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Abstract
We numerically investigate commonalities between the 

iterative behavior of a variant T : ℕ → ℕ of the discrete 
Collatz function and a continuous function f : ℝ+ → ℝ+ that 
is equivalent to T on ℕ. The function f is a restriction to ℝ+ of 
Letherman, Schleicher, and Wood’s extension (1999) of T to ℂ. 
We then then generalize T and f to functions τa,b and Fa,b , where 
the 3n + 1 rule becomes an + b, and we numerically investigate 
how a shared property appears to affect the iterative behavior 
of both functions. Finally, we relate this property to random 
walks whose proportionality of step size to displacement causes 
them to converge. It is important to note that the investigations 
in this paper consist primarily of numerical experiments, rather 
than proofs, regarding the 3n+1 and an+b maps.

1. Introduction
The 3n+1 problem, also known as the Collatz problem, the 

Syracuse problem, Kakutani’s problem, and Ulam’s problem, is 
German mathematician Lothar Collatz’s 1937 conjecture about 
the iterative behavior of the Collatz function C.

Definition The Collatz function C : ℕ → ℕ is defined by

Remark The acronym HOTPO (Half Or Triple Plus One) is 
frequently used to describe C.

Definition C 
j is the jth iteration of C. That is, C 

j is the 
composition of C with itself j times.
 
Example

C0(n) = n
C1(n) = C(n)
C2(n) = (C ◦ C)(n)
C3(n) = (C ◦ C ◦ C)(n)
 

Definition The 3n+1 problem is to prove the Collatz conjecture: 
for each n ∈ ℕ, there is a k ∈ ℕ such that C k(n) = 1.

Because the 3n + 1 step for an odd n always yields an even 
number, investigations of the 3n + 1 problem often utilize the 
function T : ℕ → ℕ defined by
 
 

3n + 1   if n ≡ 1   mod 2
n/2        if n ≡ 0   mod 2{C(n) = 

  3n + 1
2      if n ≡ 1   mod 2

 
 

 n
2        if n ≡ 0   mod 2{T(n) = –––
–

. . .  

which combines the 3n + 1 step with the inevitable  
n/2 step afterwards.

The Collatz conjecture is largely supported by computation: 
Oliveira e Silva (2010) has verified the conjecture for each 
natural number up to 5 × 260 ≈ 5.8 × 1018. Furthermore, Lagarias 
(1985) offered an intuitive argument for the Collatz conjecture 
by considering iteration sequences of natural numbers under T.

Definition Let n ∈ ℕ. The iteration sequence of n under T is 
the sequence (n, T(n), T 2(n), ...), or, more compactly, (T j(n)) j=0.

Lagarias showed that if each term of each iteration sequence 
of T is equally likely to be even or odd, then each odd number 
in the sequence is expected to be 3/4 the previous odd number. 
Although Lagarias’s argument provides intuitive support for 
convergence, it does not guard against periodic cycles and is 
not a proof because its hypothesis has not been proven.

Despite the 3n + 1 problem’s apparent simplicity, every 
proposed proof has been shown incomplete, and the Collatz 
conjecture remains unproven over 70 years since its proposal. 
Although the 3n + 1 problem is not of immediate practical 
importance in itself, a solution technique could offer new 
insights to analysis of complex systems. The 3n + 1 problem 
lies in the intersection of number theory and dynamical systems, 
and the mathematics that produces a solution may unite aspects 
of the two fields.

In this paper, we extend T to a continuous function  
f : ℝ+ → ℝ+, and we discover commonalities between 
numerically-observed iterative behavior of T over ℕ and f over 
ℝ+. Then, we extend the 3n + 1 rule to an + b and generalize 
T and f to τa,b and Fa,b. We numerically investigate a shared 
property that appears to be related to the iterative behavior 
of the functions. Finally, we see how this property relates to 
random walks whose step size is proportional to displacement.

2. Construction of f
Notice that T is bounded by the lines u(x) =                  and l(x) =       .  

Thus, a sinusoid which runs along the equilibrium  
e(x) =               =            with amplitude and period 2 will  
intersect u(x) when x is odd and l(x) when x is even. We define 
f(x) = e(x) − α(x)cos(xπ), which yields

f(x) = –––––– - –––––– cos(πx)

A plot of f (x) is shown below for 1 ≤ x ≤ 50.

 ∞

3x+1–––2

u(x) + l(x)––––––2
4x + 1–––––4

–2
x

Although all computer programs are susceptible to roundoff 
error and cannot generate plots over the entirety of ℝ+, it is 
interesting that every value plotted follows the same trend: the 
plot suggests that for most points x of f, as j increases, f j(x) 
settles down and eventually becomes trapped in approximately 
the interval [1, 2] for 1 ≤ x ≤ 100. Similar plots for larger 
values of x suggest that f j(x) displays the same settling  
behavior as j increases.

