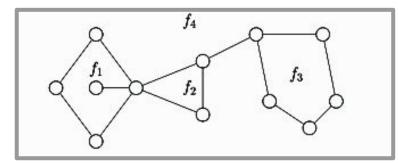
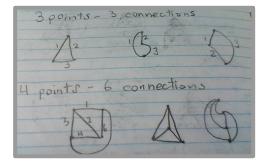

Relationships Between Nodes, Connections and Faces on a Planar Graph Laura Fredericks, 2019

Introduction

- What is a Graph?
 - graph a group of nodes joined together by lines
 - planar graph an arrangement of a graph where the lines only intersect at the nodes

Left: Planar Graph

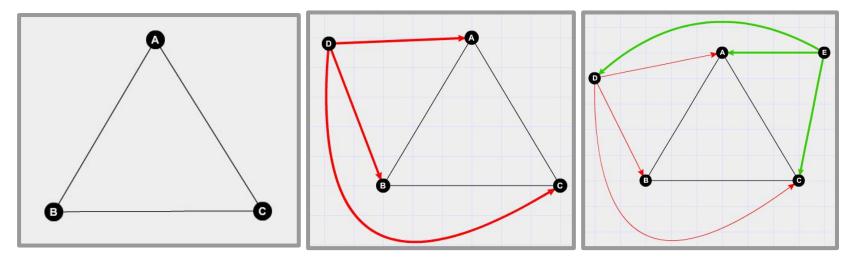

Right: Non-Planar Graph


Problem Statement

• Is there a relationship between the number of possible connections, number of faces, and number of nodes in a maximum connection planar graph and does the arrangement of the nodes matter? Why?

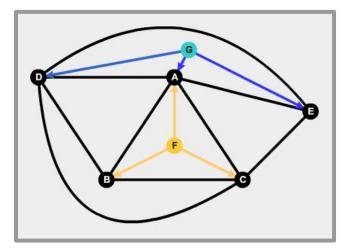
Results

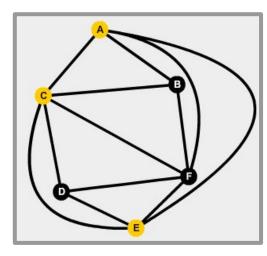
- Relationships
 - Connections & Nodes C = 3(n-2)
 - Relationship of Faces f = c (n-2) or f c + n = 2
 - Note : a face on a planar graph is the enclosed space between the lines, but the space outside of the graph is counted as a single face.

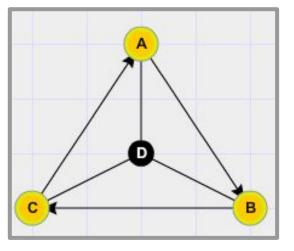


# of nodes	# of faces	# of connections
3	2	3
4	4	6
5	6	9
6	8	12
7	10	15
8	12	18
9	14	21
10	16	24
11	18	27
12	20	30
13	22	33
14	24	36

Results - continued C = 3(n-2)


Why is that for every one node added, three more connections are added?




Left: Triangle ABC Center: Node D is added Right: Node E is added

Results - continued

- Outermost Nodes and Adding Points inside of a face
 - Every arrangement of any amount of nodes will only have three outermost points
 - Every max planar graph face is enclosed by only three nodes

Conclusion

• There *is* a relationship between the number of connections, faces, and nodes :

$$C = 3(n-2)$$
 $f = c - (n-2)$ or $f - c + n = 2$

- The arrangement of the nodes in a planar graph does not matter.
- What I Would Do Next:
 - Find reasoning behind the relationship of faces equation

Questions are welcome!