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Abstract

After presenting a historical and abstract algebraic exposition of the quaternions, we prove the Skolem-
Noether theorem for quaternions. We conclude with an application of the quaternions to number theory.

Introduction

We begin with a historical background of Hamilton’s quaternions and a review of their defining properties.
In this paper we show that the quaternions form an algebra, and we prove the Skolem-Noether theorem, for
pure quaternions. We show that the result of the theorem gives physical meaning to automorphisms of pure
quaternions. Lastly, we present an application of quaternions to number theory.

Hamilton’s Discovery of the Quaternions

The quaternions were discovered by William Rowan Hamilton on October 16th, 1843 (Buchmann 2011).
Having completed the Theory of Couplets, an algebraic representation of the complex numbers, in 1833,
Hamilton set out to form the Theory of Triplets, an algebraic representation of vectors in three-dimensional
space. Hamilton suspected that, just as the Theory of Couplets used vectors with a real unit 1 and single
imaginary unit, denoted i, to analyze rotations in two dimensions, the Theory of Triplets would use vectors
with the real unit and two imaginary units, denoted i and j, to analyze rotations in three dimensions
(Buchmann 2011).

However, after ten years of unsuccessful pursuit, a flash of insight came to Hamilton as he strolled with
his wife along the Royal Canal in Dublin. Hamilton realized that the tools for analyzing rotations in three
dimensions were not themselves three-dimensional. Rather, they were quaternions, four dimensional vectors
consisting of a real unit and three imaginary units denoted i, j, and k. Hamilton was so excited by his
discovery that he carved the quaternion multiplication rule

i2 = j2 = k2 = ijk = −1

for his four-dimensional algebra and described his experience by the words

“And here dawned on me the notion that we must admit, in some sense, a fourth
dimension of space for the purpose of calculating with triples . . . An electric
circuit seemed to close, and a spark flashed forth”

in a letter to his colleague and friend John Graves the very next day (Shipmann). Hence, in honor of
Hamilton, we will define H := R4 to be the set of quaternions.

Hamilton defined the following binary operations on his quaternions:
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Definition Define real-quaternion multiplication ·RH : R × H → H and quaternion-
quaternion addition +HH : H×H→ H component-wise as follows:

(i). if r is a real number and q = (q0, q1, q2, q3) is a quaternion, then

r ·RH q = (rq0, rq1, rq2, rq3)

(ii). If q = (q0, q1, q2, q3) and h = (h0, h1, h2, h3) are quaternions, then

q +HH h = (q0 + h0, q1 + h1, q2 + h2, q3 + h3)

To formalize Hamilton’s notation scheme, we define the real and imaginary quaternion units and spaces
as follows:

Definition In H, denote the real unit as 1′ := (1, 0, 0, 0), and denote the imaginary units as
i := (0, 1, 0, 0), j := (0, 0, 1, 0), and k := (0, 0, 0, 1).

(i). We denote the space of real quaternions RH as the span of the real unit 1′ over R.

(ii). We denote the space of imaginary quaternions V 3 as the span of imaginary units i, j, k
over R.

Recalling Hamilton’s rule for quaternion multiplication, we define:

Definition Quaternion-quaternion multiplication is the binary relation ·HH : H × H → H
such that

i ·HH i = j ·HH j = k·HH = i ·HH j ·HH k = −1′

Hamilton’s rule for quaternion-quaternion multiplication is a compact way of describing the following
table:

·HH 1′ i j k
1′ 1′ i j k
i i −1′ k −j
j i −k −1′ i
k k j −i −1′

To ease notation, we will use the symbol (·) or omit the symbol when we use real-real multiplication,
real-quaternion multiplication, and quaternion-quaternion multiplication. Similarly, we will denote both
real-real addition and quaternion-quaternion addition by a single symbol (+). In both cases, the intended
operation should be clear given the context in which it appears.
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Algebra as an Abstract Structure

Before we show that the quaternions comprise an algebra, we need to explain what an algebra is. We will
now review some basic abstract algebra that will lead us to the definition of an algebra. We begin with the
definitions of monoids and groups.

Definition A monoid N ′ := (N, ·N ) is a nonempty set N equipped with a binary operation
(·N ) : N ×N → N , called multiplication, such that:

(i). multiplication is closed and associative in N , and

(ii). N contains an identity element 1 such that n ·N 1 = 1 ·N n = n for every n ∈ N .