We also see in f the property that even when seeds (input 
values) are very close together, their iteration sequences can 
take quite different paths before they settle.

Below is a plot of f  j (174.99), f  j (175), and f  j (175.01) for 
0 ≤ j ≤ 50. Although these three seeds are spaced at merely 0.01, 
their iteration sequences differ significantly. Small variations in 
x ∈ ℝ+ can lead to unexpected changes in the iteration sequence 
of x under f.

As j increases, f j (174.99) oscillates between 1 and 2 with 
period 1, and f j(175.01) oscillates between ~ 1.193 and ~ 2.139 
with period 2.

We see that small variations in n ∈ ℕ can lead to  
unexpected changes in the iteration sequence of n under T.

Proposition 2. If the Collatz conjecture holds for a number n, 
then there is a k ∈ ℕ such that T j(n) ∈ {1, 2} for all natural 
numbers j ≥ k.

Proof. If n satisfies the Collatz conjecture, then there is a 
k ∈ ℕ such that T k(n)=1. But if T(1) = 2 and  T(2) = 1, so  
1 → 2 → 1 → 2 → ··· under T.

Remark If the Collatz conjecture is true, then values of iterates 
of ℕ under T are eventually confined to {1, 2}. This raises the 
question: how do iterates of ℝ+ behave under f ?

To visualize many iteration sequences at once, we create a 
3D plot of f j(x) for 0 ≤ j ≤ 200 on 1 ≤ x ≤ 100:

3. Iterative Behavior of T & f
The Collatz conjecture says that for any n ∈ ℕ, T j (n) settles 

down and eventually reaches 1 for some choice of j.
Below are graphs of T j (174), T j (175), and T j (176) for 0 ≤ 

j ≤ 50. Indeed, all three inputs, or seeds, are eventually mapped 
to 1, consistent with the Collatz conjecture. However, although 
these inputs, or seeds, are as close to each other as possible, 
their iterative behavior prior to reaching 1 differs significantly.

n

Proposition 1. The functions f and T are equivalent on ℕ.

Proof. If n ∈ ℕ is even, then cos(nπ) = 1, so

f(n) =              -             = 

If n ∈ ℕ is odd, then cos(nπ) = −1, so

  f(n) =               -             =

Thus, f(ℕ) = T(ℕ).

Note that f can also be realized as a restriction to ℝ+ of 
Letherman, Schleicher, and Wood’s extension (1999) of T to ℂ.

4n + 1–––––4
2n + 1––––4 –2

4n + 1–––––4
2n + 1––––4

3n + 1––––2

4x + 1     2x + 1 
4              4
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However, after sufficiently many iterations, these 
points appear to converge into one of the cycles (1, 2) or 
(1.193..,2.139...). This behavior occurs for all points that were 
tested, although we show only a small interval [174.99, 175.01] 
for clarity because the graph oscillates so often.

Other points appear to demonstrate the same behavior: they 
first take different paths, reaching drastically different values 
after the same number of iterations.

Upon consideration of        , the (1, 2) and (1.193...,2.105...), the 
cycles makes sense. By the chain rule, we know 

and we also have that

 
We see that

4. Generalization to τa,b and Fa,b
Now, we will extend T and f to larger, more general classes 

of functions.
Define the function τa,b : ℕ → ℕ by   

where a, b ∈ N ∪ {0} with a + b even and nonzero.

Proposition 3. Provided that a,b ∈ N ∪ {0} are chosen that  
a + b is even and nonzero, τa,b indeed maps ℕ to ℕ.

Proof. If n is even, then τa,b(n) = n
2 ∈ ℕ. Thus, we need only 

consider the case when n is odd. 
If a+b is even, then a, b are either both even or both odd.

Suppose that n is odd. If a, b are both even, then an is even, so 
an + b is even. Moreover, because a, b are not both zero, we 
have that τa,b(n) =  an+b

2    ∈ ℕ. Alternatively, if a, b are both odd, 
then an is odd, so an + b is even. Hence τa,b(n)= ––––– ∈ ℕ.

Remark Notice that τ2,1 is equivalent to T. 

Using the method that we used to create the continuous 
extension f of T, we create the continuous extension Fa,b of τa,b. 
It is given by: 

Fa,b(x) = ––––––– - –––––––– cos(πx)

Remark Notice that F2,1 is equivalent to f.

Proposition 4. The functions Fa,b and τa,b are equivalent on ℕ.

