
The Data Scientist’s Guide to

Topological Data Analysis

Justin Skycak

David Cieslak, PhD, Aunalytics

Prof. Mark Behrens, Department of Mathematics

Submitted in partial fulfillment of the requirements of the

Glynn Honors Program at the University of Notre Dame, October 2017.

ACKNOWLEDGEMENTS.

I would like to extend a word of thanks to my advisors, David Cieslak and

Mark Behrens. As my industry advisor, David helped me think intuitively from

the perspective of a data scientist: cut through the details, and get to the story. I

am thankful for the opportunities David has given me to present my work to a

mixed technical and business-oriented audience at Aunalytics, and for the helpful

feedback I have received from them.

 As my faculty advisor, Mark helped me think precisely from the

perspective of a mathematician: the devil is often in the details. I am thankful for

his introducing me to topology during my first year at Notre Dame, and for his

willingness to offer his personal time to expand my knowledge of Topological

Data Analysis during my last.

Taken together, combining David and Mark’s perspectives helped me

explain Topological Data Analysis to an audience who needs to understand it

intuitively enough to see its applications to the real world, and precisely enough

to troubleshoot and quality-check their methodology.

1

ABSTRACT.

Topological Data Analysis, abbreviated TDA, is a suite of data analytic

methods inspired by the mathematical field of algebraic topology. TDA is

attractive yet elusive for most data scientists, since its potential as a data

exploration tool is often communicated through esoteric terminology unfamiliar

to non-mathematicians. The purpose of this guide is to bridge the communication

gap between academia and industry, so that non-mathematician data scientists

may add current TDA methods to their analytic toolkits and anticipate new

developments in the field of TDA.

The guide begins with an overview of Mapper, a TDA algorithm which has

recently transitioned from academia to industry with commercial success. We

explain the Mapper algorithm, demo open-source software, and present a

handful of its commercial use-cases (some of which are original). Then, we switch

to persistent homology, a TDA method which has not yet broken through to

industry but is supported by a growing body of academic work. We explain the

intuition behind homotopy, approximation, homology, and persistence, and

demo open-source persistent homology software. It is hoped that the data

scientist reading this guide will be inspired to give Mapper a try in their future

analytic work, and be on the lookout for future developments in persistent

homology that push it from academia to industry.

2

TABLE OF CONTENTS.

1. Mapper . 4

1.1. Algorithm . 5

1.2. Software . 11

1.3. Use-Cases . 20

1.3.1. Ayasdi 21

1.3.2. Aunalytics 30

2. Persistent Homology . 35

2.1. Homotopy . 36

2.2. Approximation 43

2.3. Homology . 46

2.4. Persistence . 51

2.5. Software. 53

3

1. MAPPER.

Section 1 elaborates on three main points surrounding Mapper:

1. Algorithm. The Mapper algorithm maps high-dimensional data into smaller

networks which retain the main topological features of the data and are

easy to visualize.

2. Software. To run the Mapper algorithm on small to medium-size datasets,

one can use the open source R package TDAmapper.

3. Use-cases. On a larger scale, Mapper has been used commercially by the

company Ayasdi to forecast returns, detect fraud, aid in oil and gas

exploration, plan ad campaigns, and discover biomarkers.

4

1.1. ALGORITHM.

The Mapper algorithm (Singh et al. 2007) represents a data space’s topology

by converting it into a network. For example, suppose you have four classes of

data: blue, green, yellow, and red. These classes might represent e.g. patient

health or customer churn risk on a spectrum from favorable to unfavorable. If

you could see in, say, 42 dimensions, you might notice that members of the same

class tend to group together into clusters because they tend to have features in

common. Maybe many of the sick patients have temperatures above 100 degrees

Fahrenheit while most of the healthy ones have temperatures around 98, and

maybe many of the high-risk churners have not signed up for the rewards

program while most of the active customers have. You might also notice that,

even though the data is 42-dimensional, there are a few distinct “paths” between

favorable and unfavorable clusters, which may correspond to e.g. different

treatment paths or customer journeys.

Unfortunately, we cannot see our data in a 42-dimensional space like we

see objects in 3-dimensional space. However, using dimensionality-reduction

algorithms, we can collapse the least important dimensions and focus on the ones

that provide us with useful information, just like we can hold a paper flat in front

of us to make it easier to read (here, we are reducing the dimensionality from 3 to

2). Mapper is one such dimensionality-algorithm, and it stands out from the rest

because it preserves the topological features, such as paths, in our data.

