to student
performance data and chooses a new topic that they believe is appropriate for the class, a student is about 3-4x
as likely to be successful in mastering that topic if it lies along their knowledge frontier (as opposed to residing
beyond the frontier).


https://learninganalytics.upenn.edu/ryanbaker/AIED2019_paper_133.pdf
https://learninganalytics.upenn.edu/ryanbaker/AIED2019_paper_133.pdf
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Chapter 13. Minimizing Cognitive Load

Summary: When the cognitive load of a learning task exceeds a student’s working memory
capacity, the student experiences cognitive overload and is not able to complete the task. Math
Academy avoids cognitive overload by finely scaffolding content with numerous small steps: each
lesson is broken up into several “knowledge points” of increasing difficulty, each containing a
worked example and requiring the student to demonstrate mastery on practice problems before
proceeding to the next knowledge point. Our content is about 10x more finely scaffolded than
what youd find elsewhere. This makes learning accessible to all students regardless of their
working memory capacity. Scaffolding is gradually removed as students progress, ensuring

sustained learning without dependence on supports.

The Learning Staircase

Learning is like climbing a staircase. Each step is a learning task - the higher the step, the more
advanced the topic is. At the top of the staircase is higher-order thinking such as critical
thinking and problem solving. However, different students have different stair-climbing
abilities, and many students never make it to the top because they get stuck at individual stairs

that are too tall for them to climb.

Math Academy’s solution is to split individual stairs into even smaller stairs so that all students
can climb them. The smaller we make the individual stairs, the more students can climb all the

way to the top.

For instance, a typical calculus textbook might consist of 100 steps (10 chapters x 10 sections in
each chapter). But in our calculus course, we have about 1000 steps (~300 topics x 3-4 knowledge
points or stages of increasing difficulty per topic). In other words, our content is about 10x more

finely scaffolded than what you'd find elsewhere.

In technical terms, we are minimizing cognitive load. Cognitive load refers to the amount of
working memory that is required to complete a task. Working memory consists of
limited-capacity, limited-duration short-term memory storage along with capabilities for
organizing, manipulating, and generally “working” with the information stored in short-term

memory.


https://en.wikipedia.org/wiki/Higher-order_thinking
https://en.wikipedia.org/wiki/Instructional_scaffolding
https://en.wikipedia.org/wiki/Cognitive_load
https://en.wikipedia.org/wiki/Working_memory
https://en.wikipedia.org/wiki/Short-term_memory
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In the staircase analogy, the height of each step represents cognitive load. Different students
have different working memory capacities, and if the cognitive load of a learning task exceeds a
student’s working memory capacity, then the student will not be able to complete the task due to

cognitive overload.

Cognitive overload has massive negative ramifications for students: not only has working
memory capacity been shown to predict performance in mathematical problem solving
(Swanson & Beebe-Frankenberger, 2004), but perhaps shockingly, it has also been shown to be a
better predictor than IQ when predicting a young student’s future academic success (Alloway &
Alloway, 2010). By minimizing the cognitive load and avoiding cognitive overload, we make

learning accessible to all students regardless of their working memory capacity.

Higher-Order
Thinking

Coghnitive &
Load

L\\\Traditiona !

Math Academy maintains this high level of scaffolding even when teaching higher-order
thinking. In our multi-part problems, students explore challenging, complex problem contexts
one part at a time, and each part leverages an individual skill that they have previously learned
in an earlier topic. This way, we fully “split up the staircase” as students climb from practicing

individual skills in isolation to combining skills in novel higher-order problem contexts.


https://www.researchgate.net/publication/232435921_The_Relationship_Between_Working_Memory_and_Mathematical_Problem_Solving_in_Children_at_Risk_and_Not_at_Risk_for_Serious_Math_Difficulties
https://www.researchgate.net/profile/Tracy-Alloway/publication/223032127_Investigating_the_predictive_roles_of_working_memory_and_IQ_in_academic_attainment/links/59e0eb300f7e9b97fbdf4e08/Investigating-the-predictive-roles-of-working-memory-and-IQ-in-academic-attainment.pdf
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Micro-Scaffolding

Even within individual knowledge points, we take additional measures to minimize cognitive
load. Each knowledge point starts with a demonstration or worked example, which has been
shown by numerous studies (see Sweller, 2006 for a review) to reduce cognitive load and help
students develop a baseline mental framework or schema when their level of understanding is

initially low.

After the worked example, students solve problems that are similar to the worked example, only
progressing onto the next knowledge point once they have demonstrated mastery of the
previous one. This way, students are never asked to solve problems that are beyond their

working memory capacity.

Lesson: Adding Two-Digit Whole Numbers

Introduction

Knowledge Point 1: Adding Two-Digit Numbers to
Two-Digit Numbers

Practice Questions

Knowledge Point 2: Adding Two-Digit Numbers to
Two-Digit Numbers With Carrying

Practice Questions

Knowledge Point 3: Adding Two-Digit Numbers to
Two-Digit Numbers: Carrying to Hundreds

Practice Questions

In the explanations of worked examples and practice questions, we leverage subgoal labeling by
grouping steps into meaningful units. This minimizes the number of chunks of information that
students need to store in their working memory, thereby reducing cognitive load. Additionally,
subgoal labeling has been shown to help students grasp the structure of the problem, thereby

enabling the learning to transfer to novel problems in the same category (Catrambone, 1995).


https://en.wikipedia.org/wiki/Worked-example_effect
https://www.researchgate.net/publication/248498261_The_worked_example_effect_and_human_cognition
https://en.wikipedia.org/wiki/Schema_(psychology)
https://en.wikipedia.org/wiki/Subgoal_labeling
https://sites.gatech.edu/richardcatrambone/files/2020/09/Catrambone1995.pdf
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We also leverage dual-coding theory by including visualizations and diagrams when possible to
help students develop mental images. In addition to helping students make connections that
they can use to recall information and consolidate information into chunks, this also helps
students avoid cognitive overload by distributing cognitive load more evenly between two
subsystems within the working memory system: the phonological loop, which stores verbal

information, and the visuo-spatial sketchpad, which stores visual imagery (Baddeley, 1983).

It’s worth noting that unlike most other educational programs, Math Academy makes heavy use
of visualizations and diagrams throughout the entire math curriculum - not just in elementary

mathematics, but all the way through university-level subjects.

For instance, just as we use flowcharts to help students classify shapes in elementary

mathematics, we also use flowcharts to help students classify series in Calculus:

Quadrilateral

Kite Parallelogram Trapezoid

/ Divergent

Rhombus Rectangle Isosceles Trapezoid

Conditionally
Convergent

Square

Convergent

Absolutely
Convergent

The visualization doesn’t stop at Calculus. It continues all the way through more advanced
university-level courses like Multivariable Calculus - even Abstract Algebra, an upper-level
math-major course about the “structure” of abstract mathematical objects, whose textbooks and

lectures are usually associated with dense, dry, image-less strings of symbols.


https://en.wikipedia.org/wiki/Dual-coding_theory
https://en.wikipedia.org/wiki/Mathematical_visualization
https://en.wikipedia.org/wiki/Mathematical_diagram
https://en.wikipedia.org/wiki/Mental_image
https://en.wikipedia.org/wiki/Chunking_(psychology)
https://en.wikipedia.org/wiki/Baddeley%27s_model_of_working_memory
https://tecfaetu.unige.ch/perso/maltt/carlei0/Fichiers/Baddeley1983.pdf
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Sample Images — Multivariable Calculus
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Refining the pariition once again, we get the following:
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Sample Images — Abstract Algebra

Given two groups (G, *) and (G, +'), a function (or map) ¢ : G — G’ is a homomorphism if it

satisfies the following property.
o(z) + $(y), Ve, y € G.

élaxy)

A homomorphism is a structure-preserving map between two groups. This rule can be visualized

schematically, as shown below.
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The kernel of a homomorphism ¢ : G — G’, denoted Ker(¢), is the set of elements in G that map to

the identity element in G, Formally, it is defined as

Ker(¢) = {z € G| ¢(z) = €'},

where €' is the identity element of G’. We can visualize the kernel of a group homomorphism as follows

The corresponding diagram is the following
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The Expertise Reversal Effect

While it’s important to use scaffolding to minimize cognitive load when students are learning
new material, it’s also important to gradually strip away the scaffolding as they become
comfortable with that material so that the scaffolding does not become a crutch. This

phenomenon is known as the expertise reversal effect: the instructional techniques that

promote the most learning in beginners, promote the least learning in experts, and vice versa.

On Math Academy, after a student completes an initial lesson on a topic, we gradually strip
away scaffolding during later reviews. While we scaffold lessons by having students solve

questions that are similar to worked examples (one worked example at a time), we mix up review



https://en.wikipedia.org/wiki/Expertise_reversal_effect

The Math Academy Way - Working Draft | 193

problems so that it is not obvious which worked example is the best reference. This encourages
students to solve review problems without referring to the worked examples - and while they
can go back to the lesson and dig up a similar example for reference if they get really stuck on a
review problem, even students who do this must reason about the structure of their problem to

match it to helpful reference material.

We also continually quiz our students on the material that they have learned - and during
quizzes, no scaffolding is provided. Quizzes are quick and frequent, but each quiz covers a wide
variety of previously learned material. Additionally, quizzes are timed, and students are unable

to refer back to lessons for reference.
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

e Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working
memory and mathematical problem solving in children at risk and not at risk for serious

math difficulties. Journal of educational psychology, 96(3), 471.

Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory
and IQ in academic attainment. Journal of experimental child psychology, 106(1), 20-29.

Importance: Cognitive overload has massive negative ramifications for students: not only has working memory
capacity been shown to predict performance in mathematical problem solving, but perhaps shockingly, it has

also been shown to be a better predictor than IQ when predicting a young student’s future academic success.


https://www.researchgate.net/publication/232435921_The_Relationship_Between_Working_Memory_and_Mathematical_Problem_Solving_in_Children_at_Risk_and_Not_at_Risk_for_Serious_Math_Difficulties
https://www.researchgate.net/publication/232435921_The_Relationship_Between_Working_Memory_and_Mathematical_Problem_Solving_in_Children_at_Risk_and_Not_at_Risk_for_Serious_Math_Difficulties
https://www.researchgate.net/publication/232435921_The_Relationship_Between_Working_Memory_and_Mathematical_Problem_Solving_in_Children_at_Risk_and_Not_at_Risk_for_Serious_Math_Difficulties
https://www.researchgate.net/profile/Tracy-Alloway/publication/223032127_Investigating_the_predictive_roles_of_working_memory_and_IQ_in_academic_attainment/links/59e0eb300f7e9b97fbdf4e08/Investigating-the-predictive-roles-of-working-memory-and-IQ-in-academic-attainment.pdf
https://www.researchgate.net/profile/Tracy-Alloway/publication/223032127_Investigating_the_predictive_roles_of_working_memory_and_IQ_in_academic_attainment/links/59e0eb300f7e9b97fbdf4e08/Investigating-the-predictive-roles-of-working-memory-and-IQ-in-academic-attainment.pdf
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Chapter 14. Developing Automaticity

Summary: Automaticity is the ability to perform low-level skills without conscious effort.
Analogous to a basketball player effortlessly dribbling while strategizing, automaticity allows
individuals to avoid spending limited cognitive resources on low-level tasks and instead devote
those cognitive resources to higher-order reasoning. In this way, automaticity is the gateway to
expertise, creativity, and general academic success. However, insufficient automaticity,
particularly in basic skills, inflates the cognitive load of tasks, making it exceedingly difficult for

students to learn and perform.

Importance of Automaticity

| Autonomicity Frees Up Working Memory

An essential yet often-overlooked part of minimizing cognitive load is developing automaticity
on basic skills - that is, the ability to execute low-level skills without having to devote conscious
effort towards them. Automaticity is necessary because it frees up limited working memory to
execute multiple lower-level skills in parallel and perform higher-level reasoning about the

lower-level skills.

As a familiar example, think about all the skills that a basketball player has to execute in
parallel: they have to run around, dribble the basketball, and think about strategic plays, all at
the same time. If they had to consciously think about the mechanics of running and dribbling,
they would not be able to do both at the same time, and they would not have enough brainspace

to think about strategy.

This extends to academics as well. As described by Hattie & Yates (2013, pp.53-58):

“You cannot comprehend a ‘big picture’ if your mind’s energies are hijacked by low-level
processing. Continuity is broken. The goal shifts from understanding the total context to
understanding the immediate word before you. ... If you read connected text (such as sentences) at
any pace under 60 wpm, then understanding what you read becomes almost impossible.

Many [students] arrive at school with a lack of automaticity within their basic sound-symbol
functioning. With a minimal level of phonics training, they may be able to fully identify letters,
verbalise sound symbol relationships, and read isolated words through sheer effort. But, if the pace


https://en.wikipedia.org/wiki/Automaticity
https://www.taylorfrancis.com/books/mono/10.4324/9781315885025/visible-learning-science-learn-john-hattie-gregory-yates
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of processing is not brought up to speed, through intensive self-directed practice, reading for
understanding will remain beyond grasp.

A well-replicated finding is that students who present with difficulties in mathematics by the end
of the junior primary years show deficits in their ability to access number facts with automaticity.
Such deficits stymie further development in this area, often with additional adverse consequences
such as students experiencing lack of confidence, lack of enjoyment, and feelings of helplessness.”

| Working Memory is Limited, but Long-Term Memory is Not

Unfortunately, working memory has such limited capacity that most people can only hold a
handful of pieces of new information simultaneously in their heads (spanning about 7 digits, or
more generally 4 chunks of coherently grouped items), and only for about 20 seconds as the
memory degrades from decay or interference (Miller, 1956; Cowan, 2001; Brown, 1958; Ricker,
Vergauwe, & Cowan, 2016). And that assumes they aren’t needing to perform any mental
manipulation of those items - if they do, then fewer items can be held due to competition for
limited processing resources (Wright, 1981). This severe limitation of the working memory when
processing novel information is known as the narrow limits of change principle (Sweller,
Ayres, & Kalyuga, 2011).

An intuitive analogy by which to understand the limits of working memory is to think about
how your hands place a constraint on your ability to hold and manipulate physical objects. You
can probably hold your phone, wallet, keys, pencil, notebook, and water bottle all at the same
time - but you can’t hold much more than that, and if you want to perform any activities like
sending a text, writing in your notebook, or uncapping your water bottle, you probably need to

put down several items.

In the same way, your working memory only has about 7 slots for new information, and once
those slots are filled, if you want to hold more information or manipulate the information that

you are already holding, you have to clear out some slots to make room.


https://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two
https://en.wikipedia.org/wiki/Memory_span
https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://en.wikipedia.org/wiki/Chunking_(psychology)
https://journals.sagepub.com/doi/abs/10.1080/17470215808416249?journalCode=qjpa
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241183/
https://academic.oup.com/geronj/article-abstract/36/5/605/550194
http://ndl.ethernet.edu.et/bitstream/123456789/31186/1/125.John%20Sweller.pdf

The Math Academy Way - Working Draft | 197

™S

Y Long-Term Memory
—_sicity
\ /Au‘°“??f‘/|/“/

\

. Indefinitely
Working Memory many slots
Only 7 A
lot
100% T~ SO
(Slot 7) Empty
(Slot 6)
Manipu-
i) lation
(Slot 4)
(Slot 3) ’Xff;"
(Slot 2) ,/\:I;ZV
(Slot 1) 'Xfﬂ")"
>
20 v holdi Indefinitely long
sc‘liiat?onmg holding duration

In particular, you can’t solve a problem if you can’t fit all its pieces in your working memory.
This means that if a student doesn’t achieve automaticity on lower-level skills, it doesn’t even
matter how well the teacher scaffolds a new skill - they won’t be able to do it. And even for tasks
within a student’s cognitive capacity, it has been shown that a heavy cognitive load drastically

increases the likelihood of errors (Ayres, 2001).

When you develop automaticity on a skill or piece of information, however, you can use it
without it occupying a slot in your working memory. Instead, the skill is stored in your
long-term memory, where indefinitely many things can be held for indefinitely long without

requiring cognitive effort.

As Anderson (1987) summarizes, automaticity can effectively turn long-term memory into an

extension of short-term memory:


https://www.researchgate.net/publication/12058826_Systematic_Mathematical_Errors_and_Cognitive_Load
https://en.wikipedia.org/wiki/Long-term_memory
https://files.eric.ed.gov/fulltext/ED264257.pdf
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“Chase and Ericsson (1982) showed that experience in a domain can increase capacity for that
domain. Their analysis implied that what was happening is that storage of new information in
long-term memory, became so reliable that long-term became an effective extension of short-term
memory.”

| Expertise Requires Automaticity

Automaticity is the mental capacity that differentiates experts from beginners, a phenomenon
that has been thoroughly studied in various contexts including the game of chess. As

summarized by Ross (2006):

“..[A] typical grandmaster has access to roughly 50,000 to 100,000 chunks of chess information
[Gobet & Simon, 1998]. A grandmaster can retrieve any of these chunks from memory simply by
looking at a chess position, in the same way that most native English speakers can recite the poem
‘Mary had a little lamb’ after hearing just the first few words.”

As elaborated by Gobet & Simon (1998):

“..[S]kill in playing chess depends both on (a) recognizing familiar chunks in chess positions while
playing games, and (b) exploring possible moves and evaluating their consequences. ... Expert
memory, in turn includes slowly acquired structures in long-term memory (retrieval structures,
templates) that augment short-term memory with slots (variable places) that can be filled rapidly
with information about the current position.”

Indeed, as Benjamin Bloom noted (1986) while identifying automaticity as a key theme in his
own research on talent development, automaticity was described as the “hands and feet of

genius” as early as the 19th century:

“Our talent development studies support the 1899 research of Bryan and Harter who were
concerned with the development of automaticity in expert Morse Code telegraphers. They most
eloquently described the benefits of automaticity as an outcome of the learning process.

‘The learner must come to do with one stroke of attention what now requires half a dozen, and
presently in one still more inclusive stroke, what now requires thirty-six. He must systematize the
work to be done and must acquire a system of automatic habits corresponding to the system of
tasks. When he has done this he is master of the situation in his [occupational or professional]
field. ... Finally, his whole array of habits is swiftly obedient to serve in the solution of new
problems. Automatism is not genius, but it is the hands and feet of genius.”

It’s important to realize that automaticity goes beyond simple familiarity. If you truly “know”
something, then you should be able to access and leverage that information both quickly and
accurately. If you can't, then you're just "familiar" with it. And when learning hierarchical

bodies of knowledge - whether it be math, chess, a sport, or an instrument - it’s important to


https://apps.dtic.mil/sti/tr/pdf/ADA114634.pdf
https://personal.utdallas.edu/~otoole/CGS2301_S09/15_expert.pdf
https://bura.brunel.ac.uk/bitstream/2438/1343/1/Copy-Task-NEW-BJP.pdf
https://bura.brunel.ac.uk/bitstream/2438/1343/1/Copy-Task-NEW-BJP.pdf
https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198602_bloom.pdf
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truly know things, not just be familiar with them. Why? Because you can’t build on familiarity.
That’s what the term “shaky foundations” refers to. You can only build on a solid foundation of

knowledge.

To help students develop automaticity (and, consequently, expertise in mathematics), Math
Academy requires students to practice each skill until they have reached a sufficient level of
mastery. Students start at their edge of knowledge (not their edge of “familiarity”) and are not
pushed forward along learning paths until they have mastered the prerequisite skills.
Additionally, to help consolidate skills into long-term memory after mastery, skills are
continually reviewed into the future through a systematic method called spaced repetition

(which is described later in this document).

Case Study: Computing Exponents With vs Without Automaticity
on Multiplication and Addition Facts

To convey the importance of automaticity, it helps to walk through a case study in which we
observe a problem being solved by students who have different levels of automaticity in their
underlying skills. As we will see, a student’s overall learning experience can vary drastically

depending on their level of automaticity.

Suppose that we have three different students - Otto, Rica, and Finn - whose names are chosen

to represent their respective levels of automaticity.
e Otto has developed full automaticity on multiplication facts and procedures.

® Rica doesn’t know her multiplication facts - she recalculates them from scratch. She is
able to carry out multiplication procedures, but she isn’t fully comfortable with them and

has to proceed slowly, writing every single step down.

e Finn, likewise, doesn’t know his multiplication facts - but he doesn’t know his addition
facts either, so he uses finger-counting for everything. He is not at all comfortable with

multiplication procedures.

These students are each given a lesson on cubes of numbers. After an explanation of what it

means to cube a number, and a demonstration with a worked example, they're each given a
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problem to practice on their own: compute 4°. Let’s observe the thought processes (both

reasoning and emotions) as each of these students solves the problem.

Otto is so comfortable with his multiplication and addition facts that he solves the problem in
10 seconds in his head. He feels it was easy, is excited to try another, and can’t wait for harder

problems like cubing negative numbers, decimal numbers, and fractions.

o 4£=4x4x4 Iknow4x4=16, easy, and then 16 x 4 = ... well that’s 10 x 4 =40 and 6 x 4 = 24,
together making 40 + 24 = 64. Done, easy! What’s next?

Rica solves the problem in 2 minutes, but her answer is not correct. She takes another 2 minutes
to correct the mistake but gets tired and wants to take a break before moving on to the next

problem. She’s not looking forward to harder problems.

4’ =4 x4 x 4. What's 4 x 42 I don’t know, let’s compute it.
0 4 x4isthesame as4 +4+4+4, whichis... well, 4 +4 =8, plus 4 is 12, plus 4 is 16.

e Where was I? Oh right, 4 x 4 = 16 and then 16 x 4 = ... ugh, gotta go through that multiplication

procedure.

o Put the 16 on top, then x 4 on bottom, and now we carry out the procedure. First 4 x 6 =
6+ 6+ 6+ 6, count that up to get 6 + 6 = 12, plus 6 is 18, plus 6 is 22. Write down 2, carry
another 2. Then 4 x 1 =4, add the carried 2, write down 6.

e Done. Result is 62. Oh wait, the teacher says that’s close but not quite right. Fine, let’s try this

again.
e (Rica repeats the entire procedure above and this time gets a result of 64.)

e Great, teacher says that 64 is right. I know there are more problems to do but that one was kind of

hard and I'm tired. Teacher, can I take a break and do the next one later?

Finn takes 10 minutes to solve the problem, but his answer is not correct. He tries again for
another 10 minutes but makes a different mistake. The teacher has to sit with him for another 10
minutes to carry him through the problem. By the time Finn is done with the problem, it has
almost been a full class period. He is totally exhausted and overwhelmed and dreads doing the

rest of the homework.
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o 4°=4x4x4. What’s 4 x 47 I don’t know, let’s compute it.
O 4 x4isthesame as4 +4 +4 + 4, which is ... ugh, gotta count all this up. This is annoying.

m  Start at 4, then4 moreis 5, 6,7, 8.
m  Start at 8, then 4 more is 9, 10, 11, 12.
m  Startat 12, then 4 more is 12, 13, 14, 15.

o Phew, that took a while, but now I have 4 + 4 + 4 + 4 = 15. Why was I doing that, again?
Oh right, I was really doing 4 x 4 = 15.

e Wait, we're not even done yet. I did 4 x 4 = 15, but that was because I wanted to do 4 x 4 x 4.
Okay so now I need to do 15 x 4. Ew, that’s going to be even harder. I don’t like this. But fine, let’s
do it.

o 15 x 4 is the same as 15 + 15 + 15 + 15, and those are big numbers so I need to line it up

on paper.
m  Put 15 at the top, then another 15 below, then another 15, then another 15.

m  Let’s add the right column:
e Startat5, then 5moreis6,7,8, 9, 10.
e Startat 10, then 5 more is 10, 11, 12, 13, 14.
e Start at 14, then 5 more is 15, 16, 17, 18, 19.

m Write down 9, carry the 1, then add down the left column: start at 1, then 1 more
is 2, then 3, then 4, then 5. Write down the 5, we have 59.

e Answer is 59. Glad that’s over. That took forever. Oh wait, the teacher says that’s wrong. Noooo...

do I have to do this whole thing over again?! This is way too much work.

e (Finn repeats the entire procedure above and this time gets a result of 66, which is still
incorrect. He is getting very noticeably frustrated and his teacher sits down with him to
go through his work. They find and fix several errors together and arrive at the correct
result of 64.)
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e [ can’t do any more of this today. I'm too tired. I hate math, and my teacher gives me way too
much work. And the next problem looks harder, and there are even more on the homework! This

is terrible. Class is almost over so I'm just going to zone out until the bell rings.

This case study demonstrates that the more automaticity a student has on their lower-level
skills,

e the easier they will find it to acquire new higher-level skills,

e the more quickly and independently they will be able to execute those skills,

the better they will feel about the learning process as a whole, and
e the more excited they will be to continue learning more advanced material.

Students who develop automaticity will feel empowered, while students who do not will feel

overwhelmed and defeated.

Automaticity, Creativity, and Higher-Level Thinking

| Automaticity is Necessary for Creativity

The relationship between automaticity and creativity is commonly misunderstood. Some people
think that automaticity and creativity are opposite and competing forces: supposedly, because
automaticity requires repeated practice, it turns students into mindless robots, whereas to
leverage the power of human creativity, one needs to break free from that robotic mindset. This
line of reasoning might sound alluring - and even convenient, since students often don’t enjoy
the repeated practice that’s required to develop automaticity - but there’s one problem: it’s

completely false.