Proof. If n ∈ ℕ is even, then cos(nπ) = 1, so

Fa,b(n) = ––––––– - –––––––– = ––

df 2––dx

df 2(x0)––––dx = df ––dx (f(x0))
df ––dx (x0),

 df (x)––––dx = 1+ –– (cosπx) - 2x + 1 –––– πsinπx.1
2 4

and
 df –– (1) = dx

3
2––

 df –– (2) = dx
1
2––

f (1) = 2
f (2) = 1{ { , so

df 2(1)––––dx = –– .df 2(2)––––dx = 3
4

Also, because                                 and                              ,
 df –– (1.193) = dx 2.105{  df –– (2.193) = dx -0.300

 f (1.193) = 2.139 { f (2.193) = 1.193 

we have that
df 2(1.193)––––––dx ≈ .df 2(2.139)––––––dx ≈ -0.632

Since we have |        | < 1 for p = 1,2,1.193...,2.193..., we know 
that the cycles (1,2) and (1.193...,2.139) are attracting.

df 2(p)––––––dx

  an + b
2      if n ≡ 1   mod 2

   n
2          if n ≡ 0   mod 2{τa,b = –––
–

–

––––

(a + 1)x + b    (a - 1)x + b
4                     4

(a + 1)n + 1    (a - 1)n + 1        n
4                     4                  2

5. Area Investigation of τa,b
The overall iterative behavior of τa,b is related to 
• how frequently τa,b(n) > n and τa,b(n) < n occur relative 

to each other, and
• how much greater or lesser τa,b(n) is than n.
Both of these aspects are encompassed in sum of a function’s 

values function above the line y = x versus below the line y = x.

Accordingly, define the function Ha,b : ℕ → ℕ by

Ha,b(t) = ∑ τa,b(n) - n

where t is odd (for simplicity).
Then

 Ha,b(t) = ∑ ––––––––– - (2n + 1) + ∑ –– - 2n

           
            = ∑ [(a - 3)n + –––––––]

            = (a - 3)(––––) + (––––––)(–––)

            = –––– t2 + ––––––– t + –––––––

We see that b does not offer unique contribution to any of 
the above terms: b is not included in the t2 term, and both a 
and b contribute in similar ways to the t term and the constant 
term. Thus, in our upcoming investigation, we will vary a and 
constrain b = 1.

A contour plot of Ha,1(t) is shown below for 0 ≤ a ≤ 5 and 
0 ≤ t ≤ 500.

6. Area Investigation of Fa,b
When we make the extension from discrete to continuous, 

the sum of values above versus below the line y = x turns into an 
integral, or area, of the values above versus below the line y = x.

Define Ga,b: ℝ
+ → ℝ by

Ga,b(t) = ∫   [Fa,b(x) - x] dx

Then

Ga,b(t) = ∫    [––––––––––– - –––––––––– cos(πx) - x] dx

  = ∫    [––––––––––– - –––––––––– cos(πx)]dx

  = ––––– t 2 + –– t - –– sin(πx) - –––– ∫  x cos(πx) dx

Using integration by parts, we know that

∫  x cos(πx) dx = –– t sin(πt) + ––– cos(πt) - ––– .

Thus, we reach

Ga,b(t) = ––––– t 2 + (–– - –––– sin(πx))t 

         - –– sin(πx) - –––– cos(πx) + –––––

A contour plot of Ga,1(t) is shown below for 0 ≤ a ≤ 5 and 
0 ≤ t ≤ 500.

If n ∈ ℕ is odd, then cos(nπ) = −1, so

Fa,b(n) = ––––––– - –––––––– = –––––

Thus, Fa,b(ℕ) = τa,b(ℕ)

(a + 1)n + b    (a - 1)n + b       an + b
4                     4                               2

n=1

t

a(2n + 1) + b                                2n
2                                            2

t-1
2––

n=0
a + b - 2 

2

t-1
2––

t 2 - 1          a + b - 2     t - 1
  8                   2             2  

a - 3            a + b - 2           7 - 3a - 2b 
  4                    4                         4  

We see that the Ha,1 = 0 isocline is given approximately by 
the line a = 3. This makes sense, because the t2 term of Ha,1(t) 
dominates the other terms: for very large t, we see that

Ha,1(t >> 0) ≈ –––– t2.