5

Mapper works by focusing our data through a lens, a particular key feature

such as health or churn risk, and drawing a network, a 2-dimensional doodle that

represents the overall shape of our data when seen through the lens. As an

example, we’ll walk through how the Mapper algorithm can algorithmically

convert the dataset on the left to the network on the right:

First, Mapper focuses the data through the lens, a function which assigns a

numerical value to each data point. The number can be a single feature of the

data, like a patient’s body temperature, or a combination of data features, like the

total sum of phone calls, emails, and purchases made by a customer in the past

month. To make this example easy to visualize, we’ll choose a simple lens:

vertical height.

6

Next, Mapper uses a clustering algorithm to create a collection of

overlapping clusters for the data, based on how far data points appear when seen

through the lens. In other words, Mapper creates a “cover” for the mapped data.

For example, a cover for a body temperature lens might consist of the intervals

90-96, 95-99, 98-101, 100-103, and 104-110 degrees Fahrenheit. Likewise, a cover

for customer purchase total might consist of the intervals 0-10, 5-30, 20-50, 40-100,

75-150, 100-300, and 250-1000 dollars.

7

Then, Mapper runs another clustering algorithm within each original

cluster, to separate each cluster into sub-clusters based on how far the data

points actually are in the full data space (rather than just as seen through the

lens). These sub-clusters represent different circumstances under which data

points can be assigned the same value in the lens function. For example, two

patients can both have the same high temperature of 101 degrees Fahrenheit, but

one patient may be sick with a bacterial infection while the other may have the

flu. On the basis of temperature alone, the two patients seem the same, but if

variables from blood analysis are taken into account, the difference is clear.

Likewise, two customers may have high churn risk due to a low number of

purchases in the past year, but upon incorporating each customer’s account

balance and number of emails to the company, we might see that one customer is

unhappy with the company whereas the other customer simply cannot afford

8

purchases anymore.

Finally, Mapper constructs a network by representing sub-clusters as

nodes, and connecting nodes whose sub-clusters overlap (i.e. share data points).

The nodes represent different segments of the population of data, segmented

primarily by the lens metric and secondarily by all other factors. The connections

or edges between nodes describe how the segments blend together, and can

suggest potential paths for how data points may move through the data space.

Knowledge of paths in the data space can be useful for businesses who want to

learn how to engage e.g. their medium-activity customers and push them into the

high-activity clusters over the next few months. Likewise, if a patient contracts a

disease through a specific path, e.g. obesity via overeating, it may be more

effective to treat the disease by trying to push them backwards along the same

9

path they came. For example, if a patient becomes obese due to some medication,

it may be more effective to first try to counteract any other biomarkers that the

medication pushes out of range, than to start by telling the patient to eat less and

exercise more.

The resulting network also makes it easier to communicate the data

visually, and gain exploratory insight from non-data-savvy domain experts who

would not be able to interpret the data in numeric form.

10

1.2. SOFTWARE.

The Mapper algorithm has an open-source implementation in the

TDAmapper package for R (Pearson et al. 2016). We’ll begin its demonstration by

creating a ND logo dataset and passing it into the Mapper function.

n_x <- c(rep(-.5,101),0.01*(-50:50),rep(.5,101))

n_y <- c(0.02*(-50:50),-0.02*(-50:50),0.02*(-50:50))

d_x <- c(rep(-0.9,101),0.02*(-50:25),0.02*(-50:25),

0.4+sqrt(0.5^2-(0.01*(-50:50))^2))

d_y <- c(0.01*(-50:50),rep(0.5,76),rep(-0.5,76),

0.01*(-50:50))

nd <- data.frame(x=c(n_x,d_x),y=c(n_y,d_y))

plot(nd)

11

TDAmapper’s mapper function uses hierarchical clustering for the cover,

which means that it accepts distances rather than points as input. This makes the

mapper more flexible, since it is sometimes possible to compute distances or

similarity scores even when the actual points are unknown - and if we do know

the points, we can always compute distances between them. In this example,

though, the practical implication of using distances is that we must convert the

ND logo into a distance matrix before we pass it into the mapper.