In reality, automaticity is a necessary component of creativity. The whole purpose of
automaticity is to reduce the amount of bandwidth that the brain must allocate to robotic tasks,
thereby freeing up cognitive resources to engage in higher-level thinking. If a student does not
develop automaticity, then they will have to consciously think about every low-level action that
they perform, which will exhaust their cognitive capacity and leave no room for high-level

creative thinking.
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As a concrete example, consider what is typically considered one of the most creative activities:
writing. Effective writing requires a frictionless pipeline from ideas in one’s mind to words on
paper. If a writer had to consciously think about spelling, grammar, word definitions, transitions
between sentences, when to make a new paragraph, etc, they would become bogged down in
low-level robotic tasks and would have no mental bandwidth to think about high-level creative
details like vivid imagery, logical cohesiveness, and emotions evoked by various phrases and

ideas.

Indeed, the importance of automaticity is documented by researchers in the field of writing
education (Kellogg & Whiteford, 2009):

“Serious, effective composition is at once a severe test of memory, language, and thinking ability
. it depends on the author’s ability to manage the burdensome demands made on working
memory by the task of written composition.

[T]he necessary coordination and control cannot succeed without reducing the relative demands
that planning, generation, and reviewing make on working memory. The writer cannot flexibly
and adaptively coordinate planning, generating, and reviewing when the needs of any single
process consume too many available resources. The writer cannot be mindful of the whole while
struggling with the parts.”

What’s more, this view is supported by an overwhelming amount of research over at least the

past half-century:

“Empirical support for the importance of working memory resources, especially executive
attention, in the development of advanced writing skills is strong. First, a measurement of overall
working memory capacity in college students correlates with their writing performance (Ransdell
& Levy, 1996). Vanderberg and Swanson (2007) extended such findings by discovering that it is
individual differences in central executive capacity that reliably accounts for variability in writing
skills among 10th graders in high school. Controlled executive attention, rather than the storage of
representations, is most critical in explaining individual differences in skill. Converging
experimental results show that distracting executive attention with a concurrent task of
remembering six digits disrupts both the quality and fluency of text composition (Ransdell, Levy, &
Kellogg, 2002).

The advancement of writing skills from beginner to advanced levels depends on the availability of
adequate working memory resources and the capacity to allocate them appropriately to planning,
sentence generation, and reviewing. McCutchen (1996) reviewed a large body of evidence in
support of this view. For example, children’s fluency in generating written text is limited until they
master the mechanical skills of handwriting and spelling (Graham, Berninger, Abbott, & Whitaker,
1997). Learning the mechanics of writing to the point that they are automatic during primary
school years is necessary to free the components of working memory for planning, generating, and
reviewing. Mastery of handwriting and spelling is also a necessary condition for writers to begin to
develop the control of cognition, emotion, and behavior that is needed to sustain the production
of texts as adolescents (Graham & Harris, 2000).


https://hillkm.com/EDUC_715/Unit_6/kellogg_whiteford_2009.pdf
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Revision is constrained or even nonexistent in developing writers because of working memory
limitations. Revision requires detecting a problem, diagnosing its cause, and finding an
appropriate way to correct it (Flower et al., 1986). If revision fails because of working memory
limitations, as opposed to knowledge of what revision entails, then providing cues to detect
problems in the text should benefit revision, because writers can then devote resources solely to
diagnosis and solution. Cuing in fact does improve the revision of even college students (Hacker,
Plumb, Butterfield, Quathamer, & Heineken, 1994).

As Beal (1996) observed, very young writers have trouble even seeing the literal meaning of their
texts. The beginning author focuses on his or her thoughts not on how the text itself reads.
Maintaining the author’s ideas in working memory requires much, if not all, of the available
storage and processing capacity of working memory in during childhood and early adolescence.
This prevents the student from reading the text carefully and maintaining a clear representation
of what it actually says that is independent of what the author intended to say.”

| Automaticity is Necessary for Higher-Level Thinking

The same reasoning applies to mathematics. In order to operate at higher levels of mathematical
thinking and abstract thought, it’s necessary to have developed automaticity at the lower levels.
Consider the following realization from a skeptic-turned-convert principal (Brown, Roediger, &
McDaniel, 2014, pp.44-45):

“What about Principal Roger Chamberlain’s initial concerns about practice quizzing at Columbia
Middle School - that it might be nothing more than a glorified path to rote learning? When we
asked this question after the study was completed, he paused for a moment to gather his thoughts.

‘What I've really gained a comfort level with is this: for kids to be able to evaluate, synthesize, and
apply a concept in different settings, theyre going to be much more efficient at getting there when
they have the base of knowledge and the retention, so they’re not wasting time trying to go back
and figure out what that word might mean or what that concept was about. It allows them to go to
a higher level.”

To put it bluntly, according to Lehtinen et al. (2017):

“Fluency in basic arithmetic tasks and number combination skills has proved to be crucial for
later mathematical learning and weaknesses in automatization of these skills is characteristic of
mathematically disabled children.”

Allen-Lyall (2018) elaborates further:

“Internalized facts allow for efficient mental computations that make easier multi-step problem
solving or recognizing and making connections between mathematical concepts, such as
multiplication and division, ratio comparison, fraction equivalencies, or exploration of object
relationships in the world of geometry (Chapin & Johnson, 2006; National Research Council,
2005).


https://www.hup.harvard.edu/books/9780674729018
https://www.researchgate.net/profile/Jake-Mcmullen/publication/317035771_Cultivating_mathematical_skills_From_drill-and-practice_to_deliberate_practice/links/6192129bd7d1af224bef75bb/Cultivating-mathematical-skills-From-drill-and-practice-to-deliberate-practice.pdf
https://iejee.com/index.php/IEJEE/article/download/325/333
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When one internalizes multiplication facts, less brainpower is required to perform tasks that
require more complex or successive arithmetic manipulations (Geary, 1999; Geary, Saults, Liu, &
Hoard, 2000). Flexible thinking and conceptual leaps between mathematical concepts are possible
when products are not computed using successive addition or determined by visual inspection of
tables or charts (Royer, 2003). The relationship between factors and products becomes a point of
departure into more challenging mathematics. Beginning every new mathematical step forward
with a return to multiplication as repeated addition or reliance upon visual assistance may
interrupt intuitive mathematical thinking (Goswami, 2008).

Fluid mental computations are thwarted by the needs of working memory necessarily allocated to
ascertaining the product of two factors or, conversely, the factors of a particular product.
Memorizing facts reduces cognitive load, allowing for working memory to better allocate resources
when processing number relationships required by more complex mathematics (Goswami, 2008;
LeFevre, DeStefano, Coleman & Shanahan, 2005).”

| Automaticity is a Gatekeeper to Mathematical Literacy and Academic Success

In a broader scope, Allen-Lyall (2018) also explains how automaticity on math facts is a
gatekeeper to mathematical literacy, which in turn impacts future academic and career

prospects:

“Extending beyond successful school mathematics performance, broader options for college study
and employment opportunity become increasingly likely when one feels confident in one’s
mathematical thinking and is able to demonstrate solid achievement (Atweh & Clarkson, 2001;
Marsh & Hau, 2004; Valero, 2004; Williams & Williams, 2010).

For myriad reasons, facts acquisition becomes an educational gatekeeper to true mathematical
literacy. Consequently, helping children to be successful with this seemingly small element of early
mathematics learning truly matters in a world rife with challenges requiring the mathematical
communication of ideas between and within fields (D’Ambrosio & D’Ambrosio, 1994; Thomas,
2001).”

As other researchers have discovered, the impact on academic achievement begins immediately:
students who are slow on their basic math facts begin falling behind their faster peers as soon as

multi-digit arithmetic (Joy Cumming & Elkins, 2010).

“Profiles of children based on latency performance on the fact bundles were clustered. The slowest
cluster reported use of counting strategies on many bundles; the fastest cluster reported use of
retrieval or efficient-thinking strategies. Cluster group was the best predictor of performance on
multidigit tasks. Addition fact accuracy contributed only for tasks without carrying, and grade
level was not significant. Analysis by error type showed most errors on the multidigit sums were
due to fact inaccuracy, not algorithmic errors. The implication is that the cognitive demands
caused by inefficient solutions of basic facts made the multidigit sums inaccessible.”

In retrospect, beliefs that paint a false dichotomy between automaticity and creativity are not

only factually incorrect, but amusingly ironic. Such beliefs suggest that de-emphasizing


https://www.tandfonline.com/doi/abs/10.1080/135467999387289

206 | The Math Academy Way - Working Draft

repetition promotes creativity as a skill for life success - when in reality, it causes students to
perpetually spend mental bandwidth on low-level tasks that they could have (through repetition)
learned to do automatically, thereby limiting their capacity for higher-level and creative

mathematical thinking, as well as their future academic and career prospects.

Neuroscience of Automaticity

At a physical level in the brain, automaticity involves developing strategic neural connections

that reduce the amount of effort that the brain has to expend to activate patterns of neurons.

Researchers have observed this in functional magnetic resonance imaging (fMRI) brain scans of
participants performing tasks with and without automaticity (Shamloo & Helie, 2016). When a
participant is at wakeful rest, not focusing on a task that demands their attention, there is a
baseline level of activity in a network of connected regions known as the default mode network
(DMN). The DMN represents background thinking processes, and people who have developed

automaticity can perform tasks without disrupting those processes:

“The DMN is a network of connected regions that is active when participants are not engaged in
an external task and inhibited when focusing on an attentionally demanding task ... at the
automatic stage (unlike early stages of categorization), participants do not need to disrupt their
background thinking process after stimulus presentation: Participants can continue day dreaming,
and nonetheless perform the task well.”

When an external task requires lots of focus, it inhibits the DMN: brain activity in the DMN is
reduced because the brain has to redirect lots of effort towards supporting activity in
task-specific regions. But when the brain develops automaticity on the task, it increases
connectivity between the DMN and task-specific regions, and performing the task does not
inhibit the DMN as much:

“..[SJome DMN regions are deactivated in initial training but not after automaticity has
developed. There is also a significant decrease in DMN deactivation after extensive practice.

The results show increased functional connectivity with both DMN and non-DMN regions after
the development of automaticity, and a decrease in functional connectivity between the medial
prefrontal cortex and ventromedial orbitofrontal cortex. Together, these results further support the
hypothesis of a strategy shift in automatic categorization and bridge the cognitive and
neuroscientific conceptions of automaticity in showing that the reduced need for cognitive
resources in automatic processing is accompanied by a disinhibition of the DMN and stronger
functional connectivity between DMN and task-related brain regions.”


https://www.sciencedirect.com/science/article/abs/pii/S0166432816304570
https://en.wikipedia.org/wiki/Default_mode_network
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In other words, automaticity is achieved by the formation of neural connections that promote
more efficient neural processing, and the end result is that those connections reduce the amount
of effort that the brain has to expend to do the task, thereby freeing up the brain to

simultaneously allocate more effort to background thinking processes.
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our

capacity for processing information. Psychological review, 63(2), 81.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental

storage capacity. Behavioral and brain sciences, 24(1), 87-114.

Importance: Human working memory has such limited capacity that most people can only hold a handful of
pieces of new information simultaneously in their heads: about 7 digits, or more generally 4 chunks of

coherently grouped items.

Ayres, P. L. (2001). Systematic mathematical errors and cognitive load. Contemporary
Educational Psychology, 26(2), 227-248.

Importance: Even for tasks within a student’s cognitive capacity, a heavy cognitive load drastically increases
the likelihood of errors.

Ross, P. E. (2006). The expert mind. Scientific American, 295(2), 64-71.

Importance: A typical grandmaster has access to roughly 50,000 to 100,000 chunks of chess information. A
grandmaster can retrieve any of these chunks from memory simply by looking at a chess position, in the same
way that most native English speakers can recite the poem “Mary had a little lamb” after hearing just the first

few words.

Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis.
Memory, 6(3), 225-255.

Importance: Skill in playing chess depends both on (a) recognizing familiar chunks in chess positions while

playing games, and (b) exploring possible moves and evaluating their consequences. Expert memory, in turn


https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://pure.mpg.de/rest/items/item_2364276_4/component/file_2364275/content
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/article/magical-number-4-in-shortterm-memory-a-reconsideration-of-mental-storage-capacity/44023F1147D4A1D44BDC0AD226838496
https://www.researchgate.net/publication/12058826_Systematic_Mathematical_Errors_and_Cognitive_Load
https://personal.utdallas.edu/~otoole/CGS2301_S09/15_expert.pdf
https://bura.brunel.ac.uk/bitstream/2438/1343/1/Copy-Task-NEW-BJP.pdf
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includes slowly acquired structures in long-term memory (retrieval structures, templates) that augment
short-term memory with slots (variable places) that can be filled rapidly with information about the current

position.

Bloom, B. S. (1986). Automaticity: "The Hands and Feet of Genius." Educational leadership,
43(5), 70-77.

Importance: Automaticity was a key theme in Benjamin Bloom’s research on talent development and was

described as the “hands and feet of genius” as early as the 19th century.

Kellogg, R. T., & Whiteford, A. P. (2009). Training advanced writing skills: The case for
deliberate practice. Educational Psychologist, 44(4), 250-266.

Importance: In the field of writing, the importance of automaticity is supported by an overwhelming amount of
research over at least the past half-century. Serious, effective composition places burdensome demands on
working memory. In order to free the components of working memory for planning, generating, and reviewing,
students must learn the mechanics of writing to the point that they are automatic during primary school years.

The writer cannot be mindful of the whole while struggling with the parts.

Allen-Lyall, B. (2018). Helping students to automatize multiplication facts: A pilot study.
International Electronic Journal of Elementary Education, 10(4), 391-396.

Importance: Facts acquisition is an educational gatekeeper to true mathematical literacy. Internalized facts
allow for efficient mental computations that make easier multi-step problem solving or recognizing and making
connections between mathematical concepts. Memorizing facts reduces cognitive load, allowing for working
memory to better allocate resources when performing tasks that require more complex or successive

manipulations.

Joy Cumming, J., & Elkins, J. (1999). Lack of automaticity in the basic addition facts as a
characteristic of arithmetic learning problems and instructional needs. Mathematical
Cognition, 5(2), 149-180.

Importance: The impact of automaticity on academic achievement begins immediately: students who are slow

on their basic math facts begin falling behind their faster peers as soon as multi-digit arithmetic.


https://files.ascd.org/staticfiles/ascd/pdf/journals/ed_lead/el_198602_bloom.pdf
https://hillkm.com/EDUC_715/Unit_6/kellogg_whiteford_2009.pdf
https://hillkm.com/EDUC_715/Unit_6/kellogg_whiteford_2009.pdf
https://iejee.com/index.php/IEJEE/article/download/325/333
https://www.tandfonline.com/doi/abs/10.1080/135467999387289
https://www.tandfonline.com/doi/abs/10.1080/135467999387289
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e Shamloo, F., & Helie, S. (2016). Changes in default mode network as automaticity develops in

a categorization task. Behavioural Brain Research, 313, 324-333.

Importance: Automaticity is achieved by the formation of neural connections that promote more efficient
neural processing, and the end result is that those connections reduce the amount of effort that the brain has to
expend to do the task, thereby freeing up the brain to simultaneously allocate more effort to background
thinking processes.


https://www.sciencedirect.com/science/article/abs/pii/S0166432816304570
https://www.sciencedirect.com/science/article/abs/pii/S0166432816304570
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Chapter 15. Layering

Summary: Layering is the act of continually building on top of existing knowledge - that is,
continually acquiring new knowledge that exercises prerequisite or component knowledge. This
causes existing knowledge to become more ingrained, organized, and deeply understood, thereby
increasing the structural integrity of a student’s knowledge base and making it easier to assimilate
new knowledge. To reap the benefits of layering, Math Academy moves students forward to new
topics immediately after they demonstrate mastery of prerequisites, and employs a

highly-connected curriculum where new topics exercise and build on earlier topics.

Facilitation and Structural Integrity

| Facilitation

As students learn progressively more advanced material, they reinforce and deepen their
foundational knowledge. In academic literature, this is known as facilitation: when a new task

exercises knowledge learned in a prior task, learning can be facilitated in two ways:

® (Retroactive Facilitation) The new task can restore memory of prior knowledge to the same
extent as identical repetition of the prior task, leading to long-lasting retention (Ausubel,
Robbins, & Blake, 1957; Arzi, Ben-Zvi, & Ganiel, 1985).

® (Proactive Facilitation) Knowledge acquired during the prior task can improve the

acquisition of knowledge that is specific to the new task (Arzi, Ben-Zvi, & Ganiel, 1985).

As a concrete example, consider that multiplication is a component skill in both long division
and exponentiation. When you learn long division, you also practice the more basic skill of
multiplication, which not only reinforces your knowledge of multiplication (retroactive
facilitation), but also makes it easier for you to learn how to compute exponents (proactive

facilitation).


https://psycnet.apa.org/record/1959-02050-001
https://psycnet.apa.org/record/1959-02050-001
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
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To take advantage of facilitation, it is necessary to continually layer on top of existing
knowledge - that is, continually acquire new knowledge that exercises prerequisite or
component knowledge. In general, the more connections (neural, cognitive, social, and
experiential) there are to a piece of knowledge, the more ingrained, organized, and deeply
understood it is (Cross, 1999), and the easier it is to recall via spreading activation through
connections. The most efficient way to increase the number of connections to existing

knowledge is to continue layering on top of it.

| Structural Integrity

Layering produces structural integrity, a well-known engineering concept that also applies to
knowledge (the underlying structure of one’s knowledge is known as their schema). When
advanced features are built on top of a system, they sometimes fail in ways that reveal
previously-unknown foundational weaknesses in the underlying structure. This forces engineers
to fortify the underlying structure so that the system can accommodate new elements without

compromising its integrity.

Fortifying the underlying structure often requires improving its organization and elegance,

which, when applied to student schemas, produces deep understanding and insight. When the


https://files.eric.ed.gov/fulltext/ED432314.pdf
https://files.eric.ed.gov/fulltext/ED432314.pdf
https://en.wikipedia.org/wiki/Spreading_activation
https://en.wikipedia.org/wiki/Structural_integrity_and_failure
https://en.wikipedia.org/wiki/Schema_(psychology)
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structural integrity of a system is increased, it also becomes easier to add more advanced
features in general. In the same way, when the structural integrity of a student’s schema is

increased, it becomes easier to assimilate new knowledge in general.

How We Layer

To reap the benefits of layering, Math Academy employs two key features:

1. Moving students forward to new topics immediately after they demonstrate mastery of

prerequisites.
2. A highly-connected curriculum where new topics exercise and build on earlier topics.

After a student completes a lesson on Math Academy, new lessons are immediately unlocked.
The student will later review what they learned in the lesson that they completed, but they are
not “held back” to practice already-learned topics any more than is necessary. This stands in
contrast to traditional classrooms, where students are often tethered to the pace of the class and
prevented from learning more advanced concepts that come later in the class schedule or in a

higher grade level, even though they have already mastered the prerequisites.

Additionally, Math Academy’s curriculum is intentionally structured so that earlier topics are

applied and reinforced in higher-level topics. We have

e advanced application topics that transition students from purely mathematical framings

to contexts involving word problems,
e topics that explicitly teach non-obvious connections between other topics, and

e multi-part problems that pull together many earlier topics to explore a challenging,

complex problem context one part at a time.

A high degree of connectivity also arises naturally from our principle that any lesson should cover

all types of problems that a student could reasonably be expected to solve if they truly know the topic.

It’s worth noting that unlike Math Academy, many other educational resources violate this
principle and consequently lose out on the benefits of layering because their advanced topics do

not actually exercise and build on earlier topics. For instance, some watered-down calculus
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courses steer clear of any kinds of problems that involve extensive algebra, only covering the
simplest cases possible. As a result, students in those courses are not only unable to solve
standard problems outside the tiny sandbox of the course, but they also do not fortify their
foundations, which can lead them to forget lots of lower-level math despite taking a higher-level

math course.
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).
Ausubel, D. P., Robbins, L. C., & Blake Jr, E. (1957). Retroactive inhibition and facilitation in
the learning of school materials. Journal of Educational Psychology, 48(6), 334.
Importance: When a new task exercises knowledge from a previous task, the new task can improve memory of
that knowledge as much as identical repetition of the original task.
Arzi, H. J., Ben-Zvi, R., & Ganiel, U. (1985). Proactive and retroactive facilitation of long-term

retention by curriculum continuity. American educational research journal, 22(3), 369-388.

Importance: Layering improves retention of prior knowledge and acquisition of new knowledge. Consequently,
a program composed of a hierarchical sequence of learning units is superior to a discontinuous array of discrete

courses.

Cross, K. P. (1999). Learning is about making connections. The Cross Papers; 3.

Importance: The more connections there are to a piece of knowledge, the more ingrained, organized, and

deeply understood it is, and the easier it is to recall.


https://psycnet.apa.org/record/1959-02050-001
https://psycnet.apa.org/record/1959-02050-001
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://files.eric.ed.gov/fulltext/ED432314.pdf
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Chapter 16. Non-Interference

Summary: Associative interference occurs when related knowledge interferes with recall. It is
more likely to occur when highly related pieces of knowledge are learned simultaneously or in
close succession. However, Math Academy mitigates the effects of interference by teaching
dissimilar concepts simultaneously and spacing out related pieces of knowledge over time. This
reduces confusion, enhances recall, and facilitates efficient, simultaneous learning of multiple
topics, promoting smooth, rapid progress in courses while maintaining varied and engaging

learning experiences.

Associative Interference

Associative interference describes the phenomenon that conceptually related pieces of
knowledge can interfere with each other’s recall. For instance, it is easy to mistake a leopard for

a cheetah.

The same happens in math. Multiple studies have shown that well over half, and potentially as
high as 90%, of multiplication mistakes are caused by interference (see Campbell, 1987 for a
summary). For instance, when recalling 4 x 8, related facts like 4 x 6 = 24 and 3 x 8 = 24 interfere
with the spreading activation during the recall process and increase the likelihood of the error 4
x 8 = 24. (This phenomenon occurs throughout math - multiplication facts are just a convenient

setting for academic studies.)


https://en.wikipedia.org/wiki/Associative_interference
https://www.researchgate.net/profile/Jamie-Campbell-12/publication/247981688_The_role_of_associative_interference_in_learning_and_retrieving_arithmetic_facts/links/56b298f908ae795dd5c7d2cc/The-role-of-associative-interference-in-learning-and-retrieving-arithmetic-facts.pdf
https://en.wikipedia.org/wiki/Spreading_activation
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While it is not possible for a teacher to change the structure of knowledge to make different
pieces of information less related, further research in interference theory has revealed a factor
that can be controlled by a teacher to reduce the impact of interference: time spacing. In a study
by Underwood & Ekstrand (1967):

“2 groups learned A-B for 32 trials, learned A-C to one perfect recitation 3 days later, and
recalled A-C after 24 hr. 2 other groups learned both lists in immediate succession followed by
24-hr, recall of A-C. 1 group from each schedule had 6 A-B pairs retained in A-C. The results
showed that the 3-day separation of A-B and A-C markedly reduced proactive inhibition ...”

In other words, interference is more likely to occur when highly related pieces of knowledge are
learned simultaneously or in close succession - but by spacing out these related pieces of
knowledge over time, a teacher can mitigate the effects of interference. We call this strategy

non-interference.

Unfortunately, traditional classrooms ignore the benefits of non-interference and instead
operate in a way that exacerbates the problem. The typical math curriculum is divided into units

of related material and taught in subsequent lessons. This promotes confusion, impedes recall,


https://en.wikipedia.org/wiki/Interference_theory
https://www.researchgate.net/publication/17503018_Effect_of_temporal_separation_of_two_tasks_on_proactive_inhibition

The Math Academy Way - Working Draft | 219

and places a severe bottleneck on how many topics can be successfully taught simultaneously,

thereby creating lots of friction and massively slowing down the learning process.

Math Academy, however, practices non-interference by teaching new concepts alongside
dissimilar material. Students are allowed to choose from an array of diverse, non-overlapping
learning tasks. As they complete tasks, their knowledge graphs are updated and the system
chooses new topics to guide them most efficiently through the course. By utilizing
non-interference, Math Academy reduces confusion, improves recall, and successfully teaches
many topics simultaneously, thereby enabling students to make smooth, fast progress through

their courses.

What’s more, non-interference also helps keep Math Academy’s learning tasks varied and
exciting for students. Learning can feel like a grind when you are made to focus on the same
types of concepts and problems for a long time, just like exercising can feel like a grind if the
entire workout consists of a single exercise (especially if it’s one of your least favorite exercises).
So, just like a personal trainer packs a wide variety of exercises into each workout to maintain
motivation, Math Academy packs a wide variety of topics into each learning session to keep

things exciting.
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Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

e Campbell, J. 1. (1987). The role of associative interference in learning and retrieving

arithmetic facts. Cognitive processes in mathematics, 107-122.

Importance: Multiple studies have shown that well over half, and potentially as high as 90%, of multiplication
mistakes are caused by interference. (For instance, when recalling 4 x 8, related facts like 4 x 6 =24 and 3 x 8 =
24 interfere and increase the likelihood of the error 4 x 8 = 24.)

e Underwood, B. J.,, & Ekstrand, B. R. (1967). Studies of distributed practice: XXIV.
Differentiation and proactive inhibition. Journal of Experimental Psychology, 74(4p1), 574.