Definition A group G′ := (G, ·G) is a nonempty set G equipped with multiplication
(·G) : G×G→ G such that:

(i). G′ is a monoid, and

(ii). every element g ∈ G has an inverse element g−1 ∈ G such that g ·G g−1 = g−1 ·G g = 1.

We define an additive group in the same way as above, except that we replace multiplication
(·G) by addition (+G), 1 by 0, and g−1 by −g. The difference between a multiplicative group and
an additive group is purely notational.

We now use our definitions of monoids and groups to define a ring.

Definition A ring R′ := (R, ·R,+R) is a nonempty set R equipped with multiplication
(·R) : R×R→ R and addition (+R) : R×R→ R such that:

(i). (R, ·R) is a monoid,

(ii). (R,+R) is an Abelian additive group, and

(iii). multiplication distributes over addition.

We say that R′ is a division ring if (R, ·R) is a group, and we say that R′ is a commutative
ring if (R, ·R) is an Abelian group.

Finally, we use the three previous definitions to define an algebra over a ring, or an R-algebra.
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Definition An R-algebra A′ := (G′, R′, ·RG, ·A) is an Abelian additive group G′, whose elements
are called vectors, together with a division ring R′, whose elements are called scalars, and two
binary relations (·RG) : R ×G → G, called scalar-vector multiplication, and (·A) : G → G, called
vector-vector multiplication, such that:

(i). scalar-vector multiplication distributes over vector-vector addition.

(ii). vector-vector multiplication is bilinear

An algebra is an associative algebra if vector-vector multiplication is associative.

The Quaternion Algebra

We wish to prove that AH := (H,R, ·,+) is an R-algebra. We will do this by constructing a simpler R-algebra
called M2(C) and then finding an isomorphism from AH to M2(C).

Definition Define H to be the span over R of linearly independent matrices M1′ =

[
1′ 0
0 1′

]
,

Mi =

[
i 0
0 −i

]
, Mj =

[
0 −1
1 0

]
, and Mk =

[
0 −i
−i 0

]
so that, under normal matrix multiplication,

M2
i = M2

j = M2
k = MiMjMk = −M1′ . Let M2(C) = (H ,R, ·,+), where (·) denotes normal

matrix or real-matrix multiplication and (+) denotes normal matrix addition.

Matrix addition is closed in H , and it is always associative. The zero matrix is the identity element in
H . Thus, (H ,+) is a monoid. Furthermore, We know that (R, ·,+) is a field, so it is also a division ring.
Also, we know that scalar-matrix multiplication distributes over matrix-matrix addition. Lastly, we know
that matrix-matrix multiplication is R bilinear. Thus, we have that:

Proposition 1. M2(C) is an R-algebra.

We can use this fact to prove the following theorem:

Theorem 2. AH is an R-algebra.

Proof. Let T : H → H be the transformation defined by T (q) = Mq for q ∈ {1′, i, j, k}. We
see that T (qh) = TqTh whenever q, h ∈ {1′, i, j, k}. But because M2(C) is R-bilinear, T (qh) =
TqTh for any quaternions q, h ∈ H. Furthermore, since T maps the basis {1′, i, j, k} to the basis
{M1′ ,Mi,Mj ,Mk}, it is bijective, so T is an isomorphism. Thus, AH is an R-algebra as well.

The Skolem-Noether Theorem

The Skolem-Noether Theorem tells about homomorphisms of central simple algebras, so we must first define
a central simple algebra and a homomorphism.
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Definition A right ideal of an algebra A′ is a subspace IR of A′ such that r ·A a ∈ IR for every
a ∈ A and r ∈ IR. Similarly, a left ideal of an algebra A′ is a subspace IL of A′ such that
a ·A ` ∈ IL for every a ∈ A and ` ∈ IL. An ideal I is a two-sided ideal if it is both a right ideal
and a left ideal.

In other words, each element of a two-sided ideal commutes with every element in the algebra. The
definition of a simple algebra is a characterization of an algebra’s two-sided ideals:

Definition An algebra A′ is simple if it has no two-sided ideals other than {0} and possibly A′.