We’ll choose the rest of the parameters so that our lens projects points onto

their x-coordinates, our primary clustering creates an image cover consisting of

10 intervals which overlap by 50%, and our secondary clustering separates each

interval into up to 10 sub-clusters.

m <- mapper1D(

distance_matrix = dist(nd),

filter_values = c(n_x,d_x),

num_intervals = 10,

percent_overlap = 50,

num_bins_when_clustering = 10)

Then, we’ll plot the topological network using R’s igraph package.

12

set.seed(0)

g <- graph.adjacency(m1x$adjacency, mode="undirected")

plot(g, layout = layout.auto(g))

Not only does TDAmapper enable us to create the Mapper network, but it

also tells us how the network was constructed at each step in the Mapper

algorithm. For starters, we can find out which of the 10 image clusters a given

node (sub-cluster) came from by looking at its level.

> m$level_of_vertex

1 2 3 4 4 5 5 6 6 7 7 8 9 10

13

This tells us that node 1 is a sub-cluster from the first (least) lens interval,

and moreover, it is actually the full lens interval (i.e. the first lens interval did not

split into separate sub-clusters). Similarly, node 2 is the full second lens interval,

and node 3 is the full third lens interval. Nodes 4 and 5 are sub-clusters from the

forth lens interval, nodes 6 and 7 are sub-clusters from the fifth lens interval, and

so on, up to node 14, which is a sub-cluster from the 10th lens interval.

We can display this same information, indexed by lens interval level rather

than node number, as follows:

> m$vertices_in_level

[[1]] 1

[[2]] 2

14

[[3]] 3

[[4]] 4 5

[[5]] 6 7

[[6]] 8 9

[[7]] 10 11

[[8]] 12

[[9]] 13

[[10]] 14

We can also recover the indices of points in the original dataset, which

comprise each node or sub-cluster.

> m$points_in_vertex

[[1]] 304 305 ... 498

[[2]] 1 2 ... 103 414 415 ... 430 490 491 ... 506

[[3]] 1 2 ... 121 423 424 ... 439 499 500 ... 515

[[4]] 104 105 ... 138 431 432 ... 448

[[5]] 507 508 ... 524

[[6]] 122 123 ... 155 440 441 ... 456

[[7]] 516 517 ... 532

[[8]] 139 140 ... 172 525 526 ... 541

[[9]] 449 450 ... 465

15

[[10]] 156 157 ... 190 533 534 ... 550

[[11]] 457 458 ... 474

[[12]] 173 174 ... 303 466 467 ... 480 542 543 ... 559 665

656 657

[[13]] 191 192 ... 303 475 476 ... 480 551 552 ... 569 645

646 ... 657

[[14]] 560 561 ... 654

With this information, we can color nodes according to their lens cluster

level, and resize nodes according to how many data points they contain.

my_resolution = 100

my_palette = colorRampPalette(c(‘red’,’green’))

my_max = max(m$level_of_vertex, na.rm=TRUE)

my_vector = m$level_of_vertex / my_max

my_colors = my_palette(my_resolution)[as.numeric(cut(

My_vector, breaks=my_resolution))]

g <- graph.adjacency(m$adjacency, mode="undirected")

vertex_size <- unlist(lapply(m1x$points_in_vertex,

function(x) length(x)))

plot(g, layout = layout.auto(g1x),

16

vertex.size = 30*log(vertex_size)/

max(log(vertex_size)),

vertex.color = my_colors)

We can also look at what the nodes represent in the original plot:

par(mfrow=c(4,4))

for(i in 1:length(m$points_in_vertex)){

plot(nd[m$points_in_vertex[[i]],],

xlim=c(-1,1),ylim=c(-1,1),

xaxt='n',yaxt='n',

main=paste('vertex',i))}

17

By identifying the vertices on the original plot, we can see how the output

network got its shape.

18

For more in-depth analysis, one can also run a barrage of statistical tests to

discover key factors contributing to differences between nodes. However, the

relevant data must be passed manually from the mapper object to R’s native

statistical functions, as there are not yet off-the-shelf functions built into the

TDAmapper’s mapper object.

19

1.3. USE CASES.

Section 1.3 covers industry use-cases of Mapper at two companies:

1. Ayasdi, a commercial software company whose commercial Mapper

software can used to forecast returns, diagnose denied claims, detect fraud,

identify oil wells and drilling machine failures, target campaign ads, and

discover biomarkers.

