A Formula for the Partial Fractions Decomposition of $x^{n} /(x-a)^{k}$

Justin Skycak

August 2013

Introduction

While conducting numerical experiments with partial fractions decomposition, I observed the following pattern:

$$
\frac{x^{n}}{(x-a)^{k}}=\sum_{i=0}^{n-k}\binom{n-1-i}{k-1} a^{n-k-i} x^{i}+\sum_{i=\max (k-n, 1)}^{k} \frac{\binom{n}{k-i} a^{n-k+i}}{(x-a)^{i}}
$$

for $n, k \in \mathbb{N}$. The binomial coefficients are taken to be 0 where they are otherwise undefined.

A proof is provided below. Double induction is used, abbreviating the above proposition as $P(n, k)$.

First Base Case

We prove $P(1,1)$ as the basis for the first induction:

$$
\begin{aligned}
\frac{x}{x-a} & =\sum_{i=0}^{0}\binom{-i}{0} a^{-i} x^{i}+\sum_{i=\max (0,1)}^{1} \frac{\left(\begin{array}{c}
1-i
\end{array}\right) a^{i}}{(x-a)^{i}} \\
& =1+\frac{a}{x-a} \\
& =\frac{x}{x-a}
\end{aligned}
$$

First Inductive Step

Assume $P(n, 1)$ for $n \in \mathbb{N}$. We will show that $P(n+1,1)$ follows.
First, we take the following notation in the theorem to be proved:

$$
\frac{x^{n}}{(x-a)^{k}}=p(m, k)+f(m, k)
$$

where

- $p(n, k)=\sum_{i=0}^{n-k}\binom{n-1-i}{k-1} a^{n-k-i} x^{i}$ is the polynomial part, and
- $f(n, k)=\sum_{i=\max (1, n-k)}^{k} \frac{\binom{n}{k-i} a^{n-k+i}}{(x-a)^{i}}$ is the fractional part.

Note the following:

$$
\begin{aligned}
p(n, 1) & =\sum_{i=0}^{n-1}\binom{n-1-i}{0} a^{n-1-i} x^{i} \\
& =\sum_{i=0}^{n-1} a^{n-1-i} x^{i} \\
f(n, 1) & =\sum_{i=\max (1-n, 1)}^{n} \frac{\binom{n}{1-i} a^{n-1+i}}{(x-a)^{i}} \\
& =\sum_{1}^{n} \frac{\binom{n}{1-i} a^{n-1+i}}{(x-a)^{i}} \\
& =\frac{a^{n}}{x-a}
\end{aligned}
$$

Additionally,

$$
\begin{aligned}
p(n+1,1) & =\sum_{i=0}^{n}\binom{n-i}{0} a^{n-i} x^{i} \\
& =\sum_{i=0}^{n} a^{n-i} x^{i} \\
& =a^{n}+\sum_{i=1}^{n} a^{n-i} x^{i} \\
& =a^{n}+\sum_{i=0}^{n-1} a^{n-(i+1)} x^{i+1} \\
& =a^{n}+x \sum_{i=0}^{n-1} a^{n-1-i} \\
& =a^{n}+x p(n, 1)
\end{aligned}
$$

and

$$
\begin{aligned}
f(n+1,1) & =\sum_{i=\max (-n, 1)}^{n+1} \frac{\binom{n+1}{1-i} a^{n+i}}{(x-a)^{i}} \\
& =\sum_{1}^{n+1} \frac{\binom{n+1}{1-i} a^{n+i}}{(x-a)^{i}} \\
& =\frac{a^{n+1}}{x-a} \\
& =a f(n, 1) .
\end{aligned}
$$

Finally, using $P(n, 1)$, we have

$$
\begin{aligned}
\frac{x^{n+1}}{x-a} & =x\left(\frac{x^{n}}{x-a}\right) \\
& =x(p(n, 1)+f(n, 1)) \\
& =x\left(p(n, 1)+\frac{a^{n}}{x-a}\right) \\
& =x p(n, 1)+a^{n}\left(\frac{x}{x-a}\right) \\
& =x p(n, 1)+a^{n}\left(1+\frac{a}{x-a}\right) \\
& =x p(n, 1)+a^{n}+\frac{a^{n+1}}{x-a} \\
& =p(n+1,1)+f(n+1,1),
\end{aligned}
$$

which proves $P(n+1,1)$ as desired.