Interestingly, a = 3 also appears to be the crossover point 
from decreasing to increasing iterative behavior, as suggested 
by the following contour plot of τ 

100
a,1 (x) for 0 ≤ a ≤ 5 and  

0 ≤ x ≤ 500.

a - 3
8

t

0

(a + 1) x + b     (a - 1) x + b
4                      4

(a + 3) x + b     (a - 1) x + b
4                      4

a - 3           b        b                 a - 1
8              4       4π                   4

t

0 t

0 t

0

a - 3             b     a - 1
8                  4                  4π  
b                 a - 1                   a - 1

      4π                 8π2                     8π2 

1                     1                    1
                      2π2                2π2π

t

0

an + b
2

n=0 n=0

t-1
2––
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7. Comparison to Random Walks
In the previous two sections, we saw that the ––– t2 term 

appears to tell us a lot about the behavior of τa,b and Fa,b. In the 
case of b = 1, when one of the functions is positive in the t2 term, 
it increases over time, but when one of the functions is zero or 
negative in the t2 term, it appears to settle down regardless of 
the t or constant terms. Thus, the ––– t2 term is the focal point 
of this last investigation.

Let ga : ℝ
+ → ℝ be a function that satisfies

∫  [ga(x) - x] dx = ––– t 

2 

We see that, just as for Ha,b, the Ga,1 = 0 isocline is given 
approximately by the line a = 3, and for very large t we have

Ga,b(t >> 0) ≈ –––– t2.

Again, a = 3 appears to be the crossover point from 
decreasing to increasing iterative behavior, as suggested by the 
following contour plot of F 

100
a,1 (x) for 0 ≤ a ≤ 5 and 0 ≤ x ≤ 500.

a - 3
8

a - 3
8

a - 3
8

a - 3
8

t

0

Then we have

∫  ga(x)dx = ––– t2 + –– t2 = –––– t2

And we see that

ga(x) = –––– x

When -5 < a < 3, we have that |––––| < 1, and so the iterate 
g 

k
a(x) approaches 0 as k increases. However, when a > 3, we 

have that |––––| > 1 and so the iterate g 
k
a(x) increases without 

bound as k increases.Thus, it is not surprising that a = 3 appears 
to form a boundary for the cross-over from decreasing to 
increasing iterative behavior (at least, when b = 1). 

It may seem surprising that we saw eventually decreasing 
behavior for F and τ when a = 3. When a = 3, we have that 
g3(x) = x, and so g 

k
3(x) = x for all k. However, F3,b(x) and 

τ3,b(x) include fluctuations from the line y = x on the order 
of x. These fluctuations may have a role in the convergent  
behavior for a = 3.

Indeed, fluctuations play a role in the dynamics of random 
walks. Consider a random walk of the form 

r(x) = x + δx

where δ takes on values +λ and -λ, where λ > 0, with equal 
probability. We see that r(x) moves x right or left by λ units for 
each iteration. However, writing

r(x) = (1 + δ)x,

we see that the expected value E[r k(x)] of r k(x) is

E[r k(x)] = x (1 + λ) –– (1 + λ) –– = x(1 - λ2) ––

As long as 0 < λ < √2 , we have that 0 < |1 - λ2| < 1. Thus, 
even if λ is nonzero but arbitrarily small, we have that for each 
x, E[r k(x)] → 0 as k → ∞.

Conclusions
We extended the discrete function T on ℕ to the continuous 

function f on ℝ+. Using plots we saw that although iteration 
sequences T and f change unexpectedly even with small changes 
in initial input, both functions appear to settle down after many 
iterations. T appears to cycle between the values 1 and 2, while 
f appears to become trapped in (or quite close to) the cycles  
(1, 2) and (1.193..., 2.139...). 

We generalized T and f to larger classes of functions τa,b and 
Fa,b, and we saw that their sums and integrals above the line  
y = x on the interval [0, t] depends heavily on the ––– t2 term.
For b = 1, when a < 3, the term is negative, and both τa,1 and 
Fa,1 appear to settle; when a > 3, the term is positive, and both 
τa,1 and Fa,1 appear to increase without bound. When a = 3, as 
in the Collatz conjecture, the term vanishes. However, when  
a = 3, the simplest function whose integral above the line y = x on 
[0, t] is ––– t2 becomes the identity function, whose iterates do not 

a - 3         1          a + 1
8            2             8

t

0

a + 1
4

a + 1
4

a + 1
4

k                            k                                       k
2                            2                                       2

a - 3    
8     

a - 3    
8     

Acknowledgments
I would like to thank my advisor, Professor Jeff Diller, for 

his curious insights, advice, and encouragment, and I thank my 
friend Nicholas Lohr for his helpful comments and suggestions 
that improved the clarity of this paper.

References
1. J.C. Lagarias. Am. Math. Mon. 92,3-23 (1985).

2. S. Letherman, D. Schleicher, and R. Wood. Exp. Math. 8:3,241-
252 (1999).

3. T. Oliveira e Silva. "Empirical verication of the 3x + 1 and related 
conjectures". In The Ultimate Challenge: The 3x + 1 Problem, J.C. 
Lagarias, ed. (American Mathematical Society, 2010).

About the Author
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