2. Aunalytics, the data science software & consulting company at which the

author is employed. Here, Mapper (via R’s TDAmapper) provided granular

insights on a location tracking dataset, and revealed insights in a sparse

call-center dataset even though there was little cohesion in the resulting

network.

20

1.3.1. AYASDI.

The commercial company Ayasdi developed commercial Mapper software

and sells a subscription service to clients who wish to create topological network

visualizations of their data. Their implementation is similar to R’s TDAmapper,

except that it is heavily optimized to crunch large-scale datasets consisting in the

millions of records. Furthermore, it has an “explain” function which automates

the process of differentiating clusters via statistical testing. “Explain” works by

running a barrage of statistical tests against a selected group, and ranking the

selected group’s most significant differences from the rest of the data.

In this section, we explore several commercial use-cases of Ayasdi’s

software. Many of the use-cases involve coloring the nodes of the network,

visually identifying clusters, and figuring out what separates interesting clusters

21

from the rest of the data.

Forecasting Returns

Below is a network that Ayasdi software generated by applying the Mapper

algorithm to over 300 market and economic variables, sampled over 25 years

(Roche et al. 2015). The nodes are colored by year.

We see that the map is spread out over time, which indicates repeated

patterns over time. For example, the group of highlighted nodes corresponds to

high-volatility and high-stress conditions. This suggests the following strategy to

forecast from an initial date: locate neighboring dates on the map, use their price

trajectories to build a distribution of changes in price for each asset, and use

mean or median for predictions. Then, individual predicted asset price-changes

22

can be aggregated to yield higher-level predictions, i.e. for each market sector.

Diagnosing Denied Claims

Simple denial patterns, consisting of only a few patterns, usually account

for only a small portion of a denial backlog. However, Ayasdi’s software has been

used to find complex patterns in infusion and oncology medical necessity denials,

accounting for up to 65% of the denial backlog (“Machine Intelligence,” 2015). The

following topological network was constructed by applying the Mapper algorithm

to 5 million individual claims - its structure is determined by similarity between

claims, and its nodes are colored according to how often the claims were

accepted or denied on average.

23

By locating several groups in the network and analyzing the group

statistics, analysts were able to gain enough information to advise action

pre-submission by modifying the final coding or supporting diagnosis, or at the

point of care by seeking pre-authorization or reconsidering a procedure.

Detecting Fraud

The topological network below is based on the CMS public health claims

dataset, which consists of over 9 million claims, 36 thousand providers, and 3600

unique codes (Rogers and Grahnen, 2015). The network structure is determined

by similarity in how providers practice, while the node color is determined by

medicare payment amount.

24

One can identify leads for investigation by looking for outlier providers

who are getting paid abnormally much compared to other similar providers (two

such groups are boxed in the network above). One can also improve detection

models using this topological network: by recoloring the network nodes

according to model performance (e.g. false positive rate), one can find groups for

which the model performs poorly - and by running statistical tests to discover

how these groups differ most significantly from the rest of the population, one

can identify specific parameters which the model may have learned incorrectly.

25

Oil and Gas Exploration

Below is an example of a topological network whose structure is based on

drilling location, and whose color is based on the amount of oil recovered there

(Parulekar and Johnson, “Analyzing Oil,” 2014). This information can be useful in

identifying new locations most likely to be oil-rich.

Topological networks can provide valuable information about the drilling

equipment, as well. Below is a network whose structure is determined by a

number of system state readout variables, and whose color determined by

frequency of failure (red = high, blue = low). By better understanding the

correlation between system status and failure frequency, one can anticipate

critical events and avoid unnecessary replacements.

26

Campaign Ad Targeting

Based on data on 37,000 Twitter users who tweeted about Chris Christie, a

topological network structured by account similarity and colored by word

frequency can be used to identify niche conversations that are good targets for

campaign ads (Parulekar and Johnson, “Campaign Planning,” 2014). Shown below

(top to bottom) are colorings corresponding to “scandal,” “traffic,” and

“Governor.”

27

One can also investigate an individual group to see what other words

differentiate the group from other groups. This gives more specific insight into

the content of the discussion.