Note that real quaternions and the zero quaternions are the only quaternions that commute with all
other quaternions. Thus, AV 3 := (V 3,R, ·,+) is a simple algebra.

The largest two-sided ideal of an algebra is its center. More precisely,

Definition The center of an R-algebra A′ is the set of all elements c ∈ R that commute with
every element a ∈ A. A simple R-algebra is central if its center is R.

Every element of R commutes with every quaternion. Hence, AV 3 is a central simple algebra.
The Skolem-Noether Theorem tells us about homomorphisms of central simple algebras, so we will define

a homomorphism between two algebras:

Definition Let S and C be algebras over a ring R. A homomorphism from S to C is a bijective
linear transformation T : S → C such that T (pq) = T (p)T (q) for each p, q ∈ S.

Homomorphisms preserve algebraic structure. In particular,

Proposition 3. Let S and C be algebras, and let T : S → C be a homomorphism. Then

(i) T (1S) = 1C .
(ii) T (s−1) = T (s)−1 for each s ∈ S.

Proof. Using the definition of a homomorphism, T (1S) = T (1S ·1S) = T (1S)T (1S). Then we must
have that (i) T (1S) = 1C . Thus, for each s ∈ S, we have that 1C = T (1S) = T (ss−1) = T (s)T (s−1),
so we must have that (ii) T (s−1) = T (s)−1.

The Skokem-Noether Theorem is:

Theorem 4. (Skolem-Noether Theorem) Let S and C be finite-dimensional algebras with S a
simple algebra and C a central simple algebra. If f and g are homomorphisms S → C, then there
is an element c ∈ C such that g(s) = c−1f(s)c for each s ∈ S.
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Skolem-Noether Theorem for Inner Automorphisms of Pure Quater-
nions

In the case that S and C of the Skolem-Noether Theorem are actually the same algebraA, the Skolem-Noether
Theorem simplifies to a theorem about homomorphisms from A to itself, also known as automorphisms. We
are interested in a particular kind of automorphism: an inner automorphism.

Proposition 5. Fix q ∈ V 3 − {0}, and define Tq : H→ H by the rule Tq(x) = qxq−1. We call Tq
an inner automorphism and verify that it is indeed an automorphism.

Proof. First, we prove that Tq is linear. Let x ∈ H and r ∈ R. Then Tq(rx) = qrxq−1 = rqxq−1 =
rTq(x). Additionally, let y ∈ H. Then Tq(x+ y) = q(x+ y)q−1 = (qx+ qy)q−1 = qxq−1 + qyq−1 =
Tq(x) + Tq(y). Therefore, Tq is linear.

Next, we prove that Tq is bijective. This is proved if we show that T−1q = Tq−1 . Let x ∈ H.
Then Tq−1(Tq(x)) = q−1(Tq(x))q = q−1qxq−1q = x. Therefore, T−1q = Tq−1 .

Lastly, we prove that for each p, q ∈ H, we have T (pq) = T (p)T (q). Let x, y ∈ H. Then
Tq(x, y) = qxq−1qyq−1 = qxyq−1 = Tqxy.

We will prove the special case of the Skolem-Noether Theorem for inner automorphisms of the quaternion
algebra:

Theorem 6. (Skolem-Noether Theorem for Inner Automorphisms). Every automorphism
T : V 3 → V 3 of the pure quaternion algebra is an inner automorphism. That is, for every u ∈ V 3,
there is another quaternion v ∈ V 3 − {0} such that T (u) = v−1uv.

Our proof strategy is as follows: first, we will show that each pure unit quaternion v̂ in the unit sphere
S2 of pure quaternions satisfies v̂2 = 1. We will show that every automorphism T of the quaternions satsifies
T (S2) = S2, and that T has a fixed point u. After showing that T preserves norms of quaternions and
angles between pure unit quaternions and u, we will see that T is a rotation of unit quaternions about an
axis u. It will follow that T rotates V 3 about u. Lastly, we will show that rotations can be written as inner
automorphisms.

To show that each pure unit quaternion v̂ in the unit sphere satisfies v̂2 = −1, we must first introduce
the quaternion norm and the quaternion conjugate.

Lemma 7. The quaternion norm, defined by ||q|| =
√
q21 + q22 + q23 + q24 for each quaternion

q = (q0, q1, q2, q3), satisfies ||qh|| = ||q||||h|| for every q, h ∈ H.