Importance: Interference is more likely to occur when highly related pieces of knowledge are learned
simultaneously or in close succession. By spacing out these related pieces of knowledge over time, a teacher can

mitigate the effects of interference.


https://www.researchgate.net/profile/Jamie-Campbell-12/publication/247981688_The_role_of_associative_interference_in_learning_and_retrieving_arithmetic_facts/links/56b298f908ae795dd5c7d2cc/The-role-of-associative-interference-in-learning-and-retrieving-arithmetic-facts.pdf
https://www.researchgate.net/profile/Jamie-Campbell-12/publication/247981688_The_role_of_associative_interference_in_learning_and_retrieving_arithmetic_facts/links/56b298f908ae795dd5c7d2cc/The-role-of-associative-interference-in-learning-and-retrieving-arithmetic-facts.pdf
https://psycnet.apa.org/record/1967-13023-001
https://psycnet.apa.org/record/1967-13023-001
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Chapter 17. Spaced Repetition (Distributed Practice)

Summary: When reviews are spaced out or distributed over multiple sessions (as opposed to being
crammed or massed into a single session), memory is not only restored, but also further
consolidated into long-term storage, which slows its decay. This is known as the spacing effect. A
profound consequence of the spacing effect is that the more reviews are completed (with
appropriate spacing), the longer the memory will be retained, and the longer one can wait until the
next review is needed. This observation gives rise to a systematic method for reviewing
previously-learned material called spaced repetition (or distributed practice). A repetition is a
successful review at the appropriate time. Spaced repetition is complicated in hierarchical bodies
of knowledge, like mathematics, because repetitions on advanced topics should “trickle down” to
update the repetition schedules of simpler topics that are implicitly practiced (while being
discounted appropriately since these repetitions are often too early to count for full credit towards
the next repetition). However, Math Academy has developed a proprietary model of Fractional
Implicit Repetition (FIRe) that not only accounts for implicit “trickle-down” repetitions but also
minimizes the number of reviews by choosing reviews whose implicit repetitions “knock out” other
due reviews (like dominos), and calibrates the speed of the spaced repetition process to each
individual student on each individual topic (student ability and topic difficulty are competing
factors).

Retaining Knowledge Indefinitely

| The Spacing Effect

Learning new topics is only half of the puzzle. The other half is remembering what you've
learned. In order to retain knowledge, you must periodically review it - otherwise, in the

absence of review, it will decay.

A common way to visualize memory decay is through a forgetting curve, first studied by

psychologist Hermann Ebbinghaus in the late 19th century:


https://en.wikipedia.org/wiki/Forgetting_curve
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Ebbinghaus (1885) discovered that when reviews are spaced out or distributed over multiple
sessions (as opposed to being crammed or massed into a single session), memory is not only
restored, but also further consolidated into long-term storage, which slows its decay. This is

now known as the spacing effect.

| Spaced Repetition

A profound consequence of the spacing effect is that the more reviews are completed (with
appropriate spacing), the longer the memory will be retained, and the longer one can wait until
the next review is needed. This observation gives rise to a systematic method for reviewing
previously-learned material called spaced repetition (or distributed practice). A repetition is a

successful review at the appropriate time.

Here is an example that illustrates the process and power of spaced repetition. Suppose you
learn a new word. Initially, you might only remember that word for a day. But if you quiz
yourself on its meaning tomorrow, then you might remember it until the end of the week. And if
you quiz yourself again at the end of the week, then you might remember for several weeks. If
you stick to this spaced repetition schedule, then you’ll eventually be able to go many years

between repetitions (Bahrick et al., 1993).


https://psychclassics.yorku.ca/Ebbinghaus/index.htm
https://en.wikipedia.org/wiki/Memory_consolidation
https://en.wikipedia.org/wiki/Spacing_effect
https://en.wikipedia.org/wiki/Spaced_repetition
https://en.wikipedia.org/wiki/Distributed_practice
https://www.academia.edu/download/92264667/1993-bahrick.pdf
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The main challenge of spaced repetition is choosing the optimal amount of time between
repetitions. If you wait too long, you will forget the word and move backwards in your spaced
repetition schedule. But if you perform the next repetition too early, your memory won’t

strengthen as much and you won’t move forward as quickly.

| Building Intuition About Spaced Repetition

As Qadir & Imran (2018) describe, spaced repetition can be understood intuitively by way of

analogy to muscle-building:

“..[MJassed learning can give temporary fluency, just like a body builder can pump muscles
temporarily by cramming exercises. However, growth only occurs with a spaced exercise routine (in
which exercise and rest follow each other cyclically). Similarly, long-term learning also requires
spaced practice and does not result from cramming.”

As Brown, Roediger, & McDaniel (2014, pp.9-10, 81-82, 100-101) elaborate:

“It’s widely believed by teachers, trainers, and coaches that the most effective way to master a new
skill is to give it dogged, single-minded focus, practicing over and over until you’ve got it down.


https://eprints.gla.ac.uk/147253/7/147253.pdf
https://www.hup.harvard.edu/books/9780674729018
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Our faith in this runs deep, because most of us see fast gains during the learning phase of massed
practice. What’s apparent from the research is that gains achieved during massed practice are
transitory and melt away quickly.

Massed practice gives us the warm sensation of mastery because we’re looping information
through short- term memory without having to reconstruct the learning from long-term memory.
But just as with rereading as a study strategy, the fluency gained through massed practice is
transitory, and our sense of mastery is illusory. It’s the effortful process of reconstructing the
knowledge that triggers reconsolidation and deeper learning.

When you recall learning from short- term memory, as in rapid- fire practice, little mental effort is
required, and little long-term benefit accrues. But when you recall it after some time has elapsed
and your grasp of it has become a little rusty, you have to make an effort to reconstruct it. This
effortful retrieval both strengthens the memory but also makes the learning pliable again, leading
to its reconsolidation. Reconsolidation helps update your memories with new information and
connect them to more recent learning.”

The process of reconsolidation can be likened (pp.73-74) to the process of composing an essay

through many iterations:

“An apt analogy for how the brain consolidates new learning may be the experience of composing
an essay. The first draft is rangy, imprecise. You discover what you want to say by trying to write
it. After a couple of revisions you have sharpened the piece and cut away some of the extraneous
points. You put it aside to let it ferment. When you pick it up again a day or two later, what you
want to say has become clearer in your mind. Perhaps you now perceive that there are three main
points you are making. You connect them to examples and supporting information familiar to
your audience. You rearrange and draw together the elements of your argument to make it more
effective and elegant.

Similarly, the process of learning something often starts out feeling disorganized and unwieldy; the
most important aspects are not always salient. Consolidation helps organize and solidify learning,
and, notably, so does retrieval after a lapse of some time, because the act of retrieving a memory
from long- term storage can both strengthen the memory traces and at the same time make them
modifiable again, enabling them, for example, to connect to more recent learning. This process is
called reconsolidation. This is how [spaced] retrieval practice modifies and strengthens learning.”

| Consensus Among Researchers

It’s worth noting that the spacing effect is still an active area of research. As Hartwig, Rohrer, &
Dedrick (2022) describe, there may be other factors at play besides reconsolidation - but while
the exact mechanism(s) underlying the spacing effect may still be debated, the result and utility

of the spacing effect is fully agreed upon by researchers:

“Researchers have proposed numerous theoretical explanations for the spacing effect (for reviews,
see Benjamin & Tullis, 2010; Delaney et al., 2010; Dempster, 1989). According to various theories,
the spacing effect may derive from mechanisms such as encoding variability (i.e., contextual
variation provides richer encoding when two learning episodes are spaced apart), deficient


https://psycnet.apa.org/manuscript/2022-18497-001.pdf
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processing (i.e., processing of material during a second learning episode is diminished if close in
time to the first episode), consolidation (i.e., a second learning episode benefits from any memory
consolidation that occurs in the interim), or study-phase retrieval (i.e., spacing promotes effortful
retrieval during a second learning episode). However, no single mechanism has accounted for the
entire body of spacing-related findings, and it is possible that a combination of mechanisms may
best explain the effect (Delaney et al., 2010).

Regardless of mechanism, spacing effects are robust - occurring across various materials,
procedures, and learner characteristics (Dunlosky et al., 2013). Most important for the present
study, spacing effects have been demonstrated in numerous classroom-based randomized studies
(e.g., Seabrook et al., 2005; Sobel et al., 2011; for a review, see Dunlosky et al., 2013). Moreover,
classroom studies have found spacing effects with math learning (Barzagar Nazari & Ebersbach,
2019; Hopkins et al., 2016; Lyle et al., 2020; Schutte et al., 2015). In short, considerable data show
that spaced math practice improves scores on delayed tests. ... [T]he literature is clear that practice
should be spaced across many class sessions if students are to retain the information long-term
(Rawson et al., 2013; Rawson et al., 2018).”

As Rohrer (2009) states:

“..[T]he spacing effect is arguably one of the largest and most robust findings in learning research,
and it appears to have few constraints.”

Indeed, according to researcher Kang (2016), hundreds of studies have demonstrated that spaced
repetition produces superior long-term retention. As a memorable example, he describes one of
the earliest spaced repetition studies, whose findings have been backed up by 254 follow-up

studies over the past century:

“In one early study, to illustrate a specific instance, college students were asked to learn the
Athenian Oath (Gordon, 1925). One group of students heard the oath read 6 times in a row;
another group heard the oath 3 times on 1 day and 3 more times 3 days later.

On the immediate test, the group that received massed repetition recalled slightly more than the
group that received spaced repetition. But on the delayed test 4 weeks later, the spaced group
clearly outperformed the massed group.

While massed practice might appear [slightly] more effective than spaced practice in the short
term, spaced practice produces durable long-term learning.”

The benefits of spacing are so pronounced and conclusive that they have even attracted
attention from the field of advertising, where the spacing effect has been reproduced in

numerous studies of consumer memory of brands (Schmidt & Eisend, 2015).


http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://www.teachinghowtolearn.veritytest.com.au/verity/uploads/2021/08/Policy-Insights-from-the-Behavioral-and-Brain-Sciences-2016-Kang-12-9.pdf
https://www.tandfonline.com/doi/full/10.1080/00913367.2015.1018460
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Spaced Repetition is Underused

Unfortunately, as with mastery learning, spaced repetition deviates from traditional convention

in education and consequently remains rarely used in classrooms. As Kang (2016) laments:

“Despite over a century of research findings demonstrating the spacing effect, however, it does not
have widespread application in the classroom. The spacing effect is ‘a case study in the failure to
apply the results of psychological research’ (Dempster, 1988, p. 627).

When deciding on what instructional techniques to use (and when to use them), many teachers
default to familiar methods (e.g., how they themselves were taught; Lortie, 1975) or rely on their
intuitions, both less than ideal: Our intuitions about learning can sometimes be plain wrong, and
it would be a waste to overlook the growing evidence base regarding the effectiveness of various
teaching or learning strategies.

The second major hurdle is conventional instructional practice, which typically favors massed
practice. Teaching materials and aids (e.g., textbooks, worksheets) are usually organized in a
modular way, which makes massed practice convenient. After presenting a new topic in class,
teachers commonly give students practice with the topic via a homework assignment. But aside
from that block of practice shortly after the introduction of a topic, no further practice usually
follows, until a review session prior to a major exam.”

Perhaps shockingly, Cepeda et al. (2009) observed that even many instructional design and
educational psychology textbooks have little to no coverage of spaced repetition as a learning

strategy:

“Failure to consider distributed practice research is evident in instructional design and
educational psychology texts, many of which fail even to mention the distributed practice effect
(e.g., Bransford, Brown, & Cocking, 2000; Bruning, Schraw, Norby, & Ronning, 2004; Craig, 1996;
Gardner, 1991; Morrison, Ross, & Kemp, 2001; Piskurich, Beckschi, & Hall, 2000).

Those texts that mention the distributed practice effect often devote a paragraph or less to the
topic (e.g., Glaser, 2000; Jensen, 1998; Ormrod, 1998; Rothwell & Kazanas, 1998; Schunk, 2000;
Smith & Ragan, 1999) and offer widely divergent suggestions - many incorrect — about how long
the lag between study sessions ought to be (cf. Gagné, Briggs, & Wager, 1992; Glaser, 2000; Jensen,
1998; Morrison et al., 2001; Ormrod, 2003; Rothwell & Kazanas, 1998; Schunk, 2000; Smith &
Ragan, 1999).”

Typically, students learn a topic during class, practice it on the homework, and then forget
about it until it’s time to study for a test. After the test, students are rarely required to practice
the topic again, unless it just happens that some new topic requires them to remember the old
one. The end result is that students end up forgetting most of what they learn - and as Rohrer
(2009) notes, the forgetting can be so severe that it can appear as though they never learned

those things in the first place:


https://www.teachinghowtolearn.veritytest.com.au/verity/uploads/2021/08/Policy-Insights-from-the-Behavioral-and-Brain-Sciences-2016-Kang-12-9.pdf
https://escholarship.org/content/qt1n15d7xr/qt1n15d7xr.pdf
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
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“The effects of forgetting are often neglected by learning theorists, but acquisition has little utility
unless material is retained. Indeed, although poor performance on standard achievement tests is
often attributed to the absence of acquisition, forgetting may often be the culprit.

For example, in the 1996 National Assessment of Educational Progress, 50% of U.S. eighth
graders were unable to correctly multiply -5 and -7, even though the question was presented in a
multiple-choice format (Reese, Miller, Mazzeo, & Dosse, 1997). If any of these erring students
knew the product previously, which seems likely, their error was likely due to forgetting.”

Often, students don’t even realize how quickly they forget in the absence of spaced review. For
instance, Emeny, Hartwig, & Rohrer (2021) found that students who engaged in spaced practice
could predict their own future test scores fairly accurately, while students who engaged in

massed practice were severely overconfident in their predictions:

“Following spaced practice, students predicted their future test scores very accurately, whereas
massed practice yielded gross overconfidence. The overconfidence after massed practice might be
due to the fluency or success with which students can solve a set of similar problems by merely
repeating the same procedure over and over, giving the impression that students have mastered the
content. In turn, overconfidence may lead students and their teachers to believe that further
practice is unnecessary when, in fact, the gains will not be retained across time.

Though massed practice produced overconfidence, we note that predictions following massed
practice were only slightly greater than predictions following spaced practice. Thus, massed
practice did not elevate predictions to an unrealistically high level but instead failed to help
students recognize their low level of mastery.”

Another factor keeping spaced repetition out of STEM classrooms in particular is that, to our
best knowledge, the current literature on mathematical models for determining optimal
repetition spacing is limited to the setting of independent flashcard-like tasks. STEM subjects,
in contrast, are highly connected bodies of knowledge. This introduces significant modeling
complexities: for instance, repetitions on advanced topics should “trickle down” to update the
repetition schedules of simpler topics that are implicitly practiced (while being discounted
appropriately since these repetitions are often too early to count for full credit towards the next

repetition).

To overcome this hurdle, Math Academy has developed a proprietary model of Fractional
Implicit Repetition (FIRe) that not only accounts for implicit “trickle-down” repetitions but

also

e minimizes the number of reviews by choosing reviews whose implicit repetitions “knock

out” other due reviews (like dominos), and


https://files.eric.ed.gov/fulltext/ED611846.pdf
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e calibrates the spaced repetition process to each individual student on each individual
topic (student ability and topic difficulty are competing factors - high student ability
speeds up the overall student-topic learning speed, while high topic difficulty slows it

down).

Our highly sophisticated spaced repetition model is the product of years of research, practice,
and development since 2019, and it continues to be refined as we gain more data on student

learning outcomes.

Spaced Repetition Improves Generalization

People usually think of spaced repetition as a process to remember isolated pieces of
information. But in a highly connected body of complex skills, like math, spaced repetition can

also promote generalized learning that can more easily transfer across different contexts.

To start off with some loose intuition, think about what happens when you reread a book or
rewatch a movie that you haven’t seen in a while. Often, you see things that you didn’t notice
before. You come in with a different mental state compared to the last time you watched, and
you come out with some fresh perspectives and a more comprehensive understanding of the

work.

Indeed, a review by Smith & Scarf (2017) recounted multiple studies demonstrating that “spacing

not only benefits the learning and retention of specific items but improves the generalization of learning”

“Hagman (1980) had participants learn and practice electrical testing on the same equipment or
different equipment, with practice massed all in 1 day or spaced on 3 consecutive days. On a
transfer test after a 2-week delay, spaced practice on different equipment resulted in better
transfer than spaced practice on the same equipment. Spaced practice on the same equipment
resulted in better performance on the transfer test than massed practice on the same or different
equipment. Moreover, massed practice on the same or different equipment resulted in equivalent
performance on the transfer test, indicating that spacing was necessary for training variations to
promote generalization.

Similarly, Moulton et al. (2006) compared massed and spaced groups who practiced microsurgical
skills on PVC-artery models and arteries from a turkey thigh, and tested to what extent their skills
transferred to a live rat 1 month after training. Moulton et al. (2006) found that the spaced group
performed significantly better on a variety of outcome measures than the massed group.

Studies with children have investigated the impact of spacing on generalization using a greater
range of spacing intervals relative to the adult literature. For example, Vlach and Sandhofer
(2012) investigated the impact of spacing on the generalization of simple and complex science
concepts in 5- to 7-year-olds. The children in their study completed 4 lessons on biomes, with


https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00962/full
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each lesson involving a different context (desert, grasslands, artic, ocean or swamp), and a
post-test 1 week after the last lesson. The massed group completed all four lessons in 1 day, the
intermediate group completed 2 lessons per day for 2 days, and the Spaced Group completed 1
lesson per day for 4 days. For simple generalization, the spaced group showed significantly greater
improvement from the pre- to post-test than the massed group, and the intermediate group’s
improvement was not significantly different when compared to the massed or spaced groups. In
contrast, for complex generalization, the spaced group’s improvement was significantly better than
both the massed and intermediate groups. In fact, the data suggest that the spaced group is the
only group to show an improvement in their gain scores as the questions moved from simple to
complex, though unfortunately this trend was not tested for statistical significance. Spacing
therefore may provide a greater benefit for more complex generalizations.

Gluckman et al. (2014) replicated Vlach and Sandhofer’s (2012) findings, but in the post-test they
included questions on the children’s memory for facts and concepts talked about during the
lessons (e.g., what is a biome?), in addition to generalization questions. The spaced group showed
significantly greater improvement than the massed group for simple and complex generalization
questions and for memory questions. The reported means displayed the same pattern as above,
with spacing benefiting complex generalizations more than simple generalizations.”

In a follow-up study, Vlach, Sandhofer, & Bjork (2014) also found that higher-fidelity spaced
repetition with expanding intervals promoted even better generalization than spaced repetition
with constant intervals, suggesting that optimizing the spaced repetition process can lead to

significant gains in generalization:

“..[Wle examined whether an expanding learning schedule would promote generalization to a
greater degree than would an equally spaced learning schedule ... [A]t the 24-hour delayed
generalization test, we observed a significant difference between the two conditions: Children in
the expanding learning condition significantly outperformed children in the equal spacing
condition.

These findings suggest that the benefits of expanding schedules are not constrained to memory
tasks, but that these learning schedules can promote multiple types of learning, such as the
acquisition and generalization of information.”


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995866/
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Repetition Compression

A common criticism of spaced repetition is that it requires an overwhelming number of reviews.
While this can be true if spaced repetition is used to learn unrelated flashcards, there is
something special about the subject of mathematics that allows Math Academy to avoid this

issue.

Unlike independent flashcards, mathematics is a hierarchical and highly connected body of
knowledge. Whenever a student solves an advanced mathematical problem, there are many
simpler mathematical skills that they practice implicitly. In other words, in mathematics,

advanced skills tend to encompass many simpler skills.

As a result, whenever a student has due reviews, Math Academy is able to compress them into a
much smaller set of learning tasks that implicitly covers (i.e. provides repetitions on) all of the

due reviews. We call this process repetition compression.

To illustrate, consider the following multiplication problem, in which we multiply the two-digit

number 39 by the one-digit number 6:
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5
39

X 6
234

In order to perform the multiplication above, we have to multiply one-digit numbers and add a

one-digit number to a two-digit number:
e First, we multiply 6 x 9 = 54. We carry the 5 and write the 4 at the bottom.
e Then, we multiply 6 x 3 = 18 and add 18 + 5 = 23. We write 23 at the bottom.

In other words, Multiplying a Two-Digit Number by a One-Digit Number encompasses Multiplying
One-Digit Numbers and Adding a One-Digit Number to a Two-Digit Number.

We can visualize this using an encompassing graph as shown below. The encompassing graph
is similar to a prerequisite graph, except the arrows indicate that a simpler topic is encompassed
by a more advanced topic. (Encompassed topics are usually prerequisites, but prerequisites are

often not fully encompassed.)

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Multiplying One-
Digit Numbers

Adding One-
Digit Numbers to
Two-Digit Numbers

Now, suppose that a student is due for reviews on all three of these topics. Because of the

encompassings, the only review that they will actually have to do is Multiplying a Two-Digit
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Number by a One-Digit Number. When they complete this review, it will implicitly provide
repetitions on the topics that it encompasses because the student has effectively practiced those

skills as well.

Explicit
Review

Explicit
Review

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Implicit

9 Review

Multiplying One-
Digit Numbers

Multiplying One-
Digit Numbers

Implicit
Review

Adding One-
Digit Numbers to
Two-Digit Numbers

Adding One-
Digit Numbers to
Two-Digit Numbers

In general, the more encompassings there are, the fewer reviews are actually required. And

mathematics has lots of encompassings!

Calibrating to Individual Students and Topics

As discussed in chapter 7, the speed at which students learn (and remember what they’ve
learned) varies from student to student. It has been shown that stronger students learn faster
and remember longer, while weaker students learn slower and forget more quickly (Kyllonen &
Tirre, 1988). Similarly, learning speed also varies across topics: easier topics are learned faster

and remembered longer, while harder topics take longer to learn and are forgotten more quickly.

So, for each student, each topic has a learning speed that depends on the student’s ability and
the topic’s difficulty. Math Academy computes these student-topic learning speeds and uses

them to adjust the speed of the spaced review process.

e For instance, if a student does a review on a topic for which their learning speed is 2x,

then that review counts as being worth 2 spaced repetitions.

e Likewise, if a student does a review on a topic for which their learning speed is 0.5x, then

that review counts as being worth 0.5 spaced repetitions.


https://apps.dtic.mil/sti/pdfs/ADA212765.pdf
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Student-topic learning speeds are also considered within the fractional implicit repetition
algorithm. Whenever a topic’s spaced repetition process is being slowed down (i.e. whenever the
student-topic learning speed is less than 1), we also shut down all incoming implicit repetition
credit and instead force explicit reviews. The topic does not receive any implicit repetition

credit that would normally “trickle down” from more advanced topics that encompass it.

We do this because, in practice, weaker students often have trouble absorbing implicit
repetitions on difficult topics - they have a harder time generalizing that “what I learned earlier

is a special case (or component) of what I'm learning now." The decision of whether or not to
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force explicit reviews is based on the student-topic learning speed because when a topic’s
spaced repetition process is being slowed down, it indicates that the topic is considered rather
difficult relative to the student’s ability.

Spaced Repetition vs Spiraling

Some curricula adopt a spiral approach where material is naturally revisited and further built
upon in later textbook chapters and/or grades. Spiraling is clearly an improvement over the
default mode of instruction, which includes little to no systematic review - and it allows
teachers to make use of the spacing effect to some extent while teaching manually at a group
level without the assistance of technology. However, spiraling is still nowhere near the level of
granularity, precision, and individualization that is required to capture the maximum benefit of

true spaced repetition.

Note that while spiraling is sometimes conflated with discovery learning (both are widely
attributed to psychologist Jerome Bruner in the 1960s), these are really two separate ideas, the
latter of which we do not intend to endorse. There are plenty of spiral curricula (e.g., Saxon Math)
that leverage direct instruction instead of discovery learning. The discussion here shall be
concerned purely with the extent to which spiraling leverages the spacing effect, not the method

by which instruction is delivered.

To understand the difference between spiraling and spaced repetition, it helps to visualize the
corresponding forgetting curves. We start with the default mode of instruction, in which large
groups of related material are covered all at once and are not systematically revisited in the
future. Under this mode of instruction, students quickly forget what they learn, and their overall

retention is extremely low.

Default: no systematic review

100%

overall
retention - +

0%



https://en.wikipedia.org/wiki/Spiral_approach
https://en.wikipedia.org/wiki/Saxon_math
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By periodically revisiting content, a spiral curriculum periodically restores forgotten knowledge
and leverages the spacing effect to slow the decay of that knowledge. This raises students’
overall retention of what they have learned. To illustrate, a forgetting curve for a spiral

curriculum with two spirals is shown below:

Spiral Curriculum: periodically revisiting content
Spiral #1 Spiral #2

100%

overall _ |
retention

0%

Spiral #2 —

Spiral #1 —

Spaced repetition takes this line of thought to its fullest extent by fully optimizing the review
process. It precisely calibrates the spacing of reviews so as to maintain a consistently high level
of retention and slow down the decay (i.e. stretch out the decay curves) as quickly as possible.
Review spacing continually adapts to student performance, expanding in response to good
performance and shrinking in response to poor performance. By optimizing the review process
to the fullest extent, spaced repetition further raises students’ retention of what they have

learned.
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Spaced Repetition: fully-optimized minimum effective doses of review
]

100%

overall _ |
retention

0%

However, while spaced repetition is more optimal, it requires an inhuman amount of work from
the instructor. Taken to its fullest extent, spaced repetition requires the instructor to keep track
of a repetition schedule for every topic for every student and continually update that schedule
based on the student’s performance - and each time a student learns (or reviews) an advanced
topic, they’re implicitly reviewing many simpler topics, all of whose repetition schedules need to

be adjusted as a result.