28

Biomarker Discovery

Below is a topological network generated by data from 272 breast cancer

patients, where the structure is based on similarity in genes expressed by

patients (Parulekar and Johnson, “Ayasdi Cure,” 2014). The left graph is colored

by death (red = high, blue = low), while the right graph is colored by esr1 level

(red = high, blue = low). We can see that the flare of patients who survived

corresponds to the flare of patients with high levels of esr1.

29

1.3.2. AUNALYTICS.

Aunalytics is the data science software & consulting company at which the

author is employed. Here, Mapper (via R’s TDAmapper) outperformed

hierarchical clustering in providing granular insights on a location tracking

dataset, and detected call-center teams which took abnormally long times to

accept calls even when there was little cohesion in the network.

Segmentation via Location Tracking

A location tracking dataset from an Aunalytics digital media client included

a count of visits to different location categories. In attempt to segment the user

base, the author originally performed hierarchical clustering on visit profiles

within each category. The highest degree of segmentation was observed within

the “Recreation and Leisure” category, which consisted of the following

subcategories: Stadiums/Arenas, Recreation Centers, Swimming Pool, Athletic

Fields, Baseball, Basketball, Football, Soccer, Tennis, Running, Golf, Gym and

Fitness Centers, Outdoors.

To perform hierarchical clustering, the author created a dataset whose

rows consisted of visit frequency (in %) for each of 13 subcategories above, and

then computed and sorted a Euclidean distance matrix via dendrogram. The

resulting visualization revealed 6 clusters.

30

Using the Mapper algorithm, however, revealed many more clusters.

Moreover, it revealed paths by which clusters were connected.

31

For example, we will inspect the distinguishing characteristics of the

high-visit flare consisting of nodes 19, 21, and 26. Below are graphs of column

means for the in-node and out-of-node populations.

32

Node 19 has a normal profile, but node 21 has a low average in column

corresponding to gym and fitness centers (column 12). Node 26 has a low average

here as well, and also has low averages in columns corresponding to athletic

fields, golf, and outdoors (columns 4, 11, 13). However, node 26 has a high

average in stadiums and arenas (column 1). We conclude that, for this example,

the Mapper algorithm revealed much finer granularity than hierarchical

clustering.

Call Center

Mapper was also used to investigate a 10,000-record sample of call center

data. The initial goal was to find trends over time, but after a week of little

success this goal was replaced with an anomaly detection approach. The

topological network below was structured by comparing each call’s queue, team

33

name, and location name, and colored by the amount of time needed to accept

the call (green = short, red = long).

Ideally, calls should be accepted quickly. However, we can see that clusters

163 and 165, corresponding to the tech team from a particular location, are

associated with abnormally long times to accept calls. This example demonstrates

how Mapper can reveal insights from data even when the data is sparse and

non-cohesive and the resulting network does not appear to contain any clear

paths between nodes.

34

2. PERSISTENT HOMOLOGY.

Section 2 elaborates on four main points surrounding Persistent Homology:

1. Homotopy. Algebraic topology aims to describe the connectivity of any

arbitrary space. It does this by computing the homotopy, or number of

“loops” in each dimension.

2. Approximation. In computational topology, datasets can be interpreted as

samples taken from an underlying topological space, and for any given

margin of error a topology can be constructed to approximate the

underlying space.

3. Homology. Homotopy groups are extremely difficult to compute in high

dimensions. Homology is a similar concept which can be easier to compute.

4. Persistence. Persistence barcode plots show which topological features

persist through many scales of the data, and can be used to calculate

similarity between different spaces.

5. Software. To compute persistent homology of small to medium-size

datasets, one can use the open source R package TDA.

35

2.1. HOMOTOPY.

To describe a shape’s connectivity, you can count the number of “loops” in

the shape, starting from an initial point called the basepoint. For example, the

letters “O” and “P” are said to have the same connectivity because they each have

one loop, whereas the letters “O” and “B” are said to have different connectivity

because “O” has one loop and “B” has two loops. Algebraic topology takes this

idea of classifying shapes based on how many loops they have, and extends it to

spaces of arbitrarily many dimensions (Carlsson, 2009).

For example, let’s start off with a two-dimensional space, a plane.

Immediately, we run into a problem we didn’t have with letters: we can draw

infinitely many loops in this infinite sheet. How should we count them all?

