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———————————————————
ABSTRACT

———————————————————

We numerically investigate commonalities between
the iterative behavior of a variant T : N → N of the
discrete Collatz function and a continuous function
f : R+ → R+ that is equivalent to T on N. The
function f is a restriction to R+ of Letherman,
Schleicher, and Wood’s extension (1999) of T to C.
We then then generalize T and f to functions Ta,b
and Fa,b, where the 3n+ 1 rule becomes an+ b, and
we numerically investigate how a shared property ap-
pears to affect the iterative behavior of both functions.
Finally, we relate this property to random walks
whose proportionality of step size to displacement
causes them to converge. It is important to note that
the investigations in this paper consist primarily of
numerical experiments, rather than proofs, regarding
the 3n+ 1 and an+ b maps.

———————————————————
INTRODUCTION

———————————————————

The 3n+1 problem, also known as the Collatz prob-
lem, the Syracuse problem, Kakutani’s problem, and
Ulam’s problem, is German mathematician Lothar
Collatz’s 1937 conjecture about the iterative behav-
ior of the Collatz function C.

Definition The Collatz function C : N → N is
defined by

C(n) =

{
3n+ 1 if n ≡ 1 mod 2

n/2 if n ≡ 0 mod 2

Remark The acronym HOTPO (Half Or Triple Plus
One) is frequently used to describe C.

Definition Cj is the jth iteration of C. That is, Cj

is the composition of C with itself j times.

Example

C0(n) = n

C1(n) = C(n)

C2(n) = (C ◦ C)(n)

C3(n) = (C ◦ C ◦ C)(n)

...

Definition The 3n+1 problem is to prove the Collatz
conjecture: for each n ∈ N, there is a k ∈ N such that
Ck(n) = 1.

Because the 3n+ 1 step for an odd n always yields
an even number, investigations of the 3n+ 1 problem
often utilize the function T : N→ N defined by

T (n) =

{
3n+1

2 if n ≡ 1 mod 2
n
2 if n ≡ 0 mod 2

which combines the 3n + 1 step with the inevitable
n/2 step afterwards.

The Collatz conjecture is largely supported by
computation: Oliveira e Silva (2010) has verified the
conjecture for each natural number up to 5 × 260 ≈
5.8 × 1018. Furthermore, Lagarias (1985) offered an
intuitive argument for the Collatz conjecture by con-
sidering iteration sequences of natural numbers under
T .

Definition Let n ∈ N. The iteration sequence of n
under T is the sequence (n, T (n), T 2(n), ...), or, more
compactly, (T j(n))∞j=0.

Lagarias showed that if each term of each iteration
sequence of T is equally likely to be even or odd, then
each odd number in the sequence is expected to be
3/4 the previous odd number. Although Lagarias’s
argument provides intuitive support for convergence,
it does not guard against periodic cycles and is not a
proof because its hypothesis has not been proven.

Despite the 3n + 1 problem’s apparent simplic-
ity, every proposed proof has been shown incomplete,
and the Collatz conjecture remains unproven over 70
years since its proposal. Although the 3n+1 problem
is not of immediate practical importance in itself, a
solution technique could offer new insights to analy-
sis of complex systems. The 3n + 1 problem lies in
the intersection of number theory and dynamical sys-
tems, and the mathematics that produces a solution
may unite aspects of the two fields.

In this paper, we extend T to a continuous func-
tion f : R+ → R+, and we discover commonalities
between numerically-observed iterative behavior of T
over N and f over R+. Then, we extend the 3n + 1
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rule to an + b and generalize T and f to Ta,b and
Fa,b. We numerically investigate a shared property
that appears to be related to the iterative behavior
of the functions. Finally, we see how this property re-
lates to random walks whose step size is proportional
to displacement.

———————————————————
CONSTRUCTION OF f

———————————————————

Notice that T is bounded by the lines u(x) = 3x+1
2

and `(x) = x
2 . Thus, a sinusoid which runs along the

equilibrium e(x) = u(x)+`(x)
2 = 4x+1

4 with amplitude

α(x) = u(x)−`(x)
2 = 2x+1

4 and period 2 will intersect
u(x) when x is odd and `(x) when x is even. We
define f(x) = e(x)− α(x) cos(xπ), which yields

f(x) =
4x+ 1

4
− 2x+ 1

4
cos(πx).

A plot of f(x) is shown below for 1 ≤ x ≤ 50.
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Proposition 1. The functions f and T are equiva-
lent on N.