In this view, spiraling can be characterized as “the best an instructor can do” manually while
teaching at a group level without the assistance of technology. Spaced repetition is the optimal
solution to maximizing retention, but it is infeasible to perform spaced repetition manually, so
spiraling is the next-best option that an instructor can actually perform without the assistance

of technology.
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Chapter 18. Interleaving (Mixed Practice)

Summary: Interleaving (or mixed practice) involves spreading minimal effective doses of practice
across various skills, in contrast to blocked practice, which involves extensive consecutive
repetition of a single skill. Blocked practice can give a false sense of mastery and fluency because
it allows students to settle into a robotic rhythm of mindlessly applying one type of solution to one
type of problem. Interleaving, on the other hand, creates a “desirable difficulty” that promotes
vastly superior retention and generalization, making it a more effective review strategy. But
despite its proven efficacy, interleaving faces resistance in classrooms due to a preference for
practice that feels easier and appears to produce immediate performance gains, even if those

performance gains quickly vanish afterwards and do not carry over to test performance.

Interleaving vs Blocking

In a traditional classroom, homework assignments usually focus on a single topic. For instance,
if a student learns how to subtract multi-digit whole numbers during class, then their
homework might contain 15 review problems to practice that skill. This is called blocked

practice or blocking, in which a single skill is practiced many times consecutively.

While some initial amount of blocking is useful when first learning a skill, blocking is very
inefficient for building long-term memory afterwards during the review stage. Instead of putting
those 10 review problems on a single review assignment, it would be more effective to spread
them out over multiple review assignments that each cover a broad mix of previously-learned

topics.

For instance, one of those assignments might have the following breakdown of problems:

e (3 problems) Subtracting Multi-Digit Whole Numbers

e (3 problems) Adding One-Digit Decimals

e (3 problems) Converting One-Digit Decimals Into Fractions

e (3 problems) Converting Improper Fractions Into Mixed Numbers
e (3 problems) Solving Word Problems Using Multi-Digit Addition

This strategy is called interleaving (also known as varied practice or mixed practice).


https://en.wikipedia.org/wiki/Varied_practice
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Benefits of Interleaving

| Efficiency

One benefit of interleaving is that it provides minimum effective doses of review for a handful of
different topics, whereas blocked practice only hits a single topic and wastes most of the review
effort in the realm of diminishing returns. As Rohrer & Pashler (2007) describe in a paper titled

Increasing Retention without Increasing Study Time:

“Our results suggest that a single session devoted to the study of some material should continue
long enough to ensure that mastery is achieved but that immediate further study of the same
material is an inefficient use of time. ... The continuation of study immediately after the student
has achieved error-free performance is known as overlearning. .. [Wjhile overlearning often
increases performance for a short while, the benefit diminishes sharply over time.

Because overlearning requires more study time than not overlearning, the critical question is how
the benefits of overlearning compare to the benefits resulting from some alternative use of the
same time period. ... [D]evoting this study time to the review of materials studied weeks, months,
or even years earlier will typically pay far greater dividends than the continued study of material
learned just a moment ago.

In essence, overlearning simply provides very little bang for the buck, as each additional unit of
uninterrupted study time provides an ever smaller return on the investment of study time.”

As quoted elsewhere:

“..[O[verlearning has the deficiencies of massed practice, and when the choice presents itself, our
results suggest that overlearning will typically represent an inefficient use of study time.” -
Pashler et al. (2007)

“..[A] typical mathematics assignment consists of many problems relating to the same skill or
concept, yet evidence suggests that students receive little long-term benefit from working more
than several problems of the same kind in immediate succession (e.g., Lyle, Bego, Hopkins, Hieb,
& Ralston, 2020).” - Rohrer & Hartwig (2020)

This can be visualized on forgetting curves (shown below), and it suggests an effective method
that Math Academy uses to select topics for interleaved review: simply choose those topics

whose spaced repetitions are due (or are closest to being due).


https://files.eric.ed.gov/fulltext/ED505647.pdf
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| Discrimination and Category Induction Learning

Another benefit of interleaving is that, in addition to helping students practice carrying out

solution techniques, it also enhances other types of learning that are necessary components of

true mastery (see Rohrer, 2012 for a review):

e (discrimination learning) matching problems with the appropriate solution techniques -
for instance, the equations x° + 3x + 2 = 0 and x + 3x + 2 = 0 look similar but require wildly

different solution techniques.

® (category induction learning) recognizing general features that distinguish problems

requiring different solution techniques

As Taylor & Rohrer (2010) elaborate:

“When practice problems are blocked, however, students can successfully solve a set of practice
problems without learning how to pair a problem with the skill. Indeed, because all of the
problems relate to the topic - typically the one presented in the immediately preceding lesson -
students can choose the appropriate procedure for each practice problem before they read the
problem. While this reduces the difficulty of the practice problems, students are effectively relying
on a crutch. Unfortunately for students, this weakness is exposed when these same kinds of
problems appear on a cumulative exam, standardized test, or during a subsequent research career.


https://files.eric.ed.gov/fulltext/ED536926.pdf
https://en.wikipedia.org/wiki/Discrimination_learning
https://en.wikipedia.org/wiki/Inductive_reasoning
http://uweb.cas.usf.edu/~drohrer/pdfs/Taylor%26Rohrer2010ACP.pdf
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By contrast, interleaved practice gives students an opportunity to practice pairing each kind of
problem with the appropriate procedure. Far from being limited to statistics courses, the difficulty
of pairing a problem with the appropriate procedure or concept is ubiquitous in mathematics.

For example, the notorious difficulty of word problems is due partly to the fact that few word
problems explicitly indicate which procedure or concept is appropriate. For example, the word
problem, ‘If a bug crawls eastward for 8 m and then crawls northward for 15 m, how far is it from
its starting point’? requires students to infer the need for the Pythagorean Theorem. However, no
such inference is required if the word problem appears immediately after a block of problems that
explicitly indicate the need for the Pythagorean theorem (e.g. if the legs of a right triangle have
lengths 8 and 15 m, what is the length of its hypotenuse?). Thus, blocked practice can largely
reduce the pedagogical value of a word problem.

As a final example, it should be noted that blocked practice may facilitate students’ failure to
discriminate between different kinds of problems even when these kinds of problems are not
superficially similar. In elementary school, for example, students are ordinarily taught to find both
the greatest common factor of two integers and the least common multiple of two integers. Thus,
the instructions for these two kinds of problems are easily distinguished from each other (‘Find the
greatest common factor ..” vs. ‘Find the least common multiple ...). However, if the practice
problems of each kind are blocked, students can ignore the instruction and instead focus solely on
the information that varies from problem to problem (i.e. the pair of integers). Students can then
solve problems by merely repeatedly performing the same procedure without giving much thought
to why it is appropriate.”

| Experimental Support

The benefits of interleaving are supported by numerous studies across a wide variety of domains
including math, other academic subjects, raw cognitive tasks, motor skills, and even sports

practice (see Rohrer, 2012 for a review). As summarized elsewhere by Rohrer (2009):

“Experiments have shown that test scores can be dramatically improved by the introduction of
spaced practice or mixed practice, which are the two defining features of mixed review. Moreover,
neither spacing nor mixing requires an increase in the number of practice problems, meaning that
both features increase efficiency as well as effectiveness. ... Its effects on mathematics learning
deserve greater consideration by teachers and researchers.”

While blocking leads to more rapid gains in performance (which makes it useful when first
learning a skill), interleaving promotes vastly superior retention and generalization (which
makes it a more effective review strategy). As Rohrer, Dedrick, & Stershic (2015) clarify

elsewhere:

“..[A] small block of problems might be optimal, especially at the outset of an assignment given
immediately after students are introduced to that kind of problem, perhaps because it gives
students an opportunity to focus on the execution of a strategy (e.g., procedural steps and
computation). Yet students who work more than a few problems of the same kind in immediate


https://files.eric.ed.gov/fulltext/ED536926.pdf
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://files.eric.ed.gov/fulltext/ED557355.pdf
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succession are likely to receive sharply diminishing returns on their additional effort (e.g., Rohrer
& Taylor, 2006; Son & Sethi, 2006).”

It’s hard to overstate how beneficial interleaving is, especially in the context of mathematics.
Taylor & Rohrer (2010) found that simply interleaving practice problems, as opposed to blocking
them, doubled test scores. This phenomenon was observed again by Rohrer, Dedrick, & Stershic
(2015) using different, older students and more advanced math problems. As summarized by
Scientific American (Pan, 2015):

“The three-month study involved teaching 7th graders slope and graph problems. Weekly lessons,
given by teachers, were largely unchanged from standard practice. Weekly homework worksheets,
however, featured an interleaved or blocked design. When interleaved, both old and new problems
of different types were mixed together. Of the nine participating classes, five used interleaving for
slope problems and blocking for graph problems; the reverse occurred in the remaining four.

Five days after the last lesson, each class held a review session for all students. A surprise final test
occurred one day or one month later. The result? When the test was one day later, scores were 25
percent better for problems trained with interleaving; at one month later, the interleaving
advantage grew to 76 percent.”

As Rohrer, Dedrick, & Stershic (2015) elaborate further, students whose practice was interleaved

also demonstrated vastly superior retention of the tested material through a delay period:

“..[A]part from its superiority to blocked practice, interleaved practice provided near immunity
against forgetting, as the 30-fold increase in test delay reduced test scores by less than a tenth
(from 80% to 74%).

Another reason for the large effects of interleaving observed here and elsewhere is that interleaved
mathematics practice inherently guarantees that students space their practice. That is, in addition
to the juxtaposition of different kinds of problems within an assignment, problems of the same
kind are spaced across assignments.”

Desirable Difficulty: Why Interleaving is Underused

It is natural to ask, then: why is interleaving so rarely leveraged in classrooms? The answer is all
too familiar. In addition to deviating from traditional teaching convention, interleaving has
been shown to suffer from the same misconception that plagues active learning: interleaving
produces more learning by increasing cognitive activation, but students often mistakenly
interpret extra cognitive effort as an indication that they are not learning as well, when in fact
the opposite is true (Kornell & Bjork, 2008). Consider the following concrete example (Brown,
Roediger, & McDaniel, 2014, pp.65):


http://uweb.cas.usf.edu/~drohrer/pdfs/Taylor%26Rohrer2010ACP.pdf
https://files.eric.ed.gov/fulltext/ED557355.pdf
https://www.scientificamerican.com/article/the-interleaving-effect-mixing-it-up-boosts-learning/
https://files.eric.ed.gov/fulltext/ED557355.pdf
https://web.williams.edu/Psychology/Faculty/Kornell/Publications/Kornell.Bjork.2008a.pdf
https://www.hup.harvard.edu/books/9780674729018
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“In interleaving, you don’t move from a complete practice set of one topic to go to another. You
switch before each practice is complete. A friend of ours describes his own experience with this:

T go to a hockey class and we’re learning skating skills, puck handling, shooting, and I notice that
I get frustrated because we do a little bit of skating and just when I think I'm getting it, we go to
stick handling, and I go home frustrated, saying, ‘Why doesn’t this guy keep letting us do these
things until we get it?”

This is actually the rare coach who understands that it’s more effective to distribute practice
across these different skills than polish each one in turn. The athlete gets frustrated because the
learning’s not proceeding quickly, but the next week he will be better at all aspects, the skating, the
stick handling, and so on, than if he’d dedicated each session to polishing one skill.”

Blocking, on the other hand, creates a more comfortable sense of fluent learning which
artificially improves practice performance by reducing cognitive activation. When practicing a
single skill many times consecutively, students settle into a robotic rhythm of mindlessly
applying one type of solution to one type of problem. The mindlessness is quite literal: in a study
that measured “mind-wandering” during practice, people were found to mind-wander much
more while blocking than while interleaving (Metcalfe & Xu, 2016). But the artificially improved
practice performance tricks students into thinking that they are learning better, even though the

effect quickly vanishes afterwards and does not actually carry over to test performance.

As summarized by Rohrer (2009):

“A feature that decreases practice performance while increasing test performance has been
described by Bjork and his colleagues as a desirable difficulty, and spacing and mixing are two of
the most robust ones. As these researchers have noted, students and teachers sometimes avoid
desirable difficulties such as spacing and mixing because they falsely believe that features yielding
inferior practice performance must also yield inferior learning.”

In the literature, a practice condition that makes the task harder, slowing down the learning
process yet improving recall and transfer, is known as a desirable difficulty. As Rohrer &
Hartwig (2020) elaborate:

“Both spacing and interleaving are instances of a phenomenon known as a desirable difficulty
(Bjork, 1994) - the focus of this forum. A desirable difficulty is a learning method that, when
compared to an alternative, makes practice more difficult while nevertheless improving scores on
a subsequent test (e.g., Bjork & Bjork, 2014; Bjork, 2018; Bjork & Bjork, 2019; Bjork & Kroll,
2015; Schmidt & Bjork, 1992).”

Many types of cognitive learning strategies introduce desirable difficulties - for instance, Bjork
& Bjork (2011) list a few more:

“Such desirable difficulties (Bjork, 1994; 2013) include varying the conditions of learning, rather
than keeping them constant and predictable; interleaving instruction on separate topics, rather


https://psycnet.apa.org/record/2015-53532-001
http://uweb.cas.usf.edu/~drohrer/pdfs/Rohrer2009JRME.pdf
https://files.eric.ed.gov/fulltext/ED611861.pdf
https://burrell.edu/wp-content/uploads/2020/09/EBjorkRBjork_FABBSchapter2014-2nd-ed._WithCoverPage.pdf
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than grouping instruction by topic (called blocking); spacing, rather than massing, study sessions
on a given topic; and using tests, rather than presentations, as study events.”

However, as Rohrer & Hartwig (2020) explain, the idea of desirable difficulties can be

counterintuitive:

“That difficulties can be desirable is not intuitive. In fact, many people mistakenly assume that
the degree of fluency achieved during practice is a good marker of a strategy’s long-term efficacy
(Bjork, Dunlosky, & Kornell, 2013). Indeed, many difficulties are undesirable in that they impede
not only practice performance but also test scores, as might be true for students who do homework
while watching television.”

Furthermore, as Robert Bjork (1994) explains, the typical teacher is incentivized to maximize the
immediate performance and/or happiness of their students, which biases them against

introducing desirable difficulties:

“Recent surveys of the relevant research literatures (see, e.g., Christina & Bjork, 1991; Farr, 1987;
Reder & Klatzky, 1993; Schmidt & Bjork, 1992) leave no doubt that many of the most effective
manipulations of training — in terms of post-training retention and transfer — share the property
that they introduce difficulties for the learner.

If the research picture is so clear, why then are ... nonproductive manipulations such common
features of real-world training programs? ... [T]he typical trainer is overexposed, so to speak, to the
day-to-day performance and evaluative reactions of his or her trainees. A trainer, in effect, is
vulnerable to a type of operant conditioning, where the reinforcing events are improvements in the
[immediate] performance and/or happiness of trainees.

Such a conditioning process, over time, can act to shift the trainer toward manipulations that
increase the rate of correct responding — that make the trainee’s life easier, so to speak. Doing
that, of course, will move the trainer away from introducing the types of desirable difficulties
summarized in the preceding section.”

What’s more, most educational organizations operate in a way that exacerbates this issue:

“The tendency for instructors to be pushed toward training programs that maximize the
performance or evaluative reaction of their trainees during is exacerbated by certain institutional
characteristics that are common in real-world organizations.

First, those responsible for training are often themselves evaluated in terms of the performance
and satisfaction of their trainees during training, or at the end of training.

Second, individuals with the day-to-day responsibility for training often do not get a chance to
observe the post-training performance of the people they have trained; a trainee’s later successes
and failures tend to occur in settings that are far removed from the original training environment,
and from the trainer himself or herself.


https://files.eric.ed.gov/fulltext/ED611861.pdf
https://gwern.net/doc/psychology/spaced-repetition/1994-bjork.pdf

248 | The Math Academy Way - Working Draft

It is also rarely the case that systematic measurements of post-training on-the-job performance
are even collected, let alone provided to a trainer as a guide to what manipulations do and do not
achieve the post-training goals of training.

And, finally, where refresher or retraining programs exist, they are typically the concern of
individuals other than those responsible for the original training.”
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Chapter 19. The Testing Effect (Retrieval Practice)

Summary: The testing effect (or retrieval practice) emphasizes that recalling information from
memory, rather than repeated reading, enhances learning. It can be combined with spaced
repetition to produce an even more potent learning technique known as spaced retrieval practice.
Math Academy leverages the testing effect by continuously assessing students through quick,
frequent, quizzes, and encouraging students to solve review problems without referring back to
reference material. Measures are taken to reduce anxiety and promote a growth mindset during

quizzes.

Retrieval is the Most Effective Method of Review

To maximize the amount by which your memory is extended when solving review problems, it’s
necessary to avoid looking back at reference material unless you are totally stuck and cannot
remember how to proceed. This is called the testing effect (also known as the retrieval practice

effect): the best way to review material is to test yourself on it. As Yang et al. (2023b) summarize:

“..[PJractice testing (i.e., practice retrieval) is one of the most effective strategies to consolidate
long-term retention of studied information and facilitate subsequent learning of new information,
a phenomenon labeled the testing effect, the retrieval practice effect, or test-enhanced learning
(Carpenter et al., 2022; Pan & Rickard, 2018; Roediger & Butler, 2011; Shanks et al., 2023; Yang
etal., 2021).

It has been firmly established that retrieval practice is more beneficial by comparison with many
other learning strategies, such as restudying (Roediger & Karpicke, 2006b), note-taking (Heitmann
et al, 2018; Rummer et al., 2017), concept-mapping (Karpicke & Blunt, 2011) and other
elaborative strategies (Larsen et al., 2013).”

The testing effect is one of the oldest cognitive learning strategies known to humankind -

records date back as far as 1620, when Francis Bacon noted (pp. 76) the following:

“..[Y]ou won’t learn a passage as well by reading it straight through-twenty times as you will by
reading it only ten times and trying each time to recite it from memory and looking at the text
only when your memory fails.”

Since the early 1900s, this observation has been experimentally supported by hundreds of
studies across widely different memory tasks, content domains, and experimental

methodologies, which have indicated that the benefits of retrieval practice are caused by


https://en.wikipedia.org/wiki/Testing_effect
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increased cognitive effort (Rowland, 2014). In particular, the testing effect has been shown to
carry over to classroom settings, where frequent quizzing (with feedback) promotes greater
learning on both tested and non-tested material (McDaniel et al., 2007). Its reliability has even
been explicitly demonstrated across individual cognitive differences like working memory

capacity (Pastotter & Frings, 2019). As Yang et al. (2023b) summarize:

“The classroom testing effect generalizes to students across different educational levels (including
elementary school, middle school, high school, and university/college), and across 18 subject
categories (e.g., Education, Medicine, Psychology, etc.). More importantly, the results showed that
classroom quizzes not only benefit retention of factual knowledge, but also promote concept
comprehension and facilitate knowledge transfer in the service of solving applied problems.
Test-enhanced knowledge transfer has also been observed in many other studies (for a review, see
Carpenter, 2012).”

Spaced Retrieval Practice

What’s more, as Kang (2016) notes, the testing effect can be combined with spaced repetition to

produce an even more potent learning technique known as spaced retrieval practice:

“Testing or spaced practice, each on its own, confers considerable advantages for learning. But,
even better, the two strategies can be combined to amplify the benefits: Reviewing previously
studied material can be accomplished through testing (often followed by corrective feedback)
instead of rereading.

In fact, many studies of the spacing effect compared spaced against massed retrieval practice, not
just rereading (e.g., Bahrick, 1979; Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008). Spaced retrieval
practice (with feedback) leads to better retention than spaced rereading.

One study examined how type of review (reread vs. test with feedback), along with timing of review
(massed vs. spaced), affected eighth-grade students’ retention of history facts (Carpenter, Pashler,
& Cepeda, 2009). On a final test 9 months later, spaced retrieval practice yielded the highest
performance (higher than spaced rereading).”

As Halpern & Hakel (2003) elaborate:

“The single most important variable in promoting long-term retention and transfer is ‘practice at
retrieval.” This principle means that learners need to generate responses, with minimal cues,
repeatedly over time with varied applications so that recall becomes fluent and is more likely to
occur across different contexts and content domains. Simply stated, information that is frequently
retrieved becomes more retrievable.

The effects of practice at retrieval are necessarily tied to a second robust finding in the learning
literature - spaced practice is preferable to massed practice. For example, Bjork and his colleagues
recommend spacing the intervals between instances of retrieval so that the time between them
becomes increasingly longer — but not so long that retrieval accuracy suffers.”


https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5890758fdccf8e4ea75571f7d8741940660ba38f
https://journalofcognition.org/articles/10.5334/joc.82
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https://www.mensopschool.nl/wp-content/uploads/2016/09/de-impact-van-lk-op-gemotiveerde-en-ongemotiveerde-lln.pdf
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And as Yang et al. (2023a, pp.257) emphasize, frequent tests are ideal:

“Although it has been widely documented that a single test is sufficient to enhance memory
compared to restudying, many laboratory studies have observed that repeated tests (i.e., with
studied content tested repeatedly) produce a larger enhancing effect on knowledge retention and
transfer than a single test (e.g., Butler, 2010; Dunlosky et al., this volume; Roediger & Karpicke,
2006b).

The enhancing effect of repeated tests has been re-confirmed by many classroom studies.
Moreover, Yang et al’s (2021) metaanalysis coded the number of test repetitions (i.e., how many
times the studied information was tested), and conducted analyses to quantify the relation
between the magnitude of test-enhanced learning and the number of test (quiz) repetitions. The
results showed a clear trend that the more occasions on which class content is quizzed, the more
effectively quizzing aids exam performance.”

The Testing Effect is Underused

Unfortunately, the testing effect remains underused in traditional classrooms, where usually
only a handful of tests are given throughout the entire duration of a course. As McDaniel et al.
(2007) lament:

“..[Dlespite this impressive body of evidence, the implications of the testing effect literature for
educational practice have been virtually ignored by the educational community and educational
research.”

Math Academy, however, leverages the testing effect to its fullest extent by testing frequently as
a part of the learning process itself. We implement a form of continuous assessment with quick,
frequent quizzes, and we also incorporate the testing effect into normal spaced reviews (i.e.
spaced retrieval practice) by encouraging students to solve problems without referring to worked
examples (though they can go back to lesson and dig up a similar example for reference if they
really get stuck on a review problem). Even multi-part problems - which pull together many
earlier topics to explore a challenging, complex problem context one part at a time - leverage
the testing effect by requiring the student to recall each previously-learned skill and apply it to a

novel context.

Yet another inefficiency of traditional classrooms is that, in addition to occurring relatively
infrequently, tests and quizzes are normally focused around a single set of closely-related topics.
As we discussed in the context of interleaving, Math Academy achieves far greater efficiency by

selecting a broad mixture of topics - not only on reviews and multi-part problems, but also on
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assessments. This produces much more forward progress in spaced repetition schedules and

also helps students learn to match problems with the appropriate solution techniques.

Reducing Anxiety and Promoting a Growth Mindset

| Appropriate vs Inappropriate Usage of Timed Tests

Many people view tests, especially timed tests, as anxiety-inducing and consequently something
to be avoided. However, it is important to realize that test anxiety can be mitigated, and often
even reduced, by giving frequent, low-stakes quizzes on skills that a student is ready to be tested

on.

Often, negative feelings toward timed tests are the result of inappropriate usage of the timed test,
such as introducing it too early in the student’s skill development process. A prerequisite for
timed testing is that the student should be able to perform the tested skills successfully in an
untimed setting. Timed testing demands a high level of proficiency, and anxiety can be produced
if there is a mismatch between a student’s level of proficiency and the performance expectations

that are placed on them.

As Codding, Peltier, & Campbell (2023) summarize:

“Learners may benefit more or less from various instructional strategies or tactics, depending on
the learners’ stage of skill development (Burns et al., 2010). That is, are learners working on
acquiring a math skill or concept, building skill fluency, generalizing or transferring a skill or
concept, or using known skills and concepts to solve novel problems?

