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I. PROBLEM STATEMENT

Suppose that there is a contagious delayed-onset fatal dis-
ease on a social network. Each person is either susceptible
or immune, and biostatisticians are able to infer the prior
probability 0 < p < 1 of immunity and update it to

pδ =
p

1− δ
as the fractional death toll δ of the population grows. (In the
rest of the paper we will assume that 0 < pδ < 1.) Although
the biostatisticians may share this information with the public,
immunity tests are not commercially available, so no agent
knows its type or any other agent’s type.

In response to epidemics, people often engage in social
distancing, in which they avoid exposure to disease by avoiding
physical contact with others. However, although complete
isolation guarantees safety from exposure, people rarely isolate
themselves completely because they value not only their health
but also their economic interactions and contact with family
and friends.

How many social ties should health officials advise people to
keep, and how much improvement will their advice (assuming
that people follow it) offer over the result that will occur if
they do not offer any advice?

II. GAME SETUP

In the social network, each node (person) controls its number
k ≥ 0 of connections (physical contacts) with others. Its health
is given by h ∈ {0, 1}, where h = 1 if it survives the epidemic
and h = 0 if not. A node’s utility is given by

u = hfλ(k),

where

fλ(k) =

{
k k ≤ λ
λ k > λ

represents a node’s value of social connections as a linear
function which is thresholded at λ > 0.

The expected utility of a node playing strategy k (i.e. a node
with k connections) is

u(k) = h(k)f(k),

where

h(k) = E(h|k)
is the expected health, or equivalently, the probability of
survival. We will assume that health officials advise nodes to
make the number of connections that would maximize utility
on a homogeneous network, while in the absence of advice,
each node would play the maxmin strategy.

III. NO ADVICE: MAXMIN

Lemma 1. Let km be the maxmin strategy. Then

f ′(km) = ln(1/pδ)fλ(km).

Proof: In the worst case, when a player’s neighbors have
links to everyone else, each neighbor will be infected unless it
is immune. In this worst case, the expected health of a player
with k social ties is pkδ , so the expected utility is pkδfλ(k). Dif-
ferentiating, we have d

dk [p
k
δfλ(k)] = pkδ [f

′
λ(k)+ ln(pδ)fλ(k)].

Since pδ > 0, if k = km maximizes the worst-case payoff,
then f ′(km) = − ln(pδ)fλ(k) = ln(1/pδ)fλ(k).

Proposition 2. The maxmin strategy is given by

km =
1

ln(1/pδ)
≤ λ

Proof: If km > λ, then to have f ′λ(km) = ln(1/pδ)fλ(k)
would require pδ = 1 or λ = 0, a contradiction. Hence km ≤
λ. Then fλ(km) = km and f ′λ(km) = 1, so 1 = ln(1/pδ)km.

Proposition 3. If all players play a strategy k, then h(k)
can be linearly approximated by

ĥ(k) :=

{
1−

(
1−pδ
η

)
k k ≤ η

pδ k > η
,

where 5 . η . 10.

Proof: Since

P (infected) = P (not immune)P (some neighbor infected),

we have 1 − h(k) = (1 − pδ)(1 − h(k)k). Then h(k) ≥ pδ
with near-equality whenever k is not very small (5 . η . 10
for a numerically reasonable cutoff η). Noting that h(0) =
1 (isolation prevents exposure), we use linear approximation
between the two points (0, 1), (η, pδ) of form (k, h(k)).

Remark. The approximation takes advantage of a network
effect: if each node has more than a few (η) connections,
then each node’s chance of infection is nearly as large as if it
were connected to every other node in the network.

Proposition 4. If all players play the maxmin strategy km
and the expected utility is approximated by

û(k) := ĥ(k)fλ(k),
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then

û(km) =

{(
1− 1−pδ

η ln(1/pδ)

)
1

ln(1/pδ)
pδ ≤ e−1/η

pδ
ln(1/pδ)

pδ > e−1/η
.

(Using 5 . η . 10 we have 0.8 . e−1/η . 0.9).

Proof: Recall that km = 1
ln(1/pδ)

≤ λ. Substituting
km = 1

ln(1/pδ)
in the expression for ĥ(km) in Proposition 3 and

multiplying by f(km) = km = 1
ln(1/pδ)

yields the conclusion.

IV. ADVICE: HOMOGENEOUS MAXIMIZATION

Lemma 5. If k maximizes u given some belief about others’
strategies and

min{η, λ} ≤ k ≤ max{η, λ},

then k = λ.