First Inductive Conclusion (Second Base Case)

We have proven $P(1,1)$ and shown that $P(n, 1) \Longrightarrow P(n+1,1)$ for $n \in \mathbb{N}$. Therefore, $P(n, 1)$ for all $n \in \mathbb{N}$.

Second Inductive Step

Assume $P(n, k)$ for $n, k \in \mathbb{N}$. We will show that $P(n, k+1)$ follows.
Using $P(n, k)$, we have

$$
\begin{aligned}
\frac{x^{n}}{(x-a)^{k+1}} & =\frac{1}{x-a}\left(\frac{x^{n}}{(x-a)^{k}}\right) \\
& =\frac{1}{x-a}(p(n, k)+f(n, k)) \\
& =\frac{p(n, k)}{x-a}+\frac{f(n, k)}{x-a}
\end{aligned}
$$

We will now re-express each term in the sum above.
Using Pascal's identity in the form

$$
\binom{n-1-i}{k-1}=\binom{n-i}{k}-\binom{n-1-i}{k}
$$

we have

$$
\begin{aligned}
\frac{p(n, k)}{x-a}= & \sum_{i=0}^{n-k}\binom{n-1-i}{k-1} a^{n-k-i} x^{i} \\
= & \sum_{i=0}^{n-k}\binom{n-i}{k} a^{n-k-i} x^{i}-\sum_{i=0}^{n-k}\binom{n-1-i}{k} a^{n-k-i} x^{i} \\
= & \sum_{i=-1}^{n-k-1}\binom{n-i-1}{k} a^{n-k-1-i} x^{i+1}-a \sum_{i=0}^{n-k}\binom{n-1-i}{k} a^{n-k-1-i} x^{i} \\
= & \binom{n}{k} a^{n-k}+\sum_{i=0}^{n-k-1}\binom{n-i-1}{k} a^{n-k-1-i} x^{i+1} \\
& -a\left[\binom{k-1}{k} a^{-1} x^{n-k}+\sum_{i=0}^{n-k-1}\binom{n-1-i}{k} a^{n-k-1-i} x^{i}\right] \\
= & \binom{n}{k} a^{n-k}+x p(n, k+1)-a[0+p(n, k+1)] \\
= & \binom{n}{k} a^{n-k}+(x-a) p(n, k+1) .
\end{aligned}
$$

Simplifying the second term in the sum, we have

$$
\begin{aligned}
\frac{f(n, k)}{x-a} & =\sum_{i=\max (k-n, 1)}^{k} \frac{\binom{n}{k-i} a^{n-k+i}}{(x-a)^{i}} \\
& =\sum_{i=1}^{k} \frac{\binom{n}{k-i} a^{n-k+i}}{(x-a)^{i}}(\text { introducing terms equal to } 0) \\
& =\sum_{i=2}^{k+1} \frac{\binom{n}{k+1-i} a^{n-k-1+i}}{(x-a)^{i}} \\
& =\sum_{i=1}^{k+1} \frac{\binom{n}{k+1-i} a^{n-k-1+i}}{(x-a)^{i}}-\frac{\binom{n}{k} a^{n-k}}{x-a} \\
& =f(n, k+1)-\frac{\binom{n}{k} a^{n-k}}{x-a}(\text { removing terms equal to } 0) .
\end{aligned}
$$

Finally, we substitute into our original sum and reach

$$
\begin{aligned}
\frac{x^{n}}{(x-a)^{k+1}} & =\frac{p(n, k)}{x-a}+\frac{f(n, k)}{x-a} \\
& =\frac{\binom{n}{k} a^{n-k}+(x-a) p(n, k+1)}{x-a}+f(n, k+1)-\frac{\binom{n}{k} a^{n-k}}{x-a} \\
& =p(n, k+1)+f(n, k+1),
\end{aligned}
$$

as desired.

Second Inductive Conclusion

We have proven $P(n, 1)$ and shown that $P(n, k) \Longrightarrow P(n, k+1)$ for $n, k \in \mathbb{N}$. Therefore, $P(n, k)$ for all $n, k \in \mathbb{N}$.

