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Introduction

While conducting numerical experiments with partial fractions decomposition,
I observed the following pattern:

(x_a)k_z()( k-1 )a . Z (x —a)t

i=max(k—n,1)

for n, k € N. The binomial coefficients are taken to be 0 where they are otherwise
undefined.

A proof is provided below. Double induction is used, abbreviating the above
proposition as P(n, k).



First Base Case

We prove P(1,1) as the basis for the first induction:

First Inductive Step

Assume P(n,1) for n € N. We will show that P(n + 1,1) follows.

First, we take the following notation in the theorem to be proved:

@—aF =p(m, k) + f(m, k)

where

e p(n,k) = 2:0 ('Ll:l_z)a"*’“*lacz is the polynomial part, and

(kﬁz‘)anikﬂl

— is the fractional part.
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Note the following;:
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Finally, using P(n, 1), we have
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=pn+1,1)+ f(n+1,1),

which proves P(n + 1,1) as desired.



First Inductive Conclusion (Second Base Case)

We have proven P(1,1) and shown that P(n,1) = P(n + 1,1) for n € N.
Therefore, P(n,1) for all n € N.

Second Inductive Step

Assume P(n, k) for n,k € N. We will show that P(n,k + 1) follows.

Using P(n, k), we have

(z f:)kﬂ T i a ((1- xna)k>

=L (k) + F(n k)

Tr—a

_ p(?’L, k) + f(nvk)

Tr—a Tr—a

We will now re-express each term in the sum above.

Using Pascal’s identity in the form

we have
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. [(k;k 1) | . k+”z’“:1<n_1 >an_k_1_ixi]
= (Z) a"F + ap(n,k+1) — a0+ p(n, k+1)]

- (Z) a" %+ (z — a)p(n, k+1).

Simplifying the second term in the sum, we have

B (’;C;)an;k (



Finally, we substitute into our original sum and reach
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=pn,k+1)+ f(n,k+1),

as desired.

Second Inductive Conclusion

We have proven P(n,1) and shown that P(n,k) = P(n,k + 1) for n,k € N.
Therefore, P(n, k) for all n,k € N.