Proof: We check three cases
1) If min{η, λ} = max{η, λ}, then k = λ = η.
2) If η < λ, then u is increasing on [η, λ] because h is (to

good approximation) constant and f is increasing.
3) If λ < η, then u is decreasing on [λ, η] because h is

decreasing and f is constant.

Lemma 6. If k maximizes u given some belief about
others’ strategies and k ≥ max{η, λ}, then k = λ.

Proof: For k ≥ max{η, λ}, f is constant; although h is
nearly constant, it is still strictly decreasing (albeit asymptot-
ically to pδ). Consequently, if k ≥ max{η, λ}, then u(k) is
maximized at k = λ.

Proposition 7. If k maximizes u given some belief about
others’ strategies, then k ≤ λ.

Proof: From Lemmas 5 and 6, we know that if k
maximizes u given some belief about others’ strategies and
k ≥ min{η, λ}, then k = λ. The result follows.

Proposition 8. The homogeneous maximization strategy ˆkM
with respect to û is given by

ˆkM =
η

2(1− pδ)
≤ η,

provided that pδ ≤ 1
2 .

Proof: From Proposition 7 we know that ˆkM ≤ λ.
Consequently, û(k) need only be maximized on 0 ≤ k ≤ λ.
When k ≤ λ we have f(k) = k, so û(k) = ĥ(k)k, and

thus û′(k) = ĥ′(k)k + ĥ(k) =

{
1− 2

(
1−pδ
η

)
k k ≤ η

pδ k > η
. We

require û′( ˆkM ) = 0, but pδ > 0, so we must have ˆkM ≤ η

with 0 = 1 − 2
(

1−pδ
η

)
k. Then ˆkM = η

2(1−pδ) ≤ η. Since
η

2(1−pδ) ≤ η, we must have pδ ≤ 1
2 .

Proposition 9. If all players play ˆkM , then the approximate
utility is given by

û( ˆkM ) =
η

4(1− pδ)

provided pδ ≤ 1
2 .

Proof: Recall that ˆkM = η
2(1−pδ) ≤ η, λ provided that

pδ ≤ 1
2 . then f( ˆkM ) = ˆkM = η

2(1−pδ) and ĥ( ˆkM ) = 1 −
{ 1−pδη } ˆkM = 1

2 .

V. USEFULNESS OF ADVICE

Below are plots of ˆkM (upper) and km (lower) for 0 < pδ ≤
0.5, using η = 7.5.

While the maxmin strategy encourages near-isolation as
pδ becomes small, the homogeneous maximization strategy
always permits several connections.

Below are plots of û( ˆkM ) (upper) and û(km) (lower) for
0 < pδ ≤ 0.5, using η = 7.5.

The maxmin strategy’s payoff vanishes as pδ → 0, while
the homogeneous maximization strategy’s payoff is roughly
maintained.
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Below is a plot of û( ˆkM )
û(km) for 0 < pδ ≤ 0.5, using η = 7.5.

We see that the improvement of homogeneous maximization
over maxmin becomes exponentially larger as the probability
of immunity becomes smaller. Hence, advice is useful, and
extremely useful when very few people are immune to the
disease.

VI. FUTURE WORK & COMPARISON TO OTHER MODELS

Using a differential game theory model, Reluga (2010)
found that social distancing is most useful for moderately
transmissible diseases. It my model, it was assumed that
transmission across social links was certain. It would be
interesting to include a variable transmission probability in my
model.

Maharaj and Kleczkowski (2012) studied an SIR (spread-
infect-recover) model in which decreasing social links resulted
in an economic cost. It would be interesting to extend my
model to nonfatal diseases and compare results.

Read, Earnes, and Edmunds (2008) investigated the different
forms of social contact and suggested that epidemiological
models of close contact infection diseases ought to focus on
stable social connections, while epidemics of casual contact
transmission are well-modeled by random mixing. My model
assumes that all social connections are stable. It would be
interesting to extend my model to include random mixing as
well.

One last idea is to have nodes represent families rather than
individuals. Families tend to have close contact ties, and it
is unlikely that they would separate in any epidemic. This
could plausibly be accomplished by assigning each node a
number which represents the number of people in the family.
The question would then be whether families should choose
a set number of ties with other families, or whether families
should limit the sum of number of family members of the
families with which they interact.
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