Proof. Using the quaternion product, we know that qh = (qoh0 − q1h1 − q2h2 − q3h3) + (q0h1 +
q1h0+q2h3−q3h2)i+(q0h2+q2h0+q3h1−q1h3)j+(q0h3+q3h0+q1h2−q2h1)k. It is straightforward
to verify that ||qh|| = ||q||||h||.

Lemma 8. Define conjugate of a quaternion q = r + v, where r is a real quaternion and v is a
pure quaternion, as q = r − v. The quaternion conjugate satisfies qq = ||q||2.

Proof. Multiplying, we have qq = (r + v)(r − v) = r2 − v2. But v2 = −v21 − v22 − v23 + (v2v3 −
v3v2)i+(v3v1−v1v3)j+(v1v2−v2v1)k = −(v21 +v22 +v23). Then qq = r2 +v21 +v22 +v23 = ||q||2.
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Lemma 9. If v, w are pure quaternions, then vw = −(v · w) + (v × w).

Proof. Because the quaternion product is R-bilinear, we need only verify the lemma for the imag-
inary units i, j, k.

We use the previous three lemmas to prove the following proposition:

Proposition 10. The unit sphere S2 = {~v ∈ V 3 : ||~v|| = 1} is precisely the set of quaternions
Q = {q ∈ H : q2 = −1′}.

Proof. We first prove that Q ⊂ S2. Suppose that q ∈ Q. Then by Lemma 7 we have ||q||2 =
||q2|| = || − 1′|| = 1, so ||q|| = 1. Furthermore, since 1′ = −q2 = q(−q), we have by Lemma 8 that
−q = q−1 = q

||q||2 = q, so q is pure. Therefore, because q is pure and ||q|| = 1, we have q ∈ S2.

Now, we prove that S2 ⊂ Q. Conversely, suppose that v̂ ∈ S2. Then q̂ is pure and ||v̂|| = 1, so
by Lemma 9, v̂2 = −(v̂ · v̂) + (v̂ × v̂) = −||v̂||2 = −1. Therefore, v̂ ∈ Q.

Now we can prove that every automorphism of the quaternion algebra sends S2 to S2.

Proposition 11. If T : H→ H is an automorphism of the quaternion algebra, then T (S2) = S2.

Proof. Let v̂ ∈ S2. From the previous proposition we know that v̂2 = −1, so v̂−1 = −v̂. Then
T (v̂)−1 = T (v̂−1) = T (−v̂) = −T (v̂), so T (v̂)−1 = −T (v̂). This means T (v̂)2 = T (v̂) · −T (v̂)−1 =
−1‘, so ||T (v̂)||2 = 1. Thus T (v̂) ∈ Q = S2.

Our next step is to prove that every automorphism of pure quaternions preserves norms of quaternions and
angles between quaternions. First, we’ll prove that every automorphism of pure quaternions preserves norms.

Lemma 12. Let T : H → H be an automorphism. Then for every quaternion q, we have that
T (q) = T (q).

Proof. Let q = r + v be a quaternion with r ∈ R and v ∈ V 3. We have that T (q) = T (r + v) =
T (r) + T (v). But T (r) ∈ R and T (v) ∈ V3, so T (r) + T (v) = T (r) − T (v) = T (r − v) = T (q).
That is, T (q) = T (q).

Proposition 13. Suppose that T : H→ H is an automorphism. Then for every nonzero quaternion
q, we have that ||Tq|| = ||q||.

Proof. Because T (q−1) = T (q)−1, we know T (q)
||q||2 = T (q)

||T (q)||2 . But T (q) = T (q), so we must have

||T (q)|| = ||q||.
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Proposition 14. If u, v are pure quaternions, and T : V 3 → V 3 is an automorphism, then
T (u · v) = Tu · Tv and T (u × v) = Tu × Tv, where (·) is the vector dot product and (×) is the
vector cross product.

Now, we’ll prove that every automorphism of pure quaternions preserves angles between quater-
nions.