Just because timed practice opportunities have been proven effective to build fluency, for example,
does not mean that timed trials always benefit learners (Fuchs et al., 2021). Using timed trials
with students who are working to acquire new knowledge or skills is an instructional mismatch;
rather, students need to display accuracy with skills and concepts before building fluency. It is not
the fault of the strategy; it is an issue with when to implement the strategy.”

| Desirable vs Undesirable Difficulties

More generally, while desirable difficulties are a necessary component of effective practice, they
are only effective insofar as the learner is able to overcome them. Introducing an
insurmountable difficulty is never desirable, even if that type of difficulty may be desirable later

on in the learning process once the student has increased their proficiency. It is the act of
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overcoming a desirable difficulty that leads to greater learning. As echoed by Brown, Roediger, &
McDaniel (2014, pp.98-99):

“Elizabeth and Robert Bjork, who coined the phrase ‘desirable difficulties, write that difficulties
are desirable because ‘they trigger encoding and retrieval processes that support learning,
comprehension, and remembering. If, however, the learner does not have the background
knowledge or skills to respond to them successfully, they become undesirable difficulties.’

Clearly, impediments that you cannot overcome are not desirable. ... To be desirable, a difficulty
must be something learners can overcome through increased effort.”

As Bjork & Bjork (2023, pp.22) elaborate:

“.[IJt is necessary to consider what level of difficulty is appropriate in order for that level to
enhance a given student’s learning, and the appropriate level that is optimal may vary
considerably based on a student’s background and prior level of knowledge.

To illustrate, while it is typically desirable to have learners generate a skill or some knowledge
from memory, rather than simply showing them that skill or presenting that knowledge to them, a
given learner needs to be equipped via prior learning to succeed at the generation task — or at
least succeed in activating relevant aspects of the necessary skill or knowledge - for the act of
generating to then potentiate their subsequent practice or study (e.g., Little & Bjork, 2016;
Richland, Kornell, & Kao, 2009).”

Indeed, Codding, VanDerHeyden, & Chehayeb (2023) found that when the type of instruction is
mismatched against a student’s level of proficiency, the instruction will not only be ineffective,

but can also lead to anxiety:

“This study illustrated that when instructional strategies are misaligned with students’ stage of
skill development, even when the instructional target is appropriate, students’ math performance
will not improve. Furthermore, as suggested in this study, students may exhibit higher levels of
anxiety and lower acceptability of misaligned instructional practices.”

| Appropriate Timed Testing Can Reduce Math Anxiety

However, when used appropriately, timed testing can be a valuable tool for overcoming math
anxiety by building fluency and automaticity. According to VanDerHeyden & Codding (2020),
who have extensive experience researching academic intervention in mathematics, the
relationship between math anxiety and timed testing is unclear, but there is a clear relationship
between math anxiety and math proficiency (lower proficiency promotes anxiety, which further

hinders skill development), and timed tests are useful for building proficiency:
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“Teachers and parents worry about math anxiety, and some math education experts caution
against tactics used in math class, such as timed tasks and tests, that might theoretically stoke
anxiety (Boaler, 2012). First, the evidence does not support that people are naturally anxious or
not anxious in the context of math assessment and instruction (Hart & Ganley, 2019). Second,
simply avoiding math or certain math tactics should not be expected to ameliorate anxiety in the
long term. Third, preventing a student from full exposure to math assessment and intervention
costs the student the opportunity to develop adaptive coping mechanisms to deal with possible
anxiety in the face of challenging academic content.

Gunderson, Park, Maloney, Bellock, and Levine (2018) found a reciprocal relationship between
skill proficiency and anxiety, such that weak skill reliably preceded anxiety and anxiety further
contributed to weak skill development. They found that anxiety could be attenuated by two
strategies: improving skill proficiency (this cannot be done by avoiding challenging math work and
timed assessment) and promoting a growth mindset (as opposed to a fixed ability mindset) using
specific language and instructional arrangements to promote the idea that I, as a student, can
work hard and beat my score; I can grow today; my brain is like a muscle that gets stronger when I
work it with challenging math content.

There is very little empirical evidence examining whether timed tests have a causal impact on
anxiety, and the existing few studies that include school-age participants do not support the idea
(Grays, Rhymer, & Swartzmiller, 2017; Tsui & Mazzocco, 2006). What is clear is there is a modest,
negative bidirectional relationship between math anxiety and math performance (Namkung et al.,
2019). These correlational data suggest that poor mathematics performance can lead to high math
anxiety and that high math anxiety can lead to poor mathematics performance. The remedy that
school psychologists can advocate for is to identify, through effective and efficient screening, the
presence of high math anxiety and determine which students would benefit from supplemental
and targeted mathematics supports. Intervention approaches should target math skill deficits,
address high anxiety, and promote a growth mindset as well as monitor progress toward clearly
defined objectives using tools that are brief (often timed), reliable, and valid.”

These sentiments are echoed by the U.S. Department of Education (Fuchs et al., 2021, pp.58),
which recommends regularly using timed review activities to promote automatic retrieval of
previously-learned material, since students will struggle to learn more advanced material unless

they are able to automatically retrieve previously-learned material:

“Regularly include timed activities as one way to build students’ fluency in mathematics. ..
[However,] Do not use timed activities to introduce and teach mathematics concepts and
operations.

Quickly retrieving basic arithmetic facts (addition, subtraction, multiplication, and division) is not
easy for students who experience difficulties in mathematics. Without such retrieval, students will
struggle to follow their teachers’ explanations of new mathematical ideas. Automatic retrieval
gives students more mental energy to understand relatively complex mathematical tasks and
execute multistep mathematical procedures.

Thus, building automatic fact retrieval in students is one (of many) important goals of
intervention. In addition to basic facts, timed activities may address other mathematical subtasks
important for solving complex problems.”
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As summarized by Yang et al. (2023b), quizzes can increase students’ skill proficiency and

familiarity with the format of assessment, which can reduce their test anxiety:

“..[Jt is well-known that tests motivate students to study harder (Yang et al., 2017a), encourage
them to read the assigned textbook materials to prepare for the lecture (Heiner et al., 2014), reduce
mind wandering while learning (Szpunar et al., 2013), and increase class attendance (Schrank,
2016).

These beneficial effects of practice tests [i.e., quizzes| may make students more prepared for tests
and reduce their worry about poor test performance, therefore alleviating TA [test anxiety] (Brown
& Tallon, 2015; Yusefzadeh et al., 2019). Furthermore, tests may inform students about the
formats and contents of future assessments, hence reducing uncertainty (i.e., uncertainty about
how and what content will later be assessed) and mitigating anxiety (Jerrell & Betty, 2005).”

What’s more, as Hattie & Yates (2013, pp.59) explain, performing well on a timed test has been

shown to build confidence and promote positive feelings:

“..[S]tudies conducted under laboratory conditions show that, for both adults and children, speed
of access in memory functions strongly predicts two other attributes: confidence and positive
feelings. Whenever people are able to recall important information quickly there is an inherent
sense in that the information is correct, together with a momentary flush of pleasure.”

Indeed, in a study of thousands of middle and high schoolers’ reactions to frequent (at least
weekly), low-stakes, immediate-feedback quizzes during class, Agarwal et al. (2014) found that
most students felt it made them less nervous for higher-stakes tests, and students were more

likely to report a decrease in overall test anxiety than an increase:

“We asked students whether clicker quizzes (i.e., retrieval practice) made them more or less
nervous for unit tests and exams ... Remarkably, 72% of students reported that retrieval practice
made them less nervous for tests and exams, 22% said they experienced about the same level of
nervousness, and only 6% of students said clickers made them more nervous.

Next, we asked students whether they experienced more, less, or about the same level of test
anxiety for the class with retrieval practice compared to other classes in which they did not have
retrieval practice ... [Ojnly 19% of students reported experiencing more anxiety, while 81% of
students said they experienced about the same level of test anxiety or less in the class with
retrieval practice compared to their other classes (33% reported less nervousness).

[T]he use of clicker response systems reduced self-reported test anxiety. ... We hypothesize that
students became familiar with taking quizzes, knew the course material better, and hence were less
anxious when facing the unit test on which they would receive a grade.”

As echoed by Yang et al. (2023a):

“..[Flrequent testing has little impact on or even reduces (rather than increases) test anxiety. For
instance, in a large sample study (over 1,000 college participants), Yang et al. (2020) observed that
interpolating tests across a study phase has minimal influence on participants’ test anxiety.
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Szpunar et al. (2013) found that frequent tests significantly relieve test anxiety (for related
findings, see Khanna, 2015). Furthermore, in a large-scale survey conducted by Agarwal et al.
(2014), 72% of 1,306 middle and 102 high school students reported that frequent quizzes made
them less anxious about exams, with only 8% reporting the opposite.”

In a separate meta-analysis, Yang et al. (2023b) summarized some other empirical studies

observing that quizzes reduced test anxiety:

“..[IIn a quasi-experimental study conducted by Piroozmanesh and Imanipour (2018), two classes
of nursing undergraduates took a coronary care course, with the experimental class taking class
quizzes across the semester, whereas the control class did not take these quizzes. For both classes,
students’ TA was measured at the beginning of the semester (pretest) and one week before the final
exam (posttest). The results showed that although there was minimal difference in TA during the
pretest between the two classes, students in the experimental class were much less anxious before
the final exam than those in the control class.

Szpunar et al. (2013) obtained consistent findings. Specifically, after both the test and the no-test
group completed the interim test on Segment 4, both groups were told that they would take a
cumulative test on all four segments and were instructed to report how anxious they were about
the cumulative test. Consistent with the findings from Piroozmanesh and Imanipour (2018) and
Brown and Tallon (2015), Szpunar et al. (2013) observed that participants in the test group were
much less anxious than those in the no-test group.”

The meta-analysis, which included 24 studies across thousands of participants, ultimately
concluded that quizzes reduce test anxiety about as much as they increase academic

performance (in both cases, a medium effect size of about 0.5).

“The current review integrates results across 24 studies (i.e., 25 effects based on 3,374 participants)
to determine the effect of practice tests (quizzes) on test anxiety (TA) and explore potential
moderators of the effect. The results show strong Bayesian evidence (BF,,>25,000) that practice
tests appreciably reduce TA to a medium extent (Hedges’ g=-0.52), with minimal evidence of
publication bias.

In a recent meta-analytic review, Yang et al. (2021) integrated data from over 48,000 students,
extracted from 222 classroom studies, to determine whether class quizzes improve students’
academic performance. The answer is affirmative: Class quizzes enhance students’ academic
attainment to a medium extent (Hedges’ g=0.50).”

| Implementing Appropriate Timed Testing

Granted, in a traditional classroom, it is difficult to keep instructional practices aligned to
student proficiencies because each student develops their skills at a different rate. For any given
skill, at any given time, some students may be ready for timed testing while others may need
additional practice - but the teacher generally does not have enough bandwidth to manage

different learning tasks for different students on different skills, and the best they can do is
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provide learning tasks that feel appropriate for the class “on average.” Of course, those learning
tasks will be inappropriate for some students and may lead to decreased learning and increased

anxiety.

Math Academy, however, adapts the level of instruction to each individual student on each
individual skill. Students initially learn skills during highly-scaffolded lessons, where they are
given as much practice as they need to master the skills. Only after they demonstrate their
ability to perform the skills do they begin seeing those skills on higher-intensity forms of

practice like timed quizzes.

The quizzes are low-stakes and frequent, and are structured in a way that promotes an “I can do
this” growth mindset. Whenever a student misses a question on a quiz, they receive a remedial
review on the corresponding topic so that they can increase their proficiency in that area. If a
student does less than “well” on a quiz, then they are also given the opportunity to retake the
quiz to demonstrate their improved proficiency. The goal is not only to give students realistic
feedback about their skill proficiency, but also to demonstrate to students that they can improve

their proficiency by putting forth effort on their learning tasks.



262 | The Math Academy Way - Working Draft

Key Papers

Note: “Importance” blurbs may include pieces of direct quotes referenced earlier

in this chapter. If citing this chapter, cite from the body (above).

Rowland, C. A. (2014). The effect of testing versus restudy on retention: a meta-analytic
review of the testing effect. Psychological bulletin, 140(6), 1432.

Importance: The testing effect has been experimentally supported by hundreds of studies across widely
different memory tasks, content domains, and experimental methodologies, which have indicated that the

benefits of retrieval practice are caused by increased cognitive effort.

McDaniel, M. A., Anderson, J. L., Derbish, M. H., & Morrisette, N. (2007). Testing the testing
effect in the classroom. European journal of cognitive psychology, 19(4-5), 494-513.

Yang, C., Shanks, D. R., Zhao, W., Fan, T., & Luo, L. (2023). Frequent Quizzing Accelerates
Classroom Learning. In C. Overson, C. M. Hakala, L. L. Kordonowy, & V. A. Benassi (Eds.),
In Their Own Words: What Scholars and Teachers Want You to Know About Why and How to Apply
the Science of Learning in Your Academic Setting (pp. 252-62). Society for the Teaching of
Psychology.

Importance: The testing effect has been shown to carry over to classroom settings, where frequent quizzing
(with feedback) promotes greater learning on both tested and non-tested material.

Pastotter, B., & Frings, C. (2019). The forward testing effect is reliable and independent of
learners’ working memory capacity. Journal of cognition, 2(1).

Importance: The reliability of the testing effect has even been explicitly demonstrated across individual

cognitive differences like working memory capacity.

Codding, R. S., Peltier, C., & Campbell, J. (2023). Introducing the Science of Math.
TEACHING Exceptional Children, 00400599221121721.


https://www.researchgate.net/publication/264988491_The_Effect_of_Testing_Versus_Restudy_on_Retention_A_Meta-Analytic_Review_of_the_Testing_Effect
https://www.researchgate.net/publication/264988491_The_Effect_of_Testing_Versus_Restudy_on_Retention_A_Meta-Analytic_Review_of_the_Testing_Effect
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5890758fdccf8e4ea75571f7d8741940660ba38f
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5890758fdccf8e4ea75571f7d8741940660ba38f
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://journalofcognition.org/articles/10.5334/joc.82
https://journalofcognition.org/articles/10.5334/joc.82
https://journals.sagepub.com/doi/10.1177/00400599221121721

The Math Academy Way - Working Draft | 263

Codding, R. S., VanDerHeyden, A., & Chehayeb, R. (2023). Using Data to Intensify Math
Instruction: An Evaluation of the Instructional Hierarchy. Remedial and Special Education,
07419325231194354.

Importance: Often, negative feelings toward timed tests are the result of inappropriate usage of the timed test,
such as introducing it too early in the student’s skill development process. A prerequisite for timed testing is
that the student should be able to perform the tested skills successfully in an untimed setting. Timed testing
demands a high level of proficiency, and anxiety can be produced if there is a mismatch between a student’s

level of proficiency and the performance expectations that are placed on them.

VanDerHeyden, A. M., & Codding, R. S. (2020). Belief-Based versus Evidence-Based Math

Assessment and Instruction. Communique, 48(5).

Fuchs, L. S., Bucka, N., Clarke, B., Dougherty, B., Jordan, N. C., Karp, K. S., ... & Morgan, S.
(2021). Assisting Students Struggling with Mathematics: Intervention in the Elementary
Grades. Educator's Practice Guide. WWC 2021006. What Works Clearinghouse.

Importance: The relationship between math anxiety and timed testing is unclear, but there is a clear
relationship between math anxiety and math proficiency (lower proficiency promotes anxiety, which further
hinders skill development), and timed tests are useful for building proficiency. Timed review activities should be
used to promote automatic retrieval of previously-learned material, since students will struggle to learn more

advanced material unless they are able to automatically retrieve previously-learned material.

Agarwal, P. K., D’antonio, L., Roediger III, H. L., McDermott, K. B., & McDaniel, M. A.
(2014). Classroom-based programs of retrieval practice reduce middle school and high school

students’ test anxiety. Journal of applied research in memory and cognition, 3(3), 131-139.

Yang, C., Shanks, D. R., Zhao, W., Fan, T., & Luo, L. (2023a). Frequent Quizzing Accelerates
Classroom Learning. In C. Overson, C. M. Hakala, L. L. Kordonowy, & V. A. Benassi (Eds.),
In Their Own Words: What Scholars and Teachers Want You to Know About Why and How to Apply
the Science of Learning in Your Academic Setting (pp. 252-62). Society for the Teaching of
Psychology.

Yang, C., Li, J., Zhao, W., Luo, L., & Shanks, D. R. (2023b). Do practice tests (quizzes) reduce

or provoke test anxiety? A meta-analytic review. Educational Psychology Review, 35(3), 87.


https://journals.sagepub.com/doi/10.1177/07419325231194354
https://journals.sagepub.com/doi/10.1177/07419325231194354
https://eric.ed.gov/?id=EJ1238887
https://eric.ed.gov/?id=EJ1238887
https://ies.ed.gov/ncee/WWC/Docs/PracticeGuide/WWC2021006-Math-PG.pdf#page=58
https://ies.ed.gov/ncee/WWC/Docs/PracticeGuide/WWC2021006-Math-PG.pdf#page=58
https://pdf.retrievalpractice.org/guide/Agarwal_etal_2014_JARMAC.pdf
https://pdf.retrievalpractice.org/guide/Agarwal_etal_2014_JARMAC.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
https://www.researchgate.net/profile/Logan-Fiorella/publication/369588588_Learning_by_Teaching/links/64234a8ca1b72772e431adec/Learning-by-Teaching.pdf
http://metacog.bnu.edu.cn/pdf/articles/2023/YangLiZhaoLuo2023.pdf
http://metacog.bnu.edu.cn/pdf/articles/2023/YangLiZhaoLuo2023.pdf

264 | The Math Academy Way - Working Draft

Importance: Frequent, low-stakes, immediate-feedback quizzes can make students less nervous for

higher-stakes tests and reduce their overall test anxiety.
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Chapter 20. Targeted Remediation

Summary: Math Academy provides automated, precise support to help students strengthen
weaknesses on specific topics or component skills that are personal sources of struggle. The bar for
success is never lowered; rather, students are given additional practice that helps them clear the

bar fully and independently on their next attempt.

High-Granularity, High-Integrity Remediation

In the academic literature, the term targeted remediation usually describes identifying individual
students in need of broad remedial intervention such as tutoring, remedial courses, academic

advisor meetings, etc.

But in the context of Math Academy, targeted remediation refers to fully-automated support
mechanisms that are targeted to individual students on individual topics - and often even more

precisely to the individual component skills that are causing a student to struggle on a topic.

Math Academy’s targeted remediation is different from the concept of adaptive feedback in
intelligent tutoring systems, which the Handbook of Learning Analytics describes as providing
hints to the learner or recommendations for the instructional designer to better match a task to
students’ abilities (Pardo et al., 2017, pp.166):

“A large portion of the studies related to adaptive feedback have been developed through ..
systems that provide a set of learning tasks to students in specific knowledge domains. ... the
system commonly offers various types of task-level feedback, such as next-step hints (e.g.,
Peddycord, Hicks, & Barnes, 2014); correctness hints, also known as flag feedback
(Barker-Plummer, Cox, & Dale, 2011); positive or encouraging hints (Stefanescu, Rus, & Graesser,
2014); recommendations on next steps or tasks [not for the students, but for the instructional
designer to better match the task to students’ abilities| (Ben-Naim, Bain, & Marcus, 2009); or
various combinations of the above.”

Unlike the forms of adaptive feedback described above, which effectively lower the bar for
success on the learning task, Math Academy’s targeted remediation mechanisms keep the bar
where it’s at. Instead, we focus on actions that are most likely to strengthen a student’s area of

weakness and allow them to clear the bar fully and independently on their next attempt.
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To our best knowledge, targeted remediation at Math Academy’s level of granularity (individual

students on individual topics) and integrity (maintaining the bar for success) has not been

studied in academic literature.

As stated by the handbook (Pardo et al., 2017, pp.168):

“A dearth of research explores how students interact with and are transformed by
algorithm-produced feedback. Furthermore, the relationship between the type of interventions
that can be derived from data analysis and adequate forms of feedback remains inadequately
explored.”

This may be for reasons of academic infeasibility: the expense (both time and money) to develop

an automated learning system is large and increases proportionally with the granularity of the

curriculum, making it a rather industrial endeavor.

Corrective Remediation

When students struggle, we follow up with corrective remedial support that is targeted to their

specific point of struggle.

If they struggle during a task, we give more questions - that is, more chances to learn

and demonstrate their learning.

If they fail a lesson, we give them a break and enable them to make progress learning
unrelated topics before asking them to re-attempt the failed lesson. Usually, all it takes
to rebound is a bit of rest and a fresh pair of eyes. On average, students pass their first
attempt 95% of the time, and within two attempts 99% of the time, without any further

intervention.

However, if we detect that they get stuck again in the same place in a lesson, without
making any additional forward progress, we give them remedial reviews to help them

strengthen their foundations in the areas most relevant to their point of struggle.

Whenever they miss a question on a quiz, we immediately follow up with a remedial

review on the corresponding topic.

One challenge in properly targeting remedial reviews is that often, the key prerequisite concepts

or skills required to solve a particular problem lie several steps back in the hierarchy of
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mathematical knowledge. However, when developing our content and building our knowledge
graph, we explicitly keep track of the key prerequisites that are used in each part of each lesson.

This allows us to pinpoint the exact topics that are necessary for successful remediation.

As a concrete example, suppose that while re-attempting the lesson Exponents with Rational

Bases, a student

e manages to pass Part 1: Expressing a Product Using an Exponent, e.g. expressing 4 x 4 x 4 as
4 but

e gets stuck again at Part 2: Evaluating an Exponential Expression, e.g. computing (-4)° = (-4) x
(-4) x (-4).

In this situation, the student has demonstrated that they understand the concept of an exponent,

but they are struggling to use multiplication to compute the result.

Although multiplication occurs several steps back in the sequence of prerequisites, we have
linked Part 2: Evaluating an Exponential Expression to the key prerequisite topic Multiplying
Negative Numbers, which allows us to automatically trigger a targeted remedial review on

Multiplying Negative Numbers.
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Lesson: Exponents with Rational Bases
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Preventative Remediation

We also attempt to predict struggle beforehand and leverage preventative remediation to avoid
the struggle entirely. Conveniently, this happens naturally when we tailor the spaced repetition

process to individual student-topic learning speeds.

The initial starting value of a student-topic learning speed is a prediction of how difficult that
topic is going to be for the given student. The prediction is primarily based on learning speeds
of other related topics - so if the predicted learning speed is low (i.e. we predict that the student
is going to struggle on the topic), then it is low because one or more of the other related topics

has a low learning speed.

Those other related topics with low learning speed are the predicted points of failure in the
student’s predicted struggle, we are already performing preventative remediation on them by
slowing down their spaced repetition processes and forcing explicit reviews. In other words,

“post”-remediation of earlier topics naturally functions as “pre”-remediation for later topics.


https://en.wikipedia.org/wiki/Preventive_action
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Foundational Remediation

Math Academy’s diagnostics are tailored to specific courses - but in addition to assessing
knowledge of course content, they also assess knowledge of lower-grade foundations that
students need to know in order to succeed in the course (i.e. they are prerequisites for the

course).

For instance, students need to know plenty of arithmetic in order to solve problems in algebra.
So, the foundations of algebra include those necessary topics from arithmetic. Likewise, the
foundations of calculus include plenty of algebra and also some geometry, and the foundations
of most university-level courses (such as multivariable calculus) include plenty of single-variable

calculus and precalculus.

It is common for incoming students to lack some foundational knowledge that is necessary to
succeed in their chosen course. While this could spell doom in a traditional classroom, Math
Academy is able to estimate a student’s knowledge frontier even if it is below their course, and help
them fill in any missing foundational knowledge while simultaneously allowing them to learn

course topics that don’t rely on that missing foundational knowledge.

We’ll help you fill in We’ll let you skip all

these missing Lea rned/ o= :‘(he stuff you already
i now.
foundatons perere
/7 .
Topics
i ’
topics that depend , You've

on it.

] Learned

Foundational
Topics You /
Haven’t ,’
Learneci -

Foundational Topics
You’ve Learned

Frontier /- =




272 | The Math Academy Way - Working Draft

Math Academy also optimizes the timing of when to have students begin shoring up their
missing foundations. Students are generally more excited to work on topics in the course that
they are enrolled in, than they are to shore up missing foundations - and students tend to be
more productive and consistent when they're excited about what they're doing. So, we allow
students to start out completing the topics in their enrolled course that don’t depend on their
missing foundations. This helps students build up some momentum, make some progress
towards their primary goal, and get into a habit of frequent learning. Once a student reaches the
point where they need to shore up missing foundations in order to continue making progress in
their enrolled course, they have built up plenty of momentum that will help carry them through
the process of foundational remediation and make them far less likely to get discouraged and

quit.

Content Remediation

As a mastery learning system, Math Academy holds its students accountable for learning - and
in return, our students hold us accountable for providing material that is properly scaffolded
and easy to learn from. If there is ever a topic that more than a tiny percentage of students
struggle with, then we see it as an indication that we need to not only remediate the students,

but also remediate our own content.

We take content remediation extremely seriously. Math Academy is like a tutor whose
livelihood depends on the actual learning outcomes of its students - unlike many other learning
platforms (and even many human teachers) that let students move on to more advanced content
despite poor performance on prerequisite content. If a student can’t succeed in mastering the

material that we ask them to learn, then we are out of a job.

To help us remediate our content, we have developed learning analytics tools that allow us to
analyze the performance of any piece of content, at any level of granularity: not just individual
topics, but also each individual knowledge point within a topic, and each individual question

within a knowledge point.