36

So that we’re not stuck counting loops for eternity, we say that loops are

equivalent if they can be continuously deformed into each other. Given a loop,

we can drag it across the plane, twist it around, stretch it, compress it, and so on,

and it will still be the same loop. The only thing we aren’t allowed to do is tear it.

That’s cheating.

To count loops using this equivalence, we need to figure out how many

distinct loops there are. In the plane above, it’s easy -- there is only one distinct

loop. However, if there is a hole in the sheet, the loop with the hole inside is not

37

the same as the loop with the hole outside: if the hole is inside a loop, the only

way to move it to the outside is to tear the loop, and that’s cheating.

A plane with one hole, then, has two loops: one loop with the hole inside

and another loop with the hole outside. The loop with the hole inside can be

deformed into any other loop with the hole inside, and the loop with the hole

outside can be deformed into any other loop with the hole outside. For a plane

with two holes, we have four distinct loops: one around each hole, one around

both holes, and one around neither hole. Topologists have a word, homotopy, for

the kind of non-tearing deformations we’re imagining, and they call the collection

of distinct loops a homotopy group.

38

In higher-dimensional spaces, we need to count loops in each dimension.

For example, consider a three-dimensional space with two points and a line

removed. This looks like a cube of cheese that has two air bubbles and has been

poked by a toothpick, infinitely enlarged.

39

There are two one-dimensional loops: a circle with the line inside, and a

circle with the line outside.

A circle containing the line is tethered to the line, but a circle containing

the missing point can move above and below the point. Since circles can move

through the missing points, the missing points do not affect the number of

distinct one-dimensional loops.

40

There are four two-dimensional loops: a bubble with no points inside, a

bubble with one point inside, a bubble with the other point inside, and a bubble

with both points inside. The missing line does not affect the number of distinct

two-dimensional loops because the line spans the entire space and consequently

we cannot put the line inside of a bubble.

41

In higher dimensions, it’s helpful to think of loops as surfaces. A

1-dimensional loop (circle) is the surface of a 1-dimensional sphere (disk). A

2-dimensional loop (bubble) is the surface of a 2-dimensional sphere (solid

sphere). In general, an n-dimensional loop is the surface of an n-dimensional

sphere.

42

2.2. APPROXIMATION.

Real-world datasets are not explicit topological spaces. Rather, they are

collections of points sampled from topological spaces, and the goal of topological

data analysis is to analyze these point clouds and infer information about their

underlying topological spaces. One can do this by using the point cloud to

construct a “simplicial complex” which approximates the underlying topological

space (Carlsson, 2009).

The main idea behind turning point clouds into simplicial complexes is to

put epsilon-balls, or error margins, around points and use the overlaps to

determine the connections in the simplicial complex. The constructions

generated using different values of epsilon will correspond to topological

approximations of the point cloud at different levels of scale.

For example, one generates the Cech complex of a point cloud by adding an

n-simplex whenever the intersection of all n balls is nonempty. A more

43

computationally efficient method, which generates the Vietoris-Rips complex,

adds an n-simplex whenever the intersection of every pair in the n balls is

nonempty, and contains the Cech complex as a subcomplex.

To see how these complexes are constructed, first consider these three

points with pairwise-overlapping balls.

The associated Cech complex includes three points and three segments, but

no triangle because the three balls don’t all overlap together anywhere. However,

The Vietoris-Rips complex contains the triangle in addition to the three points

and segments, since each pair of balls overlaps.

44

There is a theorem stating that for any epsilon, there is a finite set of points

such that the Cech complex is homotopy-equivalent to the full space (this also

applies to the Vietoris-Rips complex, since it contains the Cech complex).

Therefore, in theory, our approximation should have the same topological

features as the actual space, provided we use enough points.

45

2.3. HOMOLOGY.

Unfortunately, homotopy groups are extremely difficult to compute in high

dimensions. However, there is a similar concept, homology, which can be

calculated on simplicial complexes via linear algebra (Carlsson, 2009). Like

homotopy, homology also counts the number of loops of each dimension in a

space, where loops are allowed to shift along the boundary of a

higher-dimensional component on the space.

In simplicial complexes, the lowest-level components are points, followed

by segments, and then triangles, and then solid tetrahedrons, and so on. You can

think of an nth level component as an n-dimensional triangle, or more formally,

an n-simplex.