Proof. If n ∈ N is even, then cos(nπ) = 1, so

f(n) =
4n+ 1

4
− 2n+ 1

4
=
n

2
.

If n ∈ N is odd, then cos(nπ) = −1, so

f(n) =
4n+ 1

4
+

2n+ 1

4
=

3n+ 1

2
.

Thus, f(N) = T (N).

Note that f can also be realized as a restriction to
R+ of Letherman, Schleicher, and Wood’s extension
(1999) of T to C.

———————————————————
ITERATIVE BEHAVIOR OF T & f

———————————————————

The Collatz conjecture says that for any n ∈ N,
T j(n) settles down and eventually reaches 1 for some
choice of j.

Below are graphs of T j(174), T j(175), and T j(176)
for 0 ≤ j ≤ 50. Indeed, all three inputs, or seeds, are
eventually mapped to 1, consistent with the Collatz
conjecture. However, although these inputs, or seeds,
are as close to each other as possible, their iterative
behavior prior to reaching 1 differs significantly.
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We see that small variations in n ∈ N can lead
to unexpected changes in the iteration sequence of n
under T .

Proposition 2. If the Collatz conjecture holds for a
number n, then there is a k ∈ N such that T j(n) ∈
{1, 2} for all natural numbers j ≥ k.

Proof. If n satisfies the Collatz conjecture, then there
is a k ∈ N such that T k(n) = 1. But if T (1) = 2 and
T (2) = 1, so 1→ 2→ 1→ 2→ · · · under T .

Remark If the Collatz conjecture is true, then val-
ues of iterates of N under T are eventually confined
to {1, 2}. This raises the question: how do iterates of
R+ behave under f?

To visualize many iteration sequences at once, we
create a 3D plot of f j(x) for 0 ≤ j ≤ 200 on 1 ≤ x ≤
100:
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Although all computer programs are susceptible to
roundoff error and cannot generate plots over the en-
tirety of R+, it is interesting that every value plotted
follows the same trend: the plot suggests that for
most points x of f , as j increases, f j(x) settles down
and eventually becomes trapped in approximately the
interval [1, 2] for 1 ≤ x ≤ 100. Similar plots for larger
values of x suggest that f j(x) displays the same set-
tling behavior as j increases.

We also see in f the property that even when seeds
(input values) are very close together, their iteration
sequences can take quite different paths before they
settle.

Below is a plot of f j(174.99), f j(175), and
f j(175.01) for 0 ≤ j ≤ 50. Although these three seeds
are spaced at merely 0.01, their iteration sequences
differ significantly. Small variations in x ∈ R+ can
lead to unexpected changes in the iteration sequence
of x under f .
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As j increases, f j(174.99) oscillates between 1 and
2 with period 1, and f j(175.01) oscillates between
∼ 1.193 and ∼ 2.139 with period 2.
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Other points appear to demonstrate the same be-
havior: they first take different paths, reaching dras-
tically different values after the same number of iter-
ations.
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However, after sufficiently many iterations, they
appear to converge into one of the cycles (1, 2) or
(1.193, 2.139). This behavior occurs for all points
that were tested, although we show only a small in-
terval [174.99, 175.01] for clarity because the graph
oscillates so often.
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Upon consideration of df2

dx , the (1, 2) and
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(1.193..., 2.105...) cycles makes sense. By the chain
rule, we know

df2(x0)

dx
=
df

dx
(f(x0))

df

dx
(x0),

and we also have that

df(x)

dx
= 1 +

1

2
cosπx− 2x+ 1

4
π sinπx.

We see that

{
df
dx (1) = 3

2
df
dx (2) = 1

2

and

{
f(1) = 2

f(2) = 1
, so

df2(1)

dx
=
df2(2)

dx
=

3

4
.

Also, because

{
df
dx (1.193) = 2.105
df
dx (2.139) = −0.300

and{
f(1.193) ≈ 2.139

f(2.139) ≈ 1.193
, we have that

df2(1.193)

dx
≈ df2(2.139)

dx
≈ −0.632.

Since we have
∣∣∣df2(p)

dx

∣∣∣ < 1 for p =

1, 2, 1.193..., 2.139..., we know that the cycles
(1, 2) and (1.193..., 2.139...) are attracting.

———————————————————
GENERALIZATION TO Ta,b and Fa,b

———————————————————

Now, we will extend T and f to larger, more general
classes of functions.