If the pass rate for any lesson is unacceptably low, we can pinpoint the exact knowledge point(s)
within that topic where students are getting stuck, as well as any particular questions within

that knowledge point that are causing issues.
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By continually refining our content and algorithms over the course of many years, we have
reached the point that our students pass lessons 95% of the time on the first try and 99% of
the time within two tries. As we continue refining our content into the future, these pass rates

will continue to increase.

It’s worth emphasizing that when we refine and remediate our own content, we do not lower
standards. The way we raise pass rates is by introducing more scaffolding into lessons to further
reduce cognitive load. Sometimes this means improving the way a concept or worked example is
explained; other times it means adding an intermediate knowledge point to a lesson, or
occasionally even splitting an entire topic into two or more different topics that more

specifically address different contexts of the original topic.
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Chapter 21. Gamification

Summary: Gamification, integrating game-like elements into learning environments, proves
effective in increasing student learning, engagement, and enjoyment. Math Academy utilizes
eXperience Points (XP) to gamify learning, incentivizing both quantity and quality of work. XP
awards bonus points for stellar performance and introduces penalties for poor efforts, preventing
exploitation by adversarial students. Math Academy also remedies loopholes that are typically

found (and exploited) in traditional classrooms.

Importance of Gamification

| Increasing Learning, Engagement, and Enjoyment

A common theme across many of the cognitive learning strategies described in this document
has been that they produce more learning by increasing cognitive activation, which students
find less enjoyable because it’s more mentally taxing. Furthering the inconvenience, students
often mistakenly interpret extra cognitive effort as an indication that they are not learning as

well, when in fact the opposite is true.

Thankfully, the strategy of gamification behaves differently. Numerous studies have shown that
when game-like elements (such as points and leaderboards) are integrated into student learning

environments in ways that are

1. aligned with the goals of a course, the motivations of the students, and the context of the

educational setting, and

2. robust to “hacking” or “gaming the system” (i.e. behaviors that attempt to bypass

learning by exploiting loopholes in the rules of the game),

students typically not only learn more and engage more with the content, but also enjoy it more
(Bai, Hew, & Huang, 2020; Looyestyn et al., 2017; Lei et al., 2022).


https://en.wikipedia.org/wiki/Gamification
https://www.sciencedirect.com/science/article/abs/pii/S1747938X19302908
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173403
https://onlinelibrary.wiley.com/doi/abs/10.1111/jcal.12664
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This applies not only to young students, but also to university-level students and even
postgraduate students in technically-challenging courses. As the authors of a gamification study

at Delft University of Technology describe (Iosup & Epema, 2014):

“Over the past three years, we have applied gamification to undergraduate and graduate courses
in a leading technical university in the Netherlands and in Europe. Ours is one of the first
long-running attempts to show that gamification can be used to teach technically challenging
courses.

The two gamification-based courses, the first-year B.Sc. course Computer Organization and an
M.Sc.-level course on the emerging technology of Cloud Computing, have been cumulatively
followed by over 450 students and passed by over 75% of them, at the first attempt.

We find that gamification is correlated with an increase in the percentage of passing students, and
in the participation in voluntary activities and challenging assignments. Gamification seems to
also foster interaction in the classroom and trigger students to pay more attention to the design of
the course. We also observe very positive student assessments and volunteered testimonials, and a
Teacher of the Year award.”

| Increasing Learning Efficiency

Clearly, gamification is a potent strategy for maintaining student motivation and helping
students feel good about hard work. (Any readers with experience in high-performance athletics
will know the wonders that a bit of gamification can do for maintaining morale while working
hard at practice - usually in the form of tracking personal progress or engaging in friendly

competition with teammates.)

But even more importantly, gamification also functions as a lever by which to incentivize
high-quality work. Because adaptive learning systems like Math Academy speed up or slow
down based on student performance, a student’s learning efficiency depends highly on the

quality of their work:

e a student who performs well can make a lot of progress in a course by doing a relatively

small amount of work, while

e a student who performs poorly will have to do significantly more work to make the same

amount of progress.

In effect, for a student to make educational progress in an adaptive learning system like Math

Academy, they have to put forth a sufficient amount of high-quality work.


https://www.researchgate.net/profile/Alexandru-Iosup/publication/262395542_An_experience_report_on_using_gamification_in_technical_higher_education/links/544f9f240cf2bca5ce92aa8f/An-experience-report-on-using-gamification-in-technical-higher-education.pdf
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Incentivizing Quantity and Quality of Work

| XP-Time Equivalence

To incentivize both quantity and quality of work, Math Academy uses eXperience Points (XP)
to implement a gamified reward system. Students earn XP upon successful completion of
learning tasks, and XP is calibrated so that 1 XP represents 1 minute of fully-focused,

fully-productive work for an average serious (but imperfect) student.
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XP makes it easy for parents and teachers to set reasonable learning goals as a daily target
number of XP, and it gives the system a lever by which to incentivize student behavior that is

beneficial to learning.
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| Incentivizing Quantity of Work

For instance, to incentivize students to put forth a sufficient quantity of work, we implemented
(optional) competitive weekly leaderboards where students are grouped into smaller leagues
with other students of similar competitive ability. If a student earns enough XP to end the week
near the top of their league, they promote to a higher league. But if they end the week near the

bottom of their league, they demote to a lower league.

Bronze League

claire.p

lucy

ariellio._.
Bloonfreezer62Sr
girlboss
Littledipper

727

bozo
matkelley955
Who

W 0 N R W N =

-
=]

4 PROMOTION ZONE 4

11 void
12 Zark_
13 judah
14 C.T.R



The Math Academy Way - Working Draft | 279

| Incentivizing Quality of Work

Likewise, to incentivize students to maintain high quality of work, we scale XP awards so that
there is a large reward for doing a stellar job (as opposed to just “good enough”), and students
must clear a bar in order to earn any XP. This stands in contrast to traditional
aggregate-percentage grades, which provide minimal reward for going above and beyond while

simultaneously often allowing students to “get by” with poor performance.

XP allows us to implement a “carrot and stick” approach to incentivizing student effort: we

award

e bonus XP for perfect performance - awarding bonus points for high performance has

been shown to increase performance (Egram, 1979),
e full XP for nearly perfect performance,
e most XP for otherwise passable performance,
e alittle XP for nearly passable performance,
e zero XP for poor performance, and

e anegative XP penalty for blowing off a task.


https://library2.smu.ca/bitstream/handle/01/22155/clarke_engram_deborah_p_masters_1979.PDF?sequence=1
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Closing Loopholes

Most students use Math Academy properly and therefore rarely (if ever) see XP penalties.
However, we have experienced on numerous occasions that in the absence of a penalty system,
adversarial students will complete tasks that they feel are easy and then submit random guesses
to intentionally fail out of tasks that require more effort. This tanks their performance, causing
their adaptive learning schedule to slow down or even begin falling backwards, which

drastically slows or even prevents progress towards their educational goals.

We call these students “XP hackers.” They engage in this behavior because they are trying to
minimize their effort per XP. Without XP penalties, the XP hacker strategy can be exploited

indefinitely and students can rack up XP without making progress.

As Baker et al. (2006) noted, a way to prevent adversarial students from gaming the system is to
tweak the rules in a way that “change/s| the incentive to game — whereas gaming might previously have

been seen as a way to avoid work, it now leads to extra work.” In our case, this means taking away


https://www.cs.cmu.edu/~listen/pdfs/Baker175.pdf
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some XP whenever a student blows off a task (and even more XP if they continue blowing off
tasks). By introducing a penalty, we tweak the game so that the way to minimize effort per XP is

to give a legitimate effort on every task.

In order to trigger and calibrate XP penalties appropriately, we interpret penalties as conveying
how frustrated a teacher, tutor, or guardian sitting next to the student would become. After
implementing XP penalties, we found that many adversarial students’ rates of passing learning
tasks jumped from under 50% to over 90%, while students who used the system properly and

truly gave their best effort rarely (if ever) experienced penalties.

Math Academy also remedies loopholes that are typically found (and exploited) in traditional
classrooms. For instance, the most obvious enabler of cheating in traditional classrooms is
giving all students the same homework and assessments. But Math Academy customizes its
learning path to each individual student, so it’s unusual for classmates to have the opportunity
to work on the same topic at the same time - and even if they do, then they are served different
questions, since we have a large bank of questions for each topic. Our assessments are also fully
individualized and even randomized, meaning that there is absolutely no edge that a student can
gain from seeing a classmate’s quiz. And if a student fails a task and has to re-attempt it, we
change up the questions and even wait for a delay period before allowing the re-attempt (in the

meantime, the student is able to continue making progress along other learning paths).

Progress vs XP

It’s important to realize that a student’s progress (percent of topics completed) in a course is
highly correlated with, but fundamentally different from, the amount of XP that they have
earned in the course. The only time a student's progress percent increases is when they
complete a lesson. As a student gets further into their course (and math in general), more review
is required to maintain their growing knowledge base. As a result, students make progress faster

at the beginning of a course than they do at the end of a course.
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Progress is nonlinear. Students make progress very quickly at the beginning of a course because
they can focus primarily on learning new topics (i.e. lessons) as opposed to maintaining existing
knowledge (i.e. reviews). But the more they learn, the more there is to review - so progress slows
down. That said, we have a hard rule to ensure that on average, students have the opportunity to

work on a lesson at least ~25% of the time or so at a minimum.

At surface level, it might seem like it would be more straightforward to measure progress in
terms of XP completed relative to the total estimated XP in the course. However, this would
create issues because the amount of XP in a course can change significantly in response to
changes in student performance (because the spaced repetition process speeds up when students
are doing well and slows down when students are struggling). If progress were measured in
terms of XP, then a student could run into a situation where they are completing lessons but
their progress is going down because their overall performance is decreasing, which would be

far more counterintuitive and confusing.

It is also worth noting that progress naturally slow downs at the end of a course, when a student
only has a handful of topics remaining. Often, when we give a student a new lesson, we are
actually knocking out one or more due reviews with that lesson. The more lessons are on the
student’s "knowledge frontier," the more likely it is that we can find a new lesson to knock out
some due reviews. The flipside is that when a student only has a handful of lessons left in a
course, it severely restricts our ability to carry out this sort of optimization. To be clear, the

system is not moving slowly in an absolute sense, just “less fast” relative to the normal
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turbo-boosted behavior, because it is unable to take advantage of a strategy that it normally uses

to turbo-boost the rate at which students can make progress.

While this constraint can be circumvented by allowing the system to receive topics from the
next course (that knock out some currently-due reviews) once they are in the last handful of
topics of a course, that would lead to confusion, and in the big picture it would just be a

micro-optimization that has negligible impact on total XP per course.
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Chapter 22. Leveraging Cognitive Learning
Strategies Requires Technology

Summary: While there is plenty of room for teachers to make better use of cognitive learning
strategies in the classroom, teachers are victims of circumstance in a profession lacking effective
accountability and incentive structures, and the end result is that students continue to receive
mediocre educational experiences. Given a sufficient degree of accountability and incentives,
there is no law of physics preventing a teacher from putting forth the work needed to deliver an
optimal learning experience to a single student. However, in the absence of technology, it is
impossible for a single human teacher to deliver an optimal learning experience to a classroom of
many students with heterogeneous knowledge profiles, each of whom needs to work on different
types of problems and receive immediate feedback on each of their attempts. This is why
technology is necessary. By automatically leveraging cognitive learning strategies to their fullest
extent, Math Academy is able to deliver an optimized, adaptive, personalized learning experience
to each individual student. Math Academy students are perpetually engaged in productive
problem-solving, with immediate feedback (and remediation when necessary), on the specific types
of problems (and in the specific types of settings) that will move the needle the most for their

personal learning progress.

High-Level Context

| The Problem: Cognitive Learning Strategies Remain Underused

It is common knowledge among researchers that the cognitive learning strategies discussed in
previous chapters have the potential to drastically improve the depth, pace, and overall success
of student learning. These strategies have been identified and researched extensively since the
early to mid-1900s, with key findings being successfully reproduced over and over again since
then. However, as discussed in chapter 2, the disappointing reality is that the practice of
education has barely changed, and in many ways remains in direct opposition to these

strategies.
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| The Blame: Teachers are Victims of Circumstance

So, what happened? Why does the potential of these cognitive learning strategies remain

unrealized, and who - or what - is to blame?

We do not wish to direct the blame at teachers. For instance, one cannot blame Sherman (1992) -
who did everything in his power to leverage mastery-based learning within his own classroom
and promote its widespread adoption - for having his efforts opposed and ultimately
overpowered by various forces at play within the education system. Likewise, one cannot blame
other teachers who have thought about ways to capitalize on these cognitive learning strategies
to improve student learning, but, for one reason or another, found it too difficult to integrate

them into their classroom in practice.

Teachers are victims of circumstance. The education system - like any other system whose
intended function (promoting learning) is limited by the scarce resources (teachers and funding)
available to achieve that function - has developed its own conventions while seeking the closest
thing to a solution to an intractable problem. As the education system has evolved over
hundreds of years, these conventions have accumulated and ossified into hard-baked constraints
that outlive their usefulness. Many constraints are no longer helpful to the goal of promoting

learning, yet remain deeply ingrained and act to resist change.

As summarized by Sherman (1992):

“..[T]he investment in keeping things as they are may be impossible to overcome. ... Improving
instruction is the goal, but only in the context of not changing anything that is important to any
vested interest. ... [When the role of the teacher] does not conform to what most people think of as
teaching; this is a problem and an obstacle to implementation.”

| The Solution: Technology Changes Everything

In the past, scarcity of resources (teachers and funding) has made it impossible to fully leverage
cognitive learning strategies in traditional classrooms. This scarcity persists today. However, a

new variable has also entered the equation: technology.

Technology changes everything. Individualized digital learning environments are now
technologically possible and commercially viable. Technology not only lets us circumvent the

opposing inertia in the education system, but also helps us leverage cognitive learning strategies


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1279650/pdf/jaba00015-0061.pdf
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to a degree that would not be feasible for even the most agreeable and hard-working human

teacher.

Resistance to Additional Effort

One force keeping cognitive learning strategies out of the classroom is that they require
additional effort from teachers and students. Again, we do not say this with the intent to cast
blame - it is simply a fact that as humans, we tend to resist additional effort, especially when we
(like teachers) are already tired or (like young students) do not fully understand the long-term

consequences of our decisions.

Teachers are already under a high level of baseline stress while facing strenuous - and often
conflicting - demands from administrators, parents, and students. When it comes to promoting
learning, teachers can keep all parties satisfied (or, perhaps, not too dissatisfied) by checking the
boxes on long-standing conventions of the educational system: some lectures, some homework,
several quizzes, and a couple tests. There’s only so much you can deride a teacher for meeting
the societal and institutional expectations that are placed on them, but not going above and

beyond.

The same applies to students. Like a child who prefers to eat junk food and watch TV, but
manages to complete their chores and eat the vegetables on their dinner plate, there’s only so
much you can deride a student for showing up to class, being undisruptive, and performing well
enough on homework and tests to earn a passing grade, but not going above and beyond to
maximize their learning and retention - especially when they are too young to fully grasp the

long-term impact of their present habits on their future life.

Additionally, it is unreasonable to expect students to be highly motivated to maximize their
learning in every subject when a reality of human nature is that most people are unmotivated to
do most things. The tiny subset of things that a person is motivated to do in life are called their
career and hobbies, and most people only have at most one career and a few hobbies. Everything

else - i.e., the vast majority of things - are chores.



288 | The Math Academy Way - Working Draft

| Active Learning

Active learning requires teachers to spend more time and effort preparing and managing
classroom activities. As we emphasized in chapter 10, true active learning requires every

individual student to be actively engaged on every piece of material to be learned.

To implement true active learning in a math classroom, a teacher must continually supply
problems, enforce that each student is attempting the problems, and check each student’s
solution to each problem, providing corrective feedback whenever a solution is incorrect.
Enforcing that students are doing the problems can be particularly difficult and frustrating,
since all but the most motivated students will typically avoid mentally taxing work when
possible. (While it’s true that more students may become motivated to put forth a high level of
effort and maintain it in the absence of supervision if they enter a state of flow, there is typically
an initial “activation energy”’ that must be overcome before reaching the flow experience,
similar to how one might not look forward to working out but actually have a lot of fun and feel

proud of their effort once they get going with it.)

Additionally, active learning requires the teacher to make lots of on-the-fly decisions, which can
feel overwhelming to teachers who are more comfortable planning everything out beforehand.
What the class does next should depend on whether students were able to do what the teacher
originally asked them to do. These decisions can get especially tricky when the class becomes
“split” with many students being able to do the original activity and being ready to move on to
something more challenging, but many other students struggling and needing more practice (or
even remedial support) with the original activity. No active learning lesson plan survives contact

with a class full of students of varying abilities.
On the whole, it’s way easier for a teacher to just talk and write on the board and “check the
box” on active learning (without really leveraging it) by making sure that students appear to be

listening, having some discussion with the smartest kids in the class, and maybe displaying a

few problems and asking who wants to come up to the board to present a solution.

| Non-Interference, Interleaving, and Spaced Repetition

> Shuffling Instructional Material

As discussed in chapter 16, conceptually related pieces of knowledge can interfere with each

other’s recall, especially when taught simultaneously or in close succession. To minimize the
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impact of interference, new concepts should be taught alongside dissimilar material. However, it
is easier for teachers to work in batch, creating week-by-week class lesson plans around groups

of related material.

Additionally, the instructional material that’s provided to teachers is typically structured around
curricular units of related content. While it may make sense to structure a reference book this
way (for ease of lookup), this organization does not reflect the optimal order to actually teach the
material. As a result, a teacher wishing to leverage non-interference would have to invest
additional time and effort into “shuffling” their instructional material while ensuring that every

topic comes later than its prerequisites in the shuffled order.

Similar effort is required to leverage interleaving, which, as discussed in chapter 18, involves
spreading out review problems over multiple review assignments that each cover a broad mix of
previously-learned topics. Most textbooks are structured the opposite way - in blocks, where a
single skill is practiced many times consecutively. As a result, a teacher typically cannot just
grab an interleaved assignment “off the shelf” - rather, they will need to invest time and effort
to manually allocate problems across interleaved assignments and keep track of how much

practice they've given the class on each topic.

> Opening a Can of Worms on Forgetting

Interleaving can open a can of worms on who doesn’t remember what: when students are doing
a variety of different things and are not able to mindlessly apply one type of procedure to one
type of problem, they may need reminders of how and when to apply various solution
techniques, they may make a variety of different types of mistakes, and they may have scattered
questions in class the next day about the previous day’s homework. The same thing happens
during spaced repetition, which, as discussed in chapter 17, involves spacing out reviews over

time.

Opening this can of worms is actually a good thing because it provides an immense amount of
information about what each student needs to work on - but it can feel overwhelming for
teachers to have so many student needs at one time, especially when the teacher is under
pressure for the class to cover a set amount of content by a fixed deadline, and the teacher feels

like remediating student forgetting is “slowing down” their progress towards that goal.

Of course, good teachers understand the importance of continual review and periodically revisit

previously-learned material to help their students retain it. However, as discussed in chapter 17,
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optimizing retention through true spaced repetition requires a massive, inhuman amount of
bookkeeping and computation. Carrying out even a loose approximation of spaced repetition for
the class as a whole requires an immense level of effort. Given the additional stress that
continual review creates for teachers, it’s easier to just stick to the status quo and cram a class or

two of review before each major test.

| Testing Effect

Good, highly-engaged teachers understand the importance of quizzes and give regular weekly or
biweekly quizzes (which is reasonably frequent, though a higher frequency would be ideal).
However, unless these quizzes are built into some existing curriculum that they are working
from, it takes a lot of work to create those quizzes, grade them, and go over mistakes with
students. And that’s not all:

e Ideally, students who don’t do so well will be given the opportunity to demonstrate
learning from their mistakes on a retake quiz with different (but similar) questions -

which effectively doubles the teacher’s workload relating to quizzes.

e In a class of more than a handful of students, there is always a good chance that one or
more students will be absent due to sickness, medical appointments, or other things, in

which case the teacher has to schedule make-up quizzes.

e Especially at the high school and university levels, a minority of students may cause
further headache by routinely complaining that questions they missed were unfair (and

should be thrown out) or begging for undeserved partial credit.

Considering that most full-time teachers teach about 5-6 different classes each day, it’s an
infeasible amount of work to quiz students every few days. Giving regular weekly or biweekly
quizzes in all of one’s classes is hard enough. Realistically, given the additional stress that
teachers experience when they give additional quizzes, it’s easier to just stick to the status quo
and quiz students at the bare minimum frequency required to meet one’s professional

expectations.



The Math Academy Way - Working Draft | 291

| Gamification

Managing a gamified metric like eXperience Points (XP), and other gamified features like
leaderboards, takes an immense amount of bookkeeping. It can be done, but it takes a really
engaged teacher, and even then, it’s typically too much work for a teacher to integrate every
single learning task into the gamification structure. Gamification is typically not a part of a

teacher’s professional expectations, so it’s easier for teachers to just forego it.

Tutoring the King’s Kid: How Would You Teach if Your Life
Depended On It?

The issues described above are not impossible to overcome manually. Each issue is solvable, but
the solution requires a lot of work from the teacher. There is no law of physics preventing the
teacher from putting forth that work, but the degree of accountability and incentives in place is

not sufficient to motivate the teacher to do so.

(We again emphasize that this is not the fault of teachers, who are victims of circumstance in a
profession lacking effective accountability and incentive structures. Who wants to work harder
than necessary if they know they’re not going to be rewarded for it, and there is no punishment

for mediocre work? Nobody.)

To intuitively understand the importance of accountability and incentives, it may help to
imagine yourself as an educator in a life-or-death situation, where the outcome of the situation
depends on whether you can teach a student effectively enough that they are able to

unequivocally demonstrate their learning to a third party.

Suppose that you are an educator back in medieval times, and you work within the kingdom of the
wealthiest, but also the fiercest, king in all the world. The king’s child has participated in a school
within the kingdom, but the king has been unhappy with the results: the child has gone to school
for over a year, and has learned how to count, but remains unable to solve any problem requiring
simple application of arithmetic.

One day, the king sends for you to appear immediately at his throne. When you show up, he
commands you to teach simple arithmetic to his child as your sole duty for the next month. The
child shall spend the entirety of each school day with you, and in exactly one month, the king shall
ask his child five questions, each one requiring the addition, subtraction, multiplication, or
division of two numbers, each number being one or two digits long. The child will have two
minutes to complete each question, and their performance on this test will determine your fate.
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Being the wealthiest king in all the world, he has decided that if the child answers at least four of
the five questions correctly, then he will grant you a fortune so extravagant that you can live out
the rest of your life to the same level of luxury as a lesser king. However, if the child answers three
or fewer questions correctly, then you shall be executed the following day.

In this situation, you're motivated to put in the work to overcome each of the issues described
earlier. The instructional experience becomes entirely student-centered, leveraging cognitive

learning strategies as much as humanly possible.

Suddenly, you realize that you don’t care at all about how much time, effort, and stress you have
to endure to make this child learn. Your own feelings are completely out of the picture. All that
matters is whether the child comes to know their arithmetic facts by heart, understand the
meaning of the operations deeply enough to know when to apply each one in problem-solving
contexts, and quickly and reliably calculate the result of any arithmetic operation with numbers
up to two digits long.

To accomplish this, every moment you have with the child will be devoted to getting the child to
the point where they are able to do all of these things independently.

+ You will of course introduce each skill along with a quick demonstration, but you won’t ramble
about anything that’s irrelevant because your goal will be to have them start attempting to solve
problems on each skill as soon as possible.

+ You will provide corrective feedback on every single problem that they solve, talking them
through the correct solution whenever they make a mistake. If they do well, you will quickly move
them onwards to more difficult problems, but if they struggle, you will give them however much
practice they need to master the skill before moving forwards.

» You will cover a mix of different topics every day and continually feed them review problems on
previously-learned skills (but not too much review - just a “minimal effective dose” to restore their
memory on any topics that they might be in danger of forgetting).

+ You will also provide frequent timed quizzes on a mixture of different problem types, go over
their quizzes with them, give them more practice on anything they missed on the quizzes, and give

them a retake to make sure they learned from their mistakes.

» Lastly, you will gamify the experience in a way that incentivizes the child to put their best effort
forward all the time.

Heterogeneity of Student Knowledge Profiles
| Tutoring the King’s Kid vs Teaching Many Kings’ Kids
The “tutoring the king’s kid” anecdote illustrates that there is no law of physics preventing a

teacher from putting forth the work needed to deliver an optimal learning experience to a single

student: rather, it is a matter of accountability and incentives.
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However, a key assumption in the anecdote is that the teacher is working with a single student.
If the same story were told with a class full of 30 children, each from a king who will execute the
teacher if their own child fails the test, then it would emphasize a different perspective: the
teacher may be doomed because no matter how hard the they try, they will not be able to deliver
that same optimal learning experience to every student in the class. Regardless of the level of

accountability and incentives, the amount of work required would be inhuman.

Loosely speaking, it boils down to the physics of learning. The reason why it’s so much harder to
teach 30 students than to teach a single student is that the 30 students all have unique,

heterogeneous knowledge profiles.

| Differences in Background Knowledge

Students who earned different grades in a prerequisite math course typically come into the next
course with vastly different knowledge profiles. For instance, students who received a C in the
prerequisite course typically have far more foundational knowledge gaps than students who
received an A (though even students who received an A usually have some foundational

knowledge gaps, even if they tend to be fewer and/or less severe).