Level-0
component

point 0-dimensional
triangle

0-simplex

Level-1
component

segment 1-dimensional
triangle

1-simplex

Level-2
component

triangle 2-dimensional
triangle

2-simplex

Level-3
component

tetrahedron 3-dimensional
triangle

3-simplex

...

Level-n
component

 N-dimensional
triangle

n-simplex

46

For example, consider the following simplicial complex:

This complex contains the following simplices:

● 0-simplices: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}, {11}

● 1-simplices: {1,2}, {2,3}, {2,6}, {3,4}, {3,5}, {4,5}, {5,10}, {6,7}, {6,8}, {6,9},

{7,8}, {7,9}, {8,9}, {9,10}

● 2-simplices: {3,4,5}, {6,7,8}, {6,7,9}, {6,8,9}, {7,8,9}

The 0th homology of this complex consists of those 0-dimensional loops

along 0-simplices, which cannot be deformed into one another by shifting along

the boundary of a 1-simplex. Put more simply, it consists of those points which

cannot be shifted to one another along an edge. Since points {1} through {10} are

all connected by paths through edges, they are all viewed as the same in first

homology -- but since {11} is not connected to any other point by an edge, it is

different. Thus, the 0th homology of the above complex consists of two loops,

which intuitively represent “point islands”: points {0} through {10} inhabit the

47

first island, while point {11} is the lone inhabitant of the second island.

The 1st homology of this complex consists of those 1-dimensional loops

along 1-simplices, which cannot be deformed into one another by shifting along

the boundary of a 2-simplex. Put more simply, it consists of those edge loops

which cannot be shifted to one another along triangles. For example, the two

edge loops below are the same because {3,5} can be shifted to {3,4} and {4,5} on

the triangle {3,4,5}, and {6,9} can be shifted to {6,7} and {7,9} on the triangle

{6,7,9}.

48

It turns out that, for this complex, there is no other edge loop that is

different from the inner edge loop. Therefore, the 1st homology of the above

complex consists of one loop, which intuitively represents the “donut hole” in the

complex.

The 2nd homology is the last homology for this complex, because it

contains no simplices beyond the 2nd dimension. It consists of those

2-dimensional loops along 2-simplices, which cannot be deformed into one

another by shifting along the boundary of a 3-simplex. Put more simply, it

consists of those closed (think “inflatable”) surfaces which cannot be stretched

into to one another along solid tetrahedrons. The 2-simplices {3,4,5}, {6,7,8},

{6,7,9}, {6,8,9}, and {7,8,9} together form the surface of a tetrahedron, and the

solid tetrahedron itself is not included in our complex. Therefore, the 2nd

homology of the example complex consists of one loop, the surface of the

tetrahedron.

49

The number of components in the nth homology is called the nth Betti

number, and by comparing the Betti numbers of different spaces, we can gain an

idea of how topologically similar or different they are. For example, our complex

had three nontrivial homologies, giving rise to Betti numbers (2, 1, 1). If we found

two other datasets, constructed complexes on them, computed their homologies,

and found that they had Betti numbers (2, 2, 1) and (1, 5, 3), then we would

interpret the process generating the data of our example (2, 1, 1) complex as more

similar to the process generating the data of the (2, 2, 1) complex, than the

process generating the data of the (1, 5, 3) complex.

Measuring topological similarities between spaces by comparing their Betti

numbers is just the tip of the iceberg. We have lots of mathematical machinery

(e.g. probability and calculus) to analyze transformations between points, and

Betti numbers give us a way to interpret entire spaces at points. This opens the

door to studying not only relationships between parameters in a system, but also

relationships between systems with completely different parameters.

50

2.4. PERSISTENCE.

When we’re interested in topological features which persist across many

scales of the data, we need consider all values of epsilon for the simplicial

complex we construct on our data. This is the idea behind persistent homology:

we can figure out which topological features persist over the full range of scale by

making a plot that says whether a particular homology component was detected

at some value of epsilon (Carlsson, 2009).

Barcode plots have values of epsilon on the horizontal axis, and a list of

homology components on the vertical axis. Each row, then, corresponds to a

homology component, and is shaded at values of epsilon where the homology

component appears. For example, if the barcode plot below represents first

homology, then a single long bar tells us that the dataset has a main loop which

persists across many scales. Therefore, the dataset must look something like a

circle.