Define the function Ta,b : N→ N by

Ta,b =

{
an+b

2 if n ≡ 1 mod 2
n
2 if n ≡ 0 mod 2

where a, b ∈ N ∪ {0} with a+ b even and nonzero.

Proposition 3. Provided that a, b ∈ N∪{0} are cho-
sen that a+ b is even and nonzero, Ta,b indeed maps
N to N

Proof. If n is even, then Ta,b(n) = n
2 ∈ N. Thus, we

need only consider the case when n is odd.
If a+b is even, then a, b are either both even or both

odd. Suppose that n is odd. If a, b are both even, then
an is even, so an+ b is even. Moreover, because a, b
are not both zero, we have that Ta,b(n) = an+b

2 ∈ N.
Alternatively, if a, b are both odd, then an is odd, so
an+ b is even. Hence Ta,b(n) = an+b

2 ∈ N.

Remark Notice that T2,1 is equivalent to T .

Using the method that we used to create the con-
tinuous extension f of T , we create the continuous
extension Fa,b of Ta,b. It is given by:

Fa,b(x) =
(a+ 1)x+ b

4
− (a− 1)x+ b

4
cos(πx)

Remark Notice that F2,1 is equivalent to f .

Proposition 4. The functions Fa,b and Ta,b are
equivalent on N.

Proof. If n ∈ N is even, then cos(nπ) = 1, so

Fa,b(n) =
(a+ 1)n+ 1

4
− (a− 1)n+ 1

4
=
n

2
.

If n ∈ N is odd, then cos(nπ) = −1, so

Fa.b(n) =
(a+ 1)n+ b

4
+

(a− 1)n+ b

4
=
an+ b

2
.

Thus, Fa,b(N) = Ta,b(N)

———————————————————
AREA INVESTIGATION OF Ta,b

———————————————————

The overall iterative behavior of Ta,b is related to

• how frequently Ta,b(n) > n and Ta,b(n) < n oc-
cur relative to each other, and

• how much greater or lesser Ta,b(n) is than n.

Both of these aspects are encompassed in sum of a
function’s values function above the line y = x versus
below the line y = x.

Accordingly, define the function
Ha,b : N→ N by

Ha,b(t) =

t∑
n=1

Ta,b(n)− n.

where t is odd (for simplicity).

Then
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Ha,b(t) =

t−1
2∑

n=0

a(2n+ 1) + b

2
− (2n+ 1) +

t−1
2∑

n=0

2n

2
− 2n

=

t−1
2∑

n=0

[
(a− 3)n+

a+ b− 2

2

]
= (a− 3)

(
t2 − 1

8

)
+

(
a+ b− 2

2

)(
t− 1

2

)
=
a− 3

4
t2 +

a+ b− 2

4
t+

7− 3a− 2b

4

We see that b does not offer unique contribution
to any of the above terms: b is not included in the
t2 term, and both a and b contribute in similar ways
to the t term and the constant term. Thus, in our
upcoming investigation, we will vary a and constrain
b = 1.

A contour plot of Ha,1(t) is shown below for 0 ≤
a ≤ 5 and 0 ≤ t ≤ 500.
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We see that the Ha,1 = 0 isocline is given approxi-
mately by the line a = 3. This makes sense, because
the t2 term of Ha,1(t) dominates the other terms: for
very large t, we see that

Ha,1(t >> 0) ≈ a− 3

8
t2.

Interestingly, a = 3 also appears to be the crossover
point from decreasing to increasing iterative behav-
ior, as suggested by the following contour plot of
T 100
a,1 (x) for 0 ≤ a ≤ 5 and 0 ≤ x ≤ 500.
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Note: white color denotes values that were
were outside the range of the plot.

———————————————————
AREA INVESTIGATION OF Fa,b

———————————————————

When we make the extension from discrete to con-
tinuous, the sum of values above versus below the
line y = x turns into an integral, or area, of the val-
ues above versus below the line y = x.

Define Ga,b : R+ → R by

Ga,b(t) =

∫ t

0

[Fa,b(x)− x]dx.

Then

Ga,b(t) =

∫ t

0

[
(a+ 1)x+ b

4

− (a− 1)x+ b

4
cos(πx)− x

]
dx

=

∫ t

0

[
(a− 3)x+ b

4

− (a− 1)x+ b

4
cos(πx)

]
dx

=
a− 3

8
t2 +

b

4
t

− b

4π
sin(πx)− a− 1

4

∫ t

0

x cos(πx)dx.