Moreover, and more subtly, even students who earned the exact same grade in a prerequisite
math course typically have vastly different knowledge profiles from each other. Any two
students who mastered the same amount of material in the prerequisite course may completely
differ in the material that they were unable to master. One student may have struggled with
fractions, while another may have struggled with decimals. One student may have struggled

with solving equations, while another may have struggled with graphing functions.
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| Student Knowledge Profiles Naturally Tend Towards Heterogeneity

Even in an unrealistic hypothetical scenario where all the students in a class were academic
“clones” of one another with exactly the same knowledge profiles, learning speeds, and levels of
motivation, their knowledge profiles would naturally diverge over time as the class went on.
Despite having the same academic profile, each student would be missing class or spacing out at
different times, and as a result, some students would struggle with some topics more than
others. (Missing class and spacing out are effectively the same thing, just on different time

scales: they differ only in frequency and duration.)

Everyone spaces out sometimes - even adults. It happens constantly, even to people who are
consciously trying to pay attention. People have a hard time focusing when they have other
things on their minds: what they’re going to eat for lunch, their plans for the weekend, anxiety
about a personal relationship, etc. The author of this book spaced out at least twice while

writing the four paragraphs in this subsection.

This is especially true for students, who also face an endless list of mini-distractions in a

classroom. For instance, a student might need to spend 30 seconds ruffling through their
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backpack for another pencil/pen or piece of paper (or their friend might ask them for one of

those things). Or, a student may need to miss several minutes of class to use the bathroom.

Regardless of whether it is their fault or not, students are momentarily distracted at different
times and they miss things. These differences compound over time unless the teacher
immediately detects and fully remediates them at the instant that they arise - but this requires

an inhuman amount of work, so teachers aren’t doing it unless they have technology that does it.

| Every Student in the Class Effectively Needs a Private Tutor

The heterogeneity of student knowledge profiles means that different students need different
amounts of practice, on different skills, at different times. Consequently, to deliver an optimal
learning experience to all students in the class, the teacher must effectively function as a private
tutor for every individual student. Needless to say, no matter how a teacher attempts this, it’s an
intractable problem if their class consists of more than a few students. Even if a teacher tries
their hardest, they will not be able to deliver an optimal learning experience to every student in

the class.

To fully leverage the cognitive learning strategies discussed in this book, and deliver an optimal
learning experience to every student in the class, every individual student needs to be fully
engaged in productive problem-solving, with immediate feedback (including remedial support
when necessary), on the specific types of problems, and in the specific types of settings (e.g.,
with vs without reference material, blocked vs interleaved, timed vs untimed), that will move the
needle the most for their personal learning progress at that specific moment in time. This needs
to be happening throughout the entirety of class time, the only exceptions being those brief
moments when a student is introduced to a new topic and observes a worked example before

jumping into active problem-solving.

However, when students have heterogeneous knowledge profiles, it’s at best extremely difficult,
and at worst (and most commonly) impossible, to find a type of problem that is productive for all
students in the class. Even if a teacher chooses a type of problem that is appropriate for what
they perceive to be the “class average” knowledge profile, it will typically be too hard for many
students and too easy for many others (an unproductive use of time for those students either

way).

To even know the specific problem types that each student needs to work on, the teacher has to

separately track each student’s progress on each problem type, manage a spaced repetition



296 | The Math Academy Way - Working Draft

schedule of when each student needs to review each topic, and continually update each schedule
based on the student’s performance (which can be incredibly complicated given that each time a
student learns or reviews an advanced topic, they're implicitly reviewing many simpler topics,
all of whose repetition schedules need to be adjusted as a result, depending on how the student

performed). This is an inhuman amount of bookkeeping and computation.

Furthermore, even on the rare occasion that a teacher manages to find a type of problem that is
productive for all students in the class, different students will require different amounts of
practice to master the solution technique. Some students will catch on quickly and be ready to
move on to more difficult problems after solving just a couple problems of the given type, while
other students will require many more attempts before they are able to solve problems of the
given type successfully on their own. Additionally, some students will solve problems quickly

while others will require more time.

In the absence of technology, it is impossible for a single human teacher to deliver an optimal
learning experience to a classroom of many students with heterogeneous knowledge profiles,
who all need to work on different types of problems and receive immediate feedback on each
attempt. However, technology changes everything. By automatically leveraging cognitive
learning strategies to their fullest extent, Math Academy is able to deliver an optimized,
adaptive, personalized learning experience to each individual student. Math Academy students
are perpetually engaged in productive problem-solving, with immediate feedback (and
remediation when necessary), on the specific types of problems (and in the specific types of

settings) that will move the needle the most for their personal learning progress.
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I[V. TECHNICAL DEEP DIVES
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Chapter 23. Technical Deep Dive on
Spaced Repetition

Note: this chapter elaborates on concepts introduced in chapter 17.

Summary: Math Academy employs Fractional Implicit Repetition (FIRe), a novel spaced
repetition algorithm, to calculate student learning profiles. FIRe generalizes spaced repetition to
hierarchical knowledge, allowing repetitions on advanced topics to implicitly trickle down to
simpler topics. The algorithm handles partial encompassings and extends repetition flows through
fractional encompassings, optimizing credit distribution. The speed of the spaced repetition
process is calibrated to each individual student on each individual topic, where student ability

and topic difficulty are competing factors.

Fractional Implicit Repetition (FIRe)

To calculate student spaced repetition profiles, Math Academy uses a novel spaced repetition
algorithm called Fractional Implicit Repetition (FIRe). FIRe generalizes spaced repetition to

hierarchical bodies of knowledge where

1. repetitions on advanced topics “trickle down” implicitly to simpler topics through

encompassing relationships, and

2. simpler topics receiving lots of implicit repetitions discount the repetitions
appropriately (since they are often too early to count for full credit towards the next

repetition).
| Concrete Example
As a concrete example, recall that Multiplying a Two-Digit Number by a One-Digit Number

encompasses Multiplying One-Digit Numbers and Adding a One-Digit Number to a Two-Digit

Number.
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If you pass a review on Multiplying a Two-Digit Number by a One-Digit Number, then the repetition

will also flow backward to reward Multiplying One-Digit Numbers and Adding a One-Digit Number

to a Two-Digit Number because you’ve just shown evidence that you still know how to perform

these skills.

Explicit
Review

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Multiplying One-
Digit Numbers

Adding One-
Digit Numbers to
Two-Digit Numbers

Explicit
Review

Multiplying Two-
Digit Numbers by
One-Digit Numbers

Implicit
Review

Multiplying One-
Digit Numbers Implicit

Review

Adding One-
Digit Numbers to
Two-Digit Numbers

On the other hand, if you fail a repetition on Adding a One-Digit Number to a Two-Digit Number,

then the failed repetition will also flow forward to penalize Multiplying a Two-Digit Number by a

One-Digit Number. If you can’t add a one-digit number to a two-digit number, then there’s no

way you're able to multiply a two-digit number by a one-digit number. The same thing happens

if you fail a repetition on Multiplying One-Digit Numbers.
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| Visualizing Repetition Flow
Note that repetition flows can extend many layers deep - not just to directly encompassed
topics, but also to “second-order” topics that are encompassed by the encompassed topics, and

then to third-order topics that are encompassed by second-order topics, and so on.

Visually, credit travels downwards through the knowledge graph like lightning bolts.
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| Partial Encompassings

FIRe also naturally handles cases of partial encompassings, in which only some part of a
simpler topic is practiced implicitly in an advanced topic. This occurs more frequently in

higher-level math.

For instance, in calculus, advanced integration techniques like integration by parts require you

to calculate integrals of a variety of mathematical functions such as polynomials, exponentials,
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and trigonometric functions. But some of those functions might only appear in a portion of the
integration by parts problems. So, if you complete a repetition on integration by parts, you

should only receive a fraction of a repetition towards each partially-encompassed topic.

In the diagram below, we label encompassings with numerical weights that represent what
fraction of each simpler topic is practiced during the more advanced topic. You can loosely
interpret each weight as representing the probability that a random problem from the advanced

topic encompasses a random problem from the simpler topic.

Integration
by Parts

Integrating
Polynomial
Functions

Integrating
Exponential
Functions

Integrating
Trigonometric
Functions

FIRe extends repetition flows many layers deep through fractional encompassings as well. The
end result is that repetitions
1. travel unhindered along a “trunk” of full encompassings, and

2. fade off along partial encompassings branching outwards from the trunk.
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Setting Encompassing Weights Manually

| Direct and Key Prerequisites are Sufficient

Because encompassing weights are set manually, it is not feasible to set an explicit weight
between every pair of topics in the graph. We have thousands of topics, so the full pairwise

weight matrix would contain tens of millions of entries. How do we set all those weights?

It turns out that it is not actually necessary to explicitly set every weight in the matrix. It suffices

to set only the weights for topic pairs where
1. the weight has a nontrivial value,
2. the weight cannot otherwise be inferred using repetition flow, and
3. the distance between the topics in the prerequisite graph is low,

and assume that all other weights not computed implicitly during repetition flow are zero. The

reasoning behind these conditions is as follows:

1. The magnitude of the weight represents the magnitude of the implicit repetition credit.
In order for an implicit repetition to make an impact on staving off explicit reviews, it

has to be associated with a nontrivial amount of credit.

2. If repetition flow can infer a weight, then nothing will change if the weight is set
manually (unless the manually-set weight is being used to correct a value that would

otherwise be inferred by repetition flow).

3. If two topics are far apart in the prerequisite graph, then their weight will not make
much of an impact on staving off reviews, even if it is a full encompassing. In that case,
by the time the student reaches the more advanced topic, they will already have done

most of their explicit reviews on the simpler topic.

Conveniently, the weights that satisfy the above conditions tend to be those along direct and key
prerequisite edges, the number of which scales linearly with the number of topics. This makes it

feasible to set encompassing weights manually: one weight for each direct or key prerequisite
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Note that it is not unusual to find direct and key prerequisite edges with a weight as low as zero.
This can happen when a topic requires some amount of conceptual familiarity with the
prerequisite, but does not require the student to actually have mastered the prerequisite to the

point of being able to solve problems in the prerequisite topic.

| Non-Ancestor Encompassings and Mastery Floors

To comply with course standards, it is sometimes necessary to have equivalent topics spread
out across multiple courses, with the equivalent topics in higher courses covering a more
advanced treatment of the same skills taught in lower courses. However, the simpler equivalent

topics are usually not required as prerequisites for the more advanced equivalent topics.

For instance, courses on algebra-based statistics and calculus-based statistics would have many
equivalent topics that cover the same skills. Although the calculus-based statistics course would
provide more advanced treatments of these skills, the corresponding equivalent topics in the

algebra-based statistics course would not be prerequisites.

Even though simple equivalent topics would not be ancestors of advanced equivalent topics via
direct or key prerequisite paths, we can still set full-encompassing edge weights between them
so that a student who completes an advanced topic will implicitly receive credit for any simpler

equivalent topics as well. These are called non-ancestor encompassings.
Non-ancestor encompassings, along with course-based mastery floors (lower-course topics that
are automatically considered mastered by any student taking the course), can also be useful for
assigning credit to leaf topics in lower-level courses. The mastery floor of a course consists of
the lower-course topics that

e are “far back” enough that it is safe to automatically consider them mastered, or

o lie “below” the simplest topics that could be assessed on the course’s diagnostic.

Intuitively, the top of the mastery floor marks the dividing line regarding whether it is at all

feasible for a student to take a course.
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Student-Topic Learning Speeds

| Ratio of Student Ability and Topic Difficulty
Student ability and topic difficulty are competing factors - high student ability speeds up the
overall student-topic learning speed, while high topic difficulty slows it down. So, to compute a
student-topic learning speed, we compute

1. the speedup due to student ability,

2. the slowdown due to topic difficulty, and then

3. their ratio.

speedup due to student ability

student-topic learning speed =
p & 5P slowdown due to topic difficulty

Student-Topic Learning Speed Student Ability
vs
Student Ability and Topic Difficulty Strong Moderate Weak
Easy fastest faster baseline
Topic Difficulty Moderate faster baseline slower
Hard baseline slower -

| Measuring Student Ability at the Level of Individual Topics

Student ability is measured at the granular level of individual topics — we keep track of accuracy

across answers, giving more weight to recent answers, and also propagating

e correct answers down to simpler encompassed topics and

e incorrect answers up to more advanced topics that encompass the answered topic.
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To choose the initial starting value for a topic’s accuracy, we make a prediction based on the
accuracy values of the topic’s local neighborhood consisting of its direct prerequisites, key

prerequisites, encompassings, and same-module topics.

Predict Initial Accuracy using Local Neighborhood
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| Measuring Topic Difficulty

Topic difficulty is measured by computing the topic’s accuracy across all instances when one of

its questions was answered by a serious student on an assessment.

In theory, if student abilities could be measured on each topic with perfect fidelity, then topic
difficulties would no longer be needed and student-topic learning speeds could be based entirely

on student abilities. But in practice, there are two reasons why it is helpful to rely on topic
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difficulty as well:

1. It improves the initial prediction. Although we already have information about the
particular student’s learning speed on other topics, the topic difficulty provides
information about the particular topic’s learning speed for other students. This is an

independent, information-rich signal.

2. It naturally acts as a correction factor. When topic difficulty is high, it decreases the
learning speed - which is desirable given that high topic difficulty is caused by low
assessment performance, which is in turn (largely) caused by students not getting enough
review. Similarly, when topic difficulty is low, it increases the learning speed - which is
desirable given that low topic difficulty is caused by extremely high assessment
performance, which indicates that students might not need as much review as they are

receiving.
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Chapter 24. Technical Deep Dive on

Diagnostic Exams

Note: this chapter elaborates on concepts introduced in chapter 4 and chapter 20.

Summary: Math Academy uses adaptive diagnostics to infer each incoming student’s knowledge
profile. The novel diagnostic assessment algorithm leverages causal relationships and
correlation-based inference in the knowledge graph to efficiently gauge a student’s knowledge
frontier to a sufficient level of detail while minimizing the number of questions on the diagnostic.
It measures knowledge confidence and handles conflicting information, adapting its diagnosis to
nuanced scenarios like prerequisite-postrequisite and accuracy-time conflicts. Conditional
completion is employed for areas where knowledge was inferred with low confidence, allowing the
system to continue fine-tuning a student’s placement as it collects more data about their

performance.

Minimizing the Number of Questions

Without any clever algorithms, it would take a massive number of diagnostic questions to infer a
student’s knowledge frontier. Courses often contain up to several hundred topics, plus twice as
many foundational topics - which means that if we started at the bottom and asked you a
diagnostic question for every topic up until the point that you could no longer answer them

correctly, we’'d end up asking you 500+ questions in total.

However, Math Academy is able to cut down this number of diagnostic questions by an order of
magnitude using a novel diagnostic question selection algorithm. Our diagnostics generally take
only 20-40 questions for lower-grade courses (like Prealgebra) and 40-60 questions for

higher-grade courses (like Calculus).
We’re able to achieve this level of diagnostic efficiency for two reasons:

1. In addition to leveraging “causal” relationships, i.e. encompassings, we also leverage

looser forms of correlation-based inference.
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2. We compress the knowledge graph beforehand into the smallest number of topics that

fully "covers" a course and its foundations at a desired level of granularity.

As a result, our diagnostic assessment algorithm is highly leveraged on both accuracy and
precision. While a perfect-accuracy, perfect-precision diagnostic could require up to a thousand
questions, we are able to reduce this by an order of magnitude by giving up a negligible amount

of accuracy and precision.

(Of course, highly leveraged algorithms have a higher risk of being thrown off by false input -
but we mitigate this risk by detecting and re-assessing questions that we suspect may have been

incorrectly assessed.)

Knowledge Confidence and Conditional Completion

| Theory

During diagnostics, Math Academy also measures knowledge confidence, i.e., our confidence in
our classification of whether the student knows or does not know a topic. Most diagnostics
complete with fairly high confidence across the student’s entire knowledge profile, but
occasionally, there can be areas of low confidence. These do not arise from a lack of diagnostic

coverage, but rather, from conflicting evidence in a student’s responses.
There are two main types of conflicts:

1. Prerequisite-Postrequisite Conflict: a student answers a more advanced topic correctly but a

simpler question incorrectly, which may indicate a gap in the student’s knowledge.

2. Accuracy-Time Conflict: a student submits a correct answer but takes an excessively long
time to solve the problem, which may indicate that they have not yet mastered the

corresponding topic.

To handle these conflicts, we carefully weight positive and negative evidence against each other
to form a highly nuanced diagnosis of student knowledge that adapts appropriately to future

observations, just like a tutor would.

In particular, if the evidence balances out to “just barely” place a student out of some topics, the

system will consider those topics conditionally completed: the student will initially be given
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tasks under the assumption that they know those topics, but if the student struggles, then the

system will immediately begin “falling backwards” along the appropriate learning paths.

| Example

As an example, suppose

Then

student A answers many questions correctly on their diagnostic but takes excessively

long on most questions, while

student B answers fewer questions correctly but supplies correct answers quickly and
confidently.

student A will have a higher amount of overall knowledge, a significant portion of which

is low-confidence (and may be quickly pruned back if they struggle), while

student B will have less overall knowledge but may have more high-confidence
knowledge.
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| Implementation

To achieve this behavior, we weight diagnostic evidence using a plus-minus balance at each

topic.

e The sign (positive or non-positive) represents the prediction of whether the student

knows the topic.
e The magnitude of the balance represents the degree of confidence in the prediction.

Each answer is associated with a weight that represents its contribution to the plus-minus
balance of the corresponding topic. By default, an answer’s weight is equal to one. However, if a
student submits a correct answer but takes an excessively long time relative to the expected time
for a student who has mastered the topic, the answer weight is diminished. The answer still
gives the student positive credit, but the slower the student is to solve the problem (beyond a

reasonable time threshold), the smaller the amount of credit.
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Once the weight of an answer is determined, it propagates throughout the knowledge graph

updating plus-minus balances of topics as appropriate:

e A correct answer increases the plus-minus balances of the answered topic and its

prerequisites (and their prerequisites, and so on), while

e an incorrect answer decreases the plus-minus balances of the answered topic and its

post-requisites (and their post-requisites, and so on).

After all diagnostic questions have been processed, any topics with positive plus-minus weights

are credited with a number of repetitions equal to their plus-minus balance.

Conservative vs. Aggressive Edge of Mastery

There have been times when a student completed a course, took a placement diagnostic for the
same course, and was surprised that the placement told them their knowledge frontier was
lower in the course. But this is actually an expected result, especially for students who are

weaker.

Just because a student successfully completes all the homework for a course, doesn't mean that
they're going to ace a comprehensive final exam over the course. This is especially true for the

placement exam, which is even harder than a normal exam: unlike a normal exam,
e aplacement exam has to cover every topic (including all of the hardest topics), and

e it has to cover the most advanced question type from each of those topics (we can't place

a student out of a topic if they only know how to do the simpler cases).

Additionally, although we often talk about a student's "edge of mastery" as though it were a
single line across the student's knowledge profile, a student really has a "zone of mastery" that is
bounded below by a conservative edge of mastery and above by an aggressive edge of mastery. A
placement exam measures the conservative edge of mastery, while mastery-based learning with

layering operates on the aggressive edge of mastery.

When a student successfully completes a lesson, they've mastered the topic well enough to

continue layering on top of what they've learned, but they probably haven't reached the point of
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automaticity with the topic yet. By way of analogy, whenever a gymnast learns a new skill at
practice, it takes some more time and practice before they are ready to showcase that skill in
competition, but that doesn't stop them from continuing to work on more advanced skills

during practice in the meantime.

Supplemental Diagnostics

As topics are added and connectivity is revised in the knowledge graph, the knowledge profile
inferred from a student’s initial placement diagnostic can get a little out of date. When this
happens, we assign tiny diagnostics called supplemental diagnostics to bring the student’s

knowledge profile back up to date.

The topics on a supplemental diagnostic are those that were not directly assessed on the original
diagnostic and have plus-minus balances of zero when considering all the assessment answers
since (and including) the original diagnostic. The same form of highly efficient inference is used
on supplemental diagnostics, which means supplemental diagnostics are generally quite small,

consisting of at most a handful of questions.

Selecting Good Diagnostic Questions

There’s a lot of nuance that goes into selecting a good diagnostic question for a given topic.

e On one hand, diagnostic questions can’t be too easy. Each diagnostic question should be
difficult enough that if a student were to answer it correctly, then an expert tutor or

teacher would infer that they have fully mastered the corresponding topic.

e Additionally, a diagnostic question should exercise all of the prerequisites of the
corresponding topic. Otherwise, if there’s a prerequisite that the question doesn’t
exercise, then a student who doesn’t know the prerequisite could still answer the

question correctly and erroneously receive credit for the prerequisite.

e That said, a diagnostic question should generally not be the most difficult question in its
corresponding topic. The more complicated a question, the higher the likelihood that a

student might make a silly mistake.
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So, each diagnostic question should be chosen as the simplest question that

1. would convince an expert tutor or teacher that the student has mastered the

corresponding topic, and

2. exercises all of the topic’s prerequisites.

In practice, due to the level of nuance required, we select diagnostic questions manually.
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Chapter 25. Technical Deep Dive on
Learning Efficiency

Note: this chapter elaborates on concepts introduced in chapter 17 and chapter 21.

Summary: We introduce the concept of theoretical maximum learning efficiency, analogous to
the physical phenomenon that nothing can travel faster than the speed of light. The maximum
learning efficiency for a given knowledge graph depends on its encompassing density — however, a
knowledge graph does not have to be fully encompassed, or even nearly fully encompassed, for its
maximum learning efficiency to approach the theoretical limit. Math Academy’s mathematical
knowledge graph contains enough encompassings that its maximum learning efficiency is close to
the theoretical limit. In practice, the actual learning efficiency attained by an individual student
depends primarily on the student’s quality of performance, and to a lesser extent on their pace (the

average amount of work completed each day).

What is Learning Efficiency?

| Theoretical Maximum Learning Efficiency

In physics, nothing can travel faster than the speed of light. It is the theoretical maximum speed

that any physical object can attain. A universal constant.

In the context of spaced repetition, there is an analogous concept: theoretical maximum
learning efficiency. In theory, given a sufficiently encompassed body of knowledge, it is
possible to complete all your spaced repetitions without ever having to explicitly review

previously-learned material.

As a simple demonstration, consider a sequence of topics where the first topic is fully
encompassed by the second, which is fully encompassed by the third, which is fully

encompassed by the fourth, and so on.
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Each time you learn the next topic, all the topics below receive full implicit repetitions.
Assuming that you never run out of new topics to learn, the only reason you would ever need to
do an explicit repetition is if you get stuck repeatedly attempting and failing to learn the next

topic.

It’s important to realize that a graph does not have to be fully encompassed, or even nearly fully
encompassed, for its maximum learning efficiency to approach the theoretical limit. Even if most
relationships between topics are non-encompassing, a considerable minority of encompassings

goes a long way.

For instance, Math Academy’s mathematical knowledge graph contains enough encompassings
that its maximum learning efficiency is close to the theoretical limit. We have empirically
observed that, in practice, most mathematical courses can be learned with roughly only one
explicit review per topic on average. In theory, a perfect student who aced every single learning

task would need even fewer explicit reviews.

| Theoretical Minimum Learning Efficiency
By contrast, there is also a concept of theoretical minimum learning efficiency. This is

precisely the setting of independent flashcards - or equivalently, a set of topics without any

encompassings.

© O 0O 0O
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In this setting, no topic can receive implicit repetitions from any other topic. Every single

review must be done explicitly.

Num Explicit
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It’s worth emphasizing that, unlike Math Academy, other spaced repetition systems do not
leverage the power of encompassings and therefore implement theoretical minimum learning

efficiency.

Factors that Impact Learning Efficiency
Remember that to achieve maximum learning efficiency, Math Academy uses a process that we
call repetition compression. We gather all topics that have due repetitions, and then compress

this set into a much smaller set of tasks that

1. covers all of the due repetitions, and
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2. will lead to the greatest overall gain in spaced repetitions across your entire knowledge

profile.

You can think of Math Academy as a turbo-boosted educational engine, where repetition

compression is our combustion mechanism.

But remember that an engine can’t actually move a car unless it is supplied with gas and oil. The
gas is needed to produce the energy that moves the car, and the oil is needed to prevent friction

from locking up the engine.
The same applies to Math Academy. In order to experience the turbo-boosting,

1. you have to put in a sufficient amount of work that can be converted into educational

progress, and

2. the quality of your work has to be high enough to avoid excessive friction during the

learning process.

| Performance

By looking at your performance (pass rate and accuracy) across various types of learning tasks,
we are able to calculate a learning efficiency percentage that estimates how close you are to the

maximum possible efficiency for your course.

If you maintain a high learning efficiency, then you can make a lot of progress in your course by
doing a relatively small amount of work. But if you have a low learning efficiency, then you will

have to do significantly more work to make the same amount of progress.
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Learning Efficiency How Much Work to Complete a Course
1.00 1x
0.80 1.25x
0.67 1.5x
0.50 2x
0.25 4x

| Pace

In Math Academy, work is measured in eXperience Points (XP). One XP represents one minute
of fully-focused, fully-productive work for an average serious (but imperfect) student. The

amount of XP that you complete per weekday (on average) is called your pace.