In a barcode plot with many long bars, many loops means many

possibilities for the space. In these situations, we cannot always get a clear idea of

51

what our space “looks” like, but we can still quantify the degree to which two

datasets share the same topology by computing a similarity index between their

persistence barcodes.

Persistence barcode distributions are currently an active area of research,

and they can encode persistence of not only homology components, but also

centrality, density, and other network measures.

52

2.5. SOFTWARE.

An R package named TDA (Fasy et al. 2014) has persistent homology

capabilities, which we will demonstrate on another ND logo dataset.

n_x <- c(rep(-1,31),0.005*seq(-200,-50,5),rep(-.25,31))

n_y <- c(0.01*seq(-75,75,5),-0.01*seq(-75,75,5),

0.01*seq(-75,75,5))

d_x <- c(rep(.25,31),

0.15+sqrt(0.75^2-(0.01*seq(-75,75,5))^2))

d_y <- c(0.01*seq(-75,75,5),0.01*seq(-75,75,5))

nd <- data.frame(x=c(n_x,d_x),y=c(n_y,d_y))

plot(nd)

53

We’ll create a barcode diagram to display the dataset’s persistent homology

in dimensions 0 and 1, for epsilon ranging from 0 to 1. The first homology

components are colored black, while the second homology components are

colored red.

Diag <- ripsDiag(X = nd, maxdimension = 2, maxscale = 1,

library = "GUDHI", printProgress = FALSE)

plot(Diag[["diagram"]], barcode = TRUE, main = "Barcode")

In first homology we see one component which persists the whole way,

capturing the N and D together, and another component which persists about

halfway, capturing the separation between the N and the D. In second homology,

we see one component which persists halfway, which captures the hole in the D.

54

Birth-death diagrams are also used to display the same information as

persistence barcodes:

plot(Diag[["diagram"]])

There are also functions for calculating the Bottleneck and Wasserstein

distances, which measure dissimilarity between homology diagrams. Below, we

calculate these distances between the N and the D in the logo.

n <- data.frame(x = n_x, y = n_y)

d <- data.frame(x = d_x, y = d_y)

DiagN <- ripsDiag(X = n, maxdimension = 1, maxscale = 1)

DiagD <- ripsDiag(X = d, maxdimension = 1, maxscale = 1)

55

> print(bottleneck(Diag1 = DiagN[["diagram"]],

Diag2 = DiagD[["diagram"]], dimension = 1))

0.2404992

> print(wasserstein(Diag1 = DiagN[["diagram"]],

Diag2 = DiagD[["diagram"]],p = 2, dimension = 1))

0.05783988

56

BIBLIOGRAPHY.

Carlsson, Gunnar. "Topology and data." Bulletin of the American Mathematical

Society 46.2 (2009): 255-308.

Fasy, Brittany, Jisu Kim, Fabrizio Lecci, Clement Maria, and Vincent Rouvreau.

“Introduction to the R Package TDA.” CRAN. 2014.

“Machine Intelligence for Denials Reduction.” Ayasdi Resources. 2015.

Parulekar, Sanjna, and Alexis Johnson. “Analyzing Oil & Gas Data with Ayasdi.”

Ayasdi Resources. 2014.

Parulekar, Sanjna, and Alexis Johnson. “Ayasdi Cure: Turning Data into

Therapies” Ayasdi Resources. 2014.

Parulekar, Sanjna, and Alexis Johnson. “Campaign Planning with Social Media

Intelligence.” Ayasdi Resources. 2014.

Pearson, Paul, Daniel Muellner, and Gurjeet Singh. “Analyze High-Dimensional

Data Using Discrete Morse Theory.” CRAN. 2016.

Roche, Terry, Tim Grant, Patrick Rogers, and Mukund Ramachandran. “Predicting

the Future: Forecasting Returns using Machine Intelligence.” Ayasdi

Resources. 2015.

Rogers, Patrick, and Johan Grahnen. “Recognizing the Shape of Fraud: Improve

FWA discovery with Machine Intelligence.” Ayasdi Resources. 2015.

Singh, Gurjeet, Facundo Mémoli, and Gunnar E. Carlsson. "Topological methods

for the analysis of high dimensional data sets and 3d object recognition."

SPBG. 2007.

57