Proof. Using Lemma 7, −T (u · v) + T (u× v) = T (uv). We know that T (uv) = TuTv and Tu, Tv
are both pure quaternions, so −T (u · v) + T (u× v) = −(Tu · Tv) + (Tu× Tv). But −T (u · v) and
−(Tu · Tv) are both real quaternions while T (u × v) and Tu × Tv are both pure quaternions, so
we must have T (u · v) = Tu · Tv and T (u× v) = Tu× Tv.

By finding a fixed point of T , we find the axis of rotation for T . We proceed with the proof of the fixed
point.

Proposition 15. If T : S2 → S2 is an automorphism, then it has a fixed point. That is, there is
a z ∈ S2 such that Tz = z.

Proof. Let {u, v, w} be a right-handed orthonormal basis of pure quaternions, and let Tu =
(a11, a21, a31), Tv = (a12, a22, a32), and Tw = (a13, a23, a33) so that A is matrix of T relative to
this basis. Using the vector triple product, we have that detAT = Tu ·Tv×Tw = Tu ·T (v×w) =
Tu · Tu = T (u · u) = T (||u||2) = T (1) = 1. Thus, the product of the eigenvalues of A is 1.

However, we know that the eigenvalues are the roots of the equation 0 = detA − λI, so any
complex eigenvalues come in conjugate pairs. Thus, at least one of the eigenvalues is 1. The
eigenvector z corresponding to this eigenvalue satisfies Tz = z and is thus a fixed point of T .

Hence, every automorphism of pure unit quaternions is a rotation of pure unit quaternions about a fixed
axis. We will generalize this finding for unit pure quaternions to all pure quaternions:

Proposition 16. Every automorphism T : V 3 → V 3 is a rotation of V 3 about a fixed axis z.

Proof. We know that every automorphism T : S2 → S2 is a rotation of S2 about a fixed axis z.
Every pure quaternion v can be written as v = ||v||v̂, a scalar multiple of a pure unit quaternion.
Then T (v) = T (||v||v̂) = ||v||T (v̂). But T (v̂) is a rotation of v̂ about a fixed axis z, and ||v||T (v̂)
has the same direction as T (v̂).

It remains to show that every automorphism that rotates quaternions about a fixed axis can be written
as an inner automorphism.
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Proposition 17. Let q be a unit quaternion given by q = c + su, where u ∈ S2, c = cos θ, and
s = sin θ with θ ∈ [0, π]. Then Tq : V 3 → V 3, as defined previously, is the rotation about the axis
u through 2θ radians counterclockwise.

Proof. We must show that (i) Tqu = u, and also that whenever ||v|| = 1 and v ∈ u⊥, we have (ii)
Tqv = cos 2θv + sin 2θw and (iii) Tqw = − sin 2θv + cos 2θw where w = u × v. Note that because
||q|| = 1 we have q−1 = q, so Tq(x) = qxq−1 = qxq.

(i). Tqu = (s + cu)u(c − su) = c2u − csu2 + scu2 − s2u3 = c2u − s2u3. But u2 = −1, so
Tqu = (c2 + s2)u = u.

(ii). Tqv = (c+su)v(c−su) = c2v−csvu+scuv−s2uvu. But u ⊥ v, so uvu = (u×v)u = wu = wxu.
But the right hand rule tells us w×u = v, so uvu = v. Then we have Tqv = (c2−s2)v−csvu+scuv.
But vu = v × u = −u× v = −w, so Tqv = (c2 − s2)v + 2csw = cos 2θv + sin 2θw.

(iii). Tqw = TquTqv = u(cos 2θ + sin 2θw) = cos 2θw − sin 2θv by the right hand rules.

Finally, we prove Theorem 6.

Proof. (Theorem 6) Proposition 16 tells us that every automorphism T : V 3 → V 3 is a rotation of
V 3 about a fixed axis z. However, by Proposition 17, any fixed-axis rotation can be represented
by an inner automorphism Tq : V 3 → V 3 defined by Tq(x) = qxq−1. Thus, every automorphism
of the pure quaternion algebra can be written as an inner automorphism.

The Hurwitz Quaternions: An Application of Quaternions to Num-
ber Theory

We are going to use quaternions to prove that for every prime number p, some multiple of p can be written
as the sum of 1 and the square of two integers. To do this, we turn to the Hurwitz quaternions.

Definition We define the Hurwitz quaternions to be the set A = {a+ bi+ cj + dk : a, b, c, d ∈
Z or a, b, c, d ∈ Z + 1/2}.