> Learning Efficiency vs Pace

Although the quality of your work is the single greatest factor that affects your learning
efficiency, your pace can affect your learning efficiency as well. The faster you push your
knowledge frontier forward, the further your knowledge frontier is ahead of your due reviews,
and the more likely it is that we can find good topics to “knock out” a large number of your due

reviews.

We empirically determined the following relationship:

learning efficiency o< pace®!

This means that if you double your pace, your learning efficiency increases by about 2% = 7%.

Likewise, if you cut your pace in half, your learning efficiency decreases by about 7%.


https://www.codecogs.com/eqnedit.php?latex=%5Ctextrm%7Blearning%20efficiency%7D%20%5Cpropto%20%5Ctextrm%7Bpace%7D%5E%7B0.1%7D#0
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> Pace vs Time to Completion

In a normal class period during a school day, it’s reasonable to expect at least 40 minutes of

fully-focused, fully-productive work. This corresponds to a baseline pace of 40 XP per weekday.

When we benchmark the amount of XP in our courses, we simulate an average student who is
serious but imperfect and works at a pace of 40 XP per weekday. On average, courses contain
about 3000 XP assuming that a student knows all the necessary prerequisites (though this can
vary a lot depending on the amount of material that must be covered, e.g. prealgebra is ~2000 XP
but precalculus is ~4000 XP).

Below is a table that shows how long it would take you to complete a 3000 XP course, depending
on your pace. Note that learning efficiencies are computed relative to the baseline pace of 40
XP/weekday (so a pace of 40 XP/weekday corresponds to an efficiency of 1, and higher paces

correspond to efficiencies greater than 1).

How Long To Complete a Course

Pace Efficiency Multiplier Benchmarked at 3000 XP
(XF/weekday) (pace/40)0'1 weekdays = 3000/(pace*multiplier)
160 1.15 3 weeks
80 1.07 7 weeks
40 1.00 15 weeks
20 0.93 32 weeks
10 0.87 69 weeks (~1.3 years)
5 0.81 148 weeks (~3 years)

To put this in perspective: in a traditional classroom, each weekday involves 50 minutes of class
plus the same duration of homework after school. On this schedule, it takes students a full

school year (36 weeks) to complete a course.
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But if you spent the same amount of time working on Math Academy (100 XP/weekday), you
could finish in just 5-6 weeks! That’s more than a 6x speedup - and you don’t have to be a genius

to achieve it. Remember, we're talking about an average student who is serious but imperfect.

Even for a massive course like AP Calculus BC (which is benchmarked at about 6000 XP, twice
as big as an average course), the speedup is still over 3x. And if you factor in all the extra time
you'd spend studying for quizzes, midterms, finals, and the AP test itself in a traditional class,

which is already included in Math Academy’s 6000 XP benchmark, it’s a 4x speedup.

On the flipside, if you tried to use Math Academy like a phone game and only did a couple of
minutes per day, it could take you nearly a decade to learn a traditional school year’s worth of

math.

For this reason, we highly recommend that you maintain a pace of at least 15 XP per weekday if
you want to experience the benefits of Math Academy. But really, the higher your pace, the
better.
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Chapter 26. Technical Deep Dive on
Prioritizing Core Topics
Note: this chapter elaborates on concepts introduced in chapter 4.

Summary: Math Academy prioritizes core topics that are most relevant in the “big picture” of
mathematics. No topics are skipped, but because all topics are continually reviewed, covering core
topics first allows students to get more practice and therefore develop a greater degree of
automaticity on the core topics by the end of the course. This is advantageous because the core
topics are the ones that appear more frequently as prerequisites of other topics in mathematics.
We also observed that roughly a third of 4th grade through AP Calculus BC topics, while
necessary to meet standards, were not actually prerequisites for university math, so we created a
streamlined Mathematical Foundations (MF) course sequence that cuts out those topics and
consists of mostly core topics. The MF sequence is geared towards adult learners who want to
pursue advanced university courses as soon as possible but lack the necessary foundational

knowledge.

Core and Supplemental Topics

When a student progresses through a course, Math Academy prioritizes core topics first, that is,
the topics that are most relevant in the “big picture” of mathematics. For instance, in calculus,
the product rule would be a core topic, while the intermediate value theorem would be a

supplemental topic.

Of course, a student taking the calculus course will of course cover both core and supplemental
topics. No topics are skipped; it’s just a matter of the order in which they are covered. Because
students cover core topics first and continue practicing them throughout the course, they get
more practice and therefore develop a greater degree of automaticity on the core topics by the
end of the course. This is advantageous because the core topics are the ones that appear more

frequently as prerequisites of other topics in mathematics.

Math Academy employs a proprietary intelligent algorithm to automatically identify core topics

in its knowledge graph. At a high level, the idea is to satisfy two competing conditions:
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1. If a topic is core, then all of its ancestor topics (i.e. its prerequisites, their prerequisites,

and so on) must also be core.

2. However, in each standard course in the knowledge graph, there must be some balance
between core and supplemental topics - for instance, we should not label all topics as
core, or all topics as supplemental, even though both of those cases would technically
satisfy the preceding condition. The specific balance may vary depending on the

connectivity of topics in the course and their relationship to topics in other courses.

The Mathematical Foundations Sequence

After developing a comprehensive curriculum that covers all the standards for 4th grade
through AP Calculus BC, as well as plenty of advanced university courses, we found that roughly
a third of 4th grade through AP Calculus BC topics were not actually prerequisites for university
math. So, we created a streamlined Mathematical Foundations (MF) course sequence that cuts

out those topics and consists of mostly core topics.

The MF sequence is geared towards adult learners who want to pursue advanced university
courses as soon as possible but lack the necessary foundational knowledge. Whether an adult is
starting off again with the basics or just needs to brush up on calculus, our Mathematical
Foundations sequence is the fastest and most efficient way to get up to speed with the

mathematical concepts and tools that are necessary to excel in university-level mathematics.
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Glossary

abstraction - the ability to see “the forest for the trees” by learning underlying rules as opposed
to memorizing example-specific details. Abstracting underlying rules improves one’s ability to
extrapolate knowledge to new contexts. Abstraction ability is known to vary among individuals

and depends on working memory capacity.

abstraction ceiling - a practical limitation on the amount of math that one can learn, resulting
from the phenomena that people have limited abstraction abilities and that higher levels of
math become increasingly abstract and technical. The abstraction ceiling is not a “hard”
threshold, a level at which one is suddenly incapable of learning math, but rather a “soft”
threshold, a level at which the amount of time and effort required to learn math begins to
skyrocket until learning more advanced math is effectively no longer a productive use of one’s

time. That level is different for everyone.

academic acceleration - the practice of allowing students to learn academic material at a

younger age and/or faster rate than is typical.

active learning - learning in which students are actively performing learning exercises as
opposed to passively consuming educational content. The most effective active learning

technique is deliberate practice.

automaticity - the ability to execute low-level skills without having to devote conscious effort
towards them. Automaticity is necessary because it frees up limited working memory to execute
multiple lower-level skills in parallel and perform higher-level reasoning about the lower-level
skills. When you develop automaticity on a skill or piece of information, it is stored in your
long-term memory, where indefinitely many things can be held for indefinitely long without

requiring cognitive effort.

blocked practice (blocking or massed practice) - a type of practice in which a single skill is
practiced many times consecutively. While some initial amount of blocking is useful when first
learning a skill, blocking is very inefficient for building long-term memory afterwards during the

review stage. See also: interleaving.
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category induction learning - recognizing general features that distinguish problems requiring

different solution techniques. See also: discrimination learning.

chunk - a coherent, meaningful group of related pieces of information.

cognitive control - see executive function.

cognitive load - the amount of working memory required to complete a task.

cognitive overload - when the cognitive load of a task exceeds one’s working memory, they are

not able to complete the task.

conditional completion - if the evidence balances out to “just barely” place a student out of
some topics, the system will consider those topics conditionally completed: the student will
initially be given tasks under the assumption that they know those topics, but if the student
struggles, then the system will immediately begin “falling backwards” along the appropriate

learning paths.

consolidation - the process of storing new information in long-term memory.

core topics - topics that are most relevant in the “big picture” of mathematics. For instance, in
calculus, the product rule would be a core topic, while the intermediate value theorem would be
a supplemental topic. Core topics are the ones that appear more frequently as prerequisites of

other topics in mathematics.

course graph - a highly-compressed version of a knowledge graph where a single entity
represents hundreds of topics. It is important to realize that each course is ultimately just a set
of topics in the knowledge graph. The knowledge graph is the ultimate source of truth; a course
graph simply summarizes and communicates information about the high-level structure of a

knowledge graph so that humans can understand it.

deliberate practice - individualized training activities that are specially chosen to improve
specific aspects of their performance through repetition and successive refinement. Deliberate
practice is the opposite of mindless repetition, and it has been shown to be one of the most
prominent underlying factors responsible for individual differences in performance, even among

highly talented elite performers.


https://graphics8.nytimes.com/images/blogs/freakonomics/pdf/DeliberatePractice(PsychologicalReview).pdf
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desirable difficulty - a practice condition that makes the task harder, slowing down the
learning process yet improving recall and transfer. Desirable difficulties make practice more

representative of true assessment conditions.

diagnostic - an adaptive exam that leverages the knowledge graph to quickly identify a
student’s knowledge frontier.

direct instruction - instruction that teaches knowledge to students explicitly as opposed to

attempting to have students “construct their own knowledge” through unguided activities.

discrimination learning - matching problems with the appropriate solution techniques. For
instance, the equations x° + 3x + 2 = 0 and x + 3x + 2 = 0 look similar but require wildly different

solution techniques. See also: category induction learning.
distributed practice - see spaced repetition.

dual-coding theory - a theory of cognition in which the mind processes information along two
different channels: verbal and visual. Instructional materials can help students avoid cognitive

overload by distributing cognitive load more evenly between these two channels.
Ebbinghaus - known for discovering the spacing effect.
edge of mastery - see knowledge frontier.

effect size - when a group of students undergoes an intervention that is intended to improve
learning, the effect size measures the degree of improvement relative to a control group, a group
of students who did not receive the intervention. Specifically, effect size is calculated as the
number of standard deviations (also called sigmas) by which the mean performance increases.
For instance, if an intervention increases the average exam score by 20%, and the standard
deviation of exam scores is 10%, then the effect size is 20% / 10% = 2 sigmas. Effect sizes can also
be reported in percentiles: an effect size of 2 sigmas indicates that the average student who
experienced the intervention learned more than 98% of students in the control group. (For 1

sigma, the corresponding percentile is 84%.)

encoding - the interpretation of the brain’s information-processing pipeline that emphasizes
that the pipeline converts or “encodes” information from the outside world into a representation

that can be stored in long-term memory and later recalled.
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encompassing - advanced mathematical problems implicitly practice or “encompass” many
simpler skills. Using sophisticated algorithms that capitalize on these encompassings, we enable
students to spend most of their time learning new material while simultaneously making sure
they keep getting practice on things they’'ve previously learned. This results in turbo-boosted

learning speed.

equivalent topic - to comply with course standards, it is sometimes necessary to have
equivalent topics spread out across multiple courses, with the equivalent topics in higher

courses covering a more advanced treatment of the same skills taught in lower courses.

executive function (cognitive control) - the interpretation of the brain’s
information-processing pipeline that emphasizes that the pipeline is centered around working
memory, which pulls relevant information from sensory and long-term memory into an area

where it can be combined, transformed, and used to guide behavior to achieve goals.

eXperience Points - see XP.

expertise reversal effect - the instructional techniques that promote the most learning in

beginners, promote the least learning in experts, and vice versa.

facilitation - when a new task exercises knowledge learned in a prior task, learning can be
facilitated in two ways:
® (Retroactive Facilitation) The new task can restore memory of prior knowledge to the same
extent as identical repetition of the prior task, leading to long-lasting retention (Ausubel,
Robbins, & Blake, 1957; Arzi, Ben-Zvi, & Ganiel, 1985).
e (Proactive Facilitation) Knowledge acquired during the prior task can improve the

acquisition of knowledge that is specific to the new task (Arzi, Ben-Zvi, & Ganiel, 1985).

forgetting curve - a graph of memory versus time that shows memory decaying over time.

foundations (foundational knowledge) - lower-grade topics that students need to know in

order to succeed in their enrolled course (i.e. foundations are prerequisites for the course).

Fractional Implicit Repetition (FIRe) - Math Academy’s novel spaced repetition model that
generalizes spaced repetition from independent flashcard-like tasks to highly connected bodies
of knowledge where repetitions on advanced topics should “trickle down” to update the

repetition schedules of simpler topics that are implicitly practiced.


https://psycnet.apa.org/record/1959-02050-001
https://psycnet.apa.org/record/1959-02050-001
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
https://journals.sagepub.com/doi/abs/10.3102/00028312022003369
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frontier - see knowledge frontier.

gamification - when game-like elements (such as points and leaderboards) are integrated into
student learning environments in ways that are aligned with the goals of the course, the
motivations of the students, and the context of the educational setting, students typically not
only learn more and engage more with the content, but also enjoy it more. However, these
gamified elements need to be resistant to “hacking” behaviors that attempt to bypass learning

by exploiting loopholes in the rules of the game.

growth mindset - the belief that one’s current level of knowledge is not “fixed” or set in stone,
but rather, can be increased through practice. To maximize student growth, it is necessary to
give each student enough practice to achieve mastery and allow them to move on to more
advanced skills immediately after mastering the prerequisites. The necessary amount of practice

to achieve mastery will vary depending on the particular student and the particular skill.

illusion of competence /| comprehension - it is easy for students (and their teachers) to vastly

overestimate their knowledge if they do not leverage desirable difficulties during practice.
induction learning - see category induction learning.
interference - see non-interference.

interleaving (varied practice, mixed practice) - the effectiveness of practice is diminished
when a single skill is practiced many times consecutively beyond a minimum effective dose.
Review problems should be spread out or interleaved over multiple review assignments that each
cover a broad mix of previously-learned topics. In addition to being more efficient, this also
helps students match problems with the appropriate solution techniques (discrimination
learning) and recognize general features that distinguish problems requiring different solution

techniques (category induction learning).

key prerequisite - each knowledge point is linked to one or more key prerequisite topics that
represent the prerequisite knowledge that is most directly being used in that knowledge point.
If a student ever fails a lesson twice at the same knowledge point, we automatically provide
remedial reviews on the key prerequisites. This helps the student strengthen their foundations
in the areas where they are most in need of additional practice, so that they are better prepared

to pass the lesson the next time around.
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knowledge frontier (edge of mastery) - the boundary between what a student knows and does
not know, which indicates what topics they are ready to learn. Following a student’s initial
diagnostic, whenever a student is served new lessons, those lessons always cover topics that are

on the student’s knowledge frontier. See also: zone of proximal development.

knowledge graph - organizes our curriculum in a way that enables algorithmic
decision-making. Contains multiple thousands of interlinked topics, with each linkage between
topics indicating a relationship between them (such as one topic being a prerequisite for
another topic). Knowledge graphs can encode a lot of complicated information that would

otherwise be hard to describe and reason about.

knowledge point - each topic involves a lesson that is broken down into several key pieces of
learning called knowledge points. Each knowledge point contains a worked example and asks
questions similar to the worked example. Knowledge points build on each other to help scaffold
students through the lesson: the first knowledge point covers the most basic idea or skill of the
lesson, and later knowledge points gently introduce more advanced cases. To demonstrate
mastery of a topic, a student must answer sufficiently many questions correctly (with sufficiently
few mistakes) in each successive knowledge point in the lesson. Once this is accomplished, more

advanced topics become available for the student to work on.

knowledge profile - measures a student’s knowledge at every topic in a knowledge graph.
Loosely speaking, a student’s knowledge profile represents how “developed” their mathematical
brain is. Every time they learn a new math topic, it’s as if they grow a new brain cell and connect
it to existing brain cells. Initially, this new brain cell is weak and requires frequent nurturing,

but over time it becomes strong and requires less frequent care. See also: knowledge frontier.

layering - learning is about making connections: the more connections there are to a piece of
knowledge, the more ingrained, organized, and deeply understood it is, and the easier it is to
recall. The most efficient way to increase the number of connections to existing knowledge is to
continue layering on top of it - that is, continually acquiring new knowledge that exercises

prerequisite or component knowledge.

league - to incentivize students to put forth a sufficient quantity of work, we implemented
(optional) competitive weekly leaderboards where students are grouped into smaller leagues
with other students of similar competitive ability. If a student earns enough XP to end the week
near the top of their league, they promote to a higher league. But if they end the week near the

bottom of their league, they demote to a lower league.
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learning - a positive change in long-term memory. At a physiological level, learning involves
the creation of strategic electrical wiring between neurons (“brain cells”) that improves the

brain’s ability to perform a task.

learning efficiency - the amount of progress that a student makes in their course, relative to the

amount of time that they spend working.

learning rate - rate at which one’s ability to perform a task improves over the course of
exposure, instruction, and practice on the task. Learning rate is known to vary among

individuals and depend on working memory capacity (WMC).

long-term memory - effortlessly holds indefinitely many facts, experiences, concepts, and
procedures, for indefinitely long, in the form of strategic electrical wiring between neurons.
Wiring induces a “domino effect” by which entire patterns of neurons are automatically
activated as a result of initially activating a much smaller number of neurons in the pattern. See

also: consolidation.
massed practice - see blocked practice.

mastery - to demonstrate mastery of a topic, a student must answer sufficiently many questions
correctly (with sufficiently few mistakes) in each successive knowledge point in the lesson.

Once this is accomplished, more advanced topics become available for the student to work on.

mastery floor - lower-course topics that are automatically considered mastered by any student

taking the course.

mastery learning - each individual student needs to demonstrate proficiency on prerequisite
topics before moving on to more advanced topics. True mastery learning at a fully granular level

requires fully individualized instruction, which is only attainable through one-on-one tutoring.
Mathematical Foundations (MF) sequence - a streamlined sequence of courses that covers
elementary mathematics through calculus but cuts out roughly a third of topics that are not
actually prerequisites for university math.

mixed practice - see interleaving.

narrow limits of change principle - The severe limitation of the working memory when

processing novel information. Most people can only hold about 7 digits (or more generally 4
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chunks of coherently grouped items) simultaneously and only for about 20 seconds. And that
assumes they aren’t needing to perform any mental manipulation of those items - if they do,

then fewer items can be held due to competition for limited processing resources.

neuromyth - a common yet scientifically inaccurate misunderstanding about the brain.
Neuromyths can often be characterized as the oversimplification, misinterpretation, and/or
misapplication of a nuanced complex scientific finding. One of the most widespread - and most
widely debunked - neuromyths is that people learn better when they receive information in

their preferred “learning style.”

neuron - a cell that transmits information through electrical activity. The brain is a gigantic
network of roughly 100 billion neurons that are “wired up” with over 100 trillion connections

between them.

non-ancestor encompassing - even though simple equivalent topics would not be ancestors of
advanced equivalent topics via direct prerequisite or key prerequisite paths, we can still set
full-encompassing edge weights between them so that a student who completes an advanced
topic will implicitly receive credit for any simpler equivalent topics as well. These are called

non-ancestor encompassings. See also: encompassing.

non-interference - conceptually related pieces of knowledge should be spaced out over time so
that they are less likely to interfere with each other’s recall. New concepts should be taught
alongside dissimilar material.

pace - the amount of XP that a student completes per weekday (on average).

partial encompassing - an encompassing where only some part of the simpler topic is
practiced implicitly in the more advanced topic. Partial encompassings occurs more frequently
in higher-level math.

placement - see diagnostic.

proactive facilitation - see facilitation.

radical constructivism - a philosophy in which knowledge does not reflect an “objective”

ontological reality, but exclusively an ordering and organization of a world constituted by our

experience.
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reconsolidation - the process of updating information that has already been consolidated into

long-term memory.

rehearsal - the process of activating neural patterns and persistently maintaining their

simultaneous activation, by which the brain holds information in working memory.

repetition - see spaced repetition.

repetition compression - whenever a student has due reviews, Math Academy is able to
compress them into a much smaller set of learning tasks that implicitly covers (i.e. provides
repetitions on) all of the due reviews. This is accomplished by choosing reviews whose implicit
repetitions “knock out” other due reviews (like dominos).

retrieval practice - see the testing effect.

retroactive facilitation - see facilitation.

scaffolding - support given to a student to reduce the cognitive load of a learning task.

schema - the underlying structure or framework of one’s knowledge.

sensory memory - temporarily holds a large amount of raw data observed through the senses
(sight, hearing, taste, smell, and touch), only for several seconds at most, while relevant data is

transferred to short-term memory for more sophisticated processing.

short-term memory - has a much lower capacity than sensory memory, but can store

information about ten times longer.
sigma - see effect size.
standard deviation - see effect size.

spacing effect - when reviews are spaced out or distributed over multiple sessions (as opposed to
being crammed or massed into a single session), memory is not only restored, but also further
consolidated into long-term storage, which slows its decay. A profound consequence of the
spacing effect is that the more reviews are completed (with appropriate spacing), the longer the

memory will be retained, and the longer one can wait until the next review is needed. This


https://en.wikipedia.org/wiki/Memory_consolidation
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observation gives rise to a systematic method for reviewing previously-learned material called

spaced repetition (or distributed practice).

spaced repetition (distributed practice) - reviews should be spaced out or distributed over
multiple sessions (as opposed to being crammed or massed into a single session) so that memory
is not only restored, but also further consolidated into long-term storage, which slows its decay.

A repetition is a successful review at the appropriate time.

spaced retrieval practice - an especially potent learning strategy that combines spaced
repetition with retrieval practice by testing (instead of simply re-studying a reference) during

reviews.
speed of learning - see learning rate.

spreading activation - a method by which connections between information can be used to
recall information in response to a stimulus. The stimulus activates some piece(s) of

information, and the activity flows through connections to other pieces of information.

spiral curriculum - a curriculum in which material is naturally revisited and further built upon

in later textbook chapters and/or grades.

subgoal labeling - the act of grouping steps into meaningful units with labels. Subgoal labeling
can help students grasp the structure of the problem, thereby enabling the learning to transfer
to other problems in the same category, and minimize the number of chunks of information that

they need to store in their working memory, thereby reducing cognitive load.

supplemental diagnostic - as topics are added and connectivity is revised in the knowledge
graph, the knowledge profile inferred from a student’s initial placement diagnostic can get a
little out of date. When this happens, we assign tiny diagnostics called supplemental

diagnostics to bring the student’s knowledge profile back up to date. See also: diagnostic.
supplemental topic - see core topic.

targeted remediation - in the academic literature, the term targeted remediation usually
describes identifying individual students in need of broad remedial intervention such as
tutoring, remedial courses, academic advisor meetings, etc. But in the context of Math Academy,

targeted remediation refers to fully-automated support mechanisms that are targeted to
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individual students on individual topics - and often even more precisely to the individual

component skills that are causing a student to struggle on a topic.

testing effect (retrieval practice) - to maximize the amount by which your memory is extended
when solving review problems, it’s necessary to avoid looking back at reference material unless
you are totally stuck and cannot remember how to proceed. For this reason, it’s necessary to test

frequently as a part of the learning process itself.
topic - see knowledge graph and knowledge point.

tragedy of the commons - in the absence of accountability and incentives that promote
collective interests, people will focus on behaviors that benefit themselves as individuals, and
pay less attention to how their actions affect the group as a whole. As a result, when a group is
given responsibility for the maintenance and improvement of a shared resource, the resource
will typically deteriorate. While some individuals may care for the resource properly, they are

typically unable or unwilling to pick up the slack of those who do not.

two-sigma problem - In 1984, educational psychologist Benjamin Bloom published a landmark
study comparing the effectiveness of one-on-one tutoring and traditional classroom teaching.
The difference was monumental: the average tutored student performed better than 98% of the
students in a traditional class. This finding led to a challenge widely known as Bloom’s two-sigma
problem: can we develop methods of group instruction that are as effective as one-on-one
tutoring? (The terminology “two-sigma” comes from statistics, where the effects of
interventions are often measured in standard deviations or sigmas. An effect size of 98% is

slightly more than two sigmas.)
varied practice - see interleaving.

worked example - a problem along with a step-by-step-demonstration of how to solve it. See

also: knowledge point.

working memory - consists of short-term memory along with capabilities for organizing,
manipulating, and generally “working” with the information stored in short-term memory. See

also: cognitive load, cognitive overload, narrow limits of change principle, and rehearsal.

working memory capacity (WMC) - the maximum amount of information that one can hold and
manipulate in working memory. Working memory capacity is known to vary between

individuals and is known to influence perceived effort, cognitive control, mind-wandering,


http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
http://web.mit.edu/5.95/readings/bloom-two-sigma.pdf
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abstraction ability, learning outcomes, and learning rate. See also: narrow limits of change
principle.

XP (eXperience Points) - the currency of Math Academy’s gamified reward system. Students
earn XP upon successful completion of learning tasks, and XP is calibrated so that 1 XP
represents 1 minute of fully-focused, fully-productive work for an average serious (but
imperfect) student.

zone of proximal development - the range of tasks that a student is able to perform while
supported, but cannot do on their own. Students maximize their learning when they are

completing tasks within this range.
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