Using integration by parts, we know that
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∫ t

0

x cos(πx)dx =
1

π
t sin(πt)

+
1

2π2
cos(πt)− 1

2π2
.

Thus, we reach

Ga,b(t) =
a− 3

8
t2 +

(
b

4
− a− 1

4π
sin(πt)

)
t

− b

4π
sin(πx)− a− 1

8π2
cos(πt)

+
a− 1

8π2
.

A contour plot of Ga,1(t) is shown below for 0 ≤
a ≤ 5 and 0 ≤ t ≤ 500.
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We see that, just as for Ha,b, the Ga,1 = 0 isocline
is given approximately by the line a = 3, and for very
large t we have

Ga,b(t >> 0) ≈ a− 3

8
t2.

Again, a = 3 appears to be the crossover point
from decreasing to increasing iterative behavior, as
suggested by the following contour plot of F 100

a,1 (x)
for 0 ≤ a ≤ 5 and 0 ≤ x ≤ 500.
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Note: Again, white color denotes values
that were outside the range of the plot.
For example, F 100

4,1 (250) ≈ 1.0836 ∗ 109.

———————————————————
COMPARISON TO RANDOM WALKS

———————————————————

In the previous two sections, we saw that the a−3
8 t2

term appears to tell us a lot about the behavior of
Ta,b and Fa,b. In the case of b = 1, when one of the
functions is positive in the t2 term, it increases over
time, but when one of the functions is zero or negative
in the t2 term, it appears to settle down regardless of
the t or constant terms. Thus, the a−3

8 t2 term is the
focal point of this last investigation.

Let ga : R+ → R be a function that satisfies

∫ t

0

[ga(x)− x] dx =
a− 3

8
t2.

Then we have

∫ t

0

ga(x)dx =
a− 3

8
t2 +

1

2
t2

=
a+ 1

8
t2

and we see that

ga(x) =
a+ 1

4
x

When −5 < a < 3, we have that |a+1
4 | < 1, and so

the iterate gka(x) approaches 0 as k increases. How-
ever, when a > 3, we have that |a+1

4 | > 1 and so the
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iterate gka(x) increases without bound as k increases.
Thus, it is not surprising that a = 3 appears to form
a boundary for the cross-over from decreasing to in-
creasing iterative behavior (at least, when b = 1).

It may seem surprising that we saw eventually de-
creasing behavior for F and T when a = 3. When
a = 3, we have that g3(x) = x, and so gk3 (x) = x for
all k. However, F3,b(x) and T3,b(x) include fluctua-
tions from the line y = x on the order of x. These
fluctuations may have a role in the convergent behav-
ior for a = 3.

Indeed, fluctuations play a role in the dynamics of
random walks. Consider a random walk of the form

r(x) = x+ δx

where δ takes on values +λ and −λ, where λ > 0,
with equal probability. We see that r(x) moves x
right or left by λ units for each iteration. However,
writing

r(x) = (1 + δ)x,

we see that the expected value E[rk(x)] of rk(x) is

E[rk(x)] = x (1 + λ)
k
2 (1− λ)

k
2

= x
(
1− λ2

) k
2 .

As long as 0 < λ <
√

2, we have that 0 < |1−λ2| <
1. Thus, even if λ is nonzero but arbitrarily small,
we have that for each x, E[rk(x)]→ 0 as k →∞.

———————————————————
CONCLUSIONS

———————————————————

We extended the discrete function T on N to the
continuous function f on R+. Using plots we saw
that although iteration sequences T and f change
unexpectedly even with small changes in initial in-
put, both functions appear to settle down after many
iterations. T appears to cycle between the values 1
and 2, while f appears to become trapped in (or quite
close to) the cycles (1, 2) and (1.193..., 2.139...).

We generalized T and f to larger classes of func-
tions Ta,b and Fa,b, and we saw that their sums and
integrals above the line y = x on the interval [0, t]
depends heavily on the a−3

8 t2 term. For b = 1, when
a < 3, the term is negative, and both Ta,1 and Fa,1

appear to settle; when a > 3, the term is positive, and

both Ta,1 and Fa,1 appear to increase without bound.
When a = 3, as in the Collatz conjecture, the term
vanishes. However, when a = 3, the simplest function
whose integral above the line y = x on [0, t] is a−3

8 t2

becomes the identity function, whose iterates do not
settle. Analogy to random walks offers an intuitive
explanation for why small fluctuations from y = x
that are proportional to x, as found in Ta,b and Fa,b,
can give rise to settling behavior.
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