The Hurwitz quaternions are useful because the balls of radius 1
2 around all Hurwitz quaternions cover

H entirely. More precisely,

Proposition 18. For any quaternion q, there is a Hurwitz quaternion a ∈ A such that ||q−a|| < 1.

Proof. Since ||( 1
2 ,

1
2 ,

1
2 ,

1
2 )|| = 1, every Hurwitz quaternion is within 1 unit of another Hurwitz

quaternion.

Furthermore,
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Proposition 19. The Hurwitz quaternions form a ring.

Proof. It is easy to see that the Hurwitz quaternions are closed under addition, so we will turn
to multiplication. Noting that Hurwitz quaternions are precisely those that are sums of integer

multiples of 1′+i+j+k
2 , i, j, k, we consider the product[

A
(

1′+i+j+k
2

)
+Bi+ Cj +Dk

] [
A′
(

1′+i+j+k
2

)
+B′i+ C ′j +D′k

]
,

where A,A′, B,B′, C, C ′, D,D′ are all integers. After algebraic manipulation, the product
simplifies to

−
(
BB′ + CC ′ +DD′ + AB′+BA′

2 + AC′+CA′

2 + AD′+DA′

2 + 1
2

)
1′

+
(
CD′ −DC ′ + AB′+BA′

2 + AC′+CA′

2 + AD′+DA′

2 + 1
2

)
i

+
(
DB′ −BD′ − AB′+BA′

2 + AC′+CA′

2 − AD′+DA′

2 + 1
2

)
j

+
(
BC ′ − CB′ + AB′+BA′

2 − AC′+CA′

2 + AD′+DA′

2 + 1
2

)
k.

• If each of {AB′+BA′

2 , AC′+CA′

2 , AD′+DA′

2 } is in Z, then the product is a Hurwitz quaternion
whose entries are all in Z.

• If two of {AB′+BA′

2 , AC′+CA′

2 , AD′+DA′

2 } are in Z and the other is in Z+ 1
2 , then the product

is a Hurwitz quaternion whose entries are all in Z + 1
2 .

• If one of {AB′+BA′

2 , AC′+CA′

2 , AD′+DA′

2 } is in Z and the other two are in Z + 1
2 , then the

product is Hurwitz quaternion whose entries are all in Z.

• If each of {AB′+BA′

2 , AC′+CA′

2 , AD′+DA′

2 } is in Z+ 1
2 , then the product is a Hurwitz quaternion

whose entries are all in Z + 1
2 .

Lastly, the additive (0, 0, 0, 0) and multiplicative (1, 0, 0, 0) identity quaternions are both Hurwitz
quaternions, and, given any Hurwitz quaternion q, its multiplicative inverse q

||q|| is a Hurwitz
quaternion.

The coming proof makes use of the following lemma.

Lemma 20. Given q ∈ A and d ∈ A∗, there exist a, r ∈ A so that ||q − da|| < ||d||.

Proof. It was previously shown that for every q′ ∈ H, there is an a ∈ A such that ||q′ − a|| < 1.
Choose q′ = d−1q. Then ||d−1q − a|| < 1, so ||q − da|| < ||d||.

Now we present an application of quaternions to number theory.
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Theorem 21. Suppose p is a prime number. Then there are integers m,n such that m2+n2+1 ≡ 0
mod p.

Proof. When p = 2, we see that 02 + 12 + 1 = 0 mod p. Every even number that is greater than
2 is not prime, so we can assume that p is odd. Let S = {0, 1, 2, ..., p−12 }, and let S′ = {[x2] :

x ∈ S}, where [x2] refers to the equivalence class of x2 mod p. Note that |S′| = |S| = p+1
2 . Let

S′′ = {−1 − [x2] : x ∈ S}. Note that |S′| = |S|, so |S′′| = p+1
2 . Then |S′| + |S′′| = p + 1. But

there are only p equivalence classes modulo p, so S′ and S′′ overlap by a single element. That is
to say, there are integers m,n such that m2 ≡ −1 − n2 mod p, or equivalently, m2 + n2 + 1 ≡ 0
mod p.

—————————————————————————————————————————-

Further Applications of Quaternions

I’m looking for another straightforward yet interesting application of quaternions to include here.

Conclusion
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