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“It is hoped that the data scientist reading this guide will be 
inspired to give Mapper a try in their future analytic work, and 
be on the lookout for future developments in persistent homology 
that push it from academia to industry.”



Mapper simplifies data into network
● High dimensional data → 2D network that represents overall shape of data



R package: TDAmapper



Roche, Terry, Tim Grant, Patrick Rogers, and Mukund Ramachandran. 
“Predicting the Future: Forecasting Returns using Machine Intelligence.” Ayasdi 
Resources. 2015.



strategy to forecast from an initial date:
1. locate neighboring dates on the map
2. use their price trajectories to build a distribution of 
changes in price for each asset
3. use mean or median for predictions

Roche, Terry, Tim Grant, Patrick Rogers, and Mukund Ramachandran. 
“Predicting the Future: Forecasting Returns using Machine Intelligence.” Ayasdi 
Resources. 2015.
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2 “islands”

1 main “loop” (these 2 
are really the same)

2nd homology:
closed surfaces which 
cannot be stretched into 
one another along solid 
tetrahedrons

1 “inflatable”
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● Q: What scale should you use when you compute homology of data?
○ A: Look at all scales
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1 component in first homology 
means data has a “main loop”

First homology 
components

Small scale . . . large scale
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Math rambles...



Thanks for your time.

Questions/comments?


