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 1.1 Evalua�ng Limits 

 The  limit  of a func�on  , as  approaches some value  , is the 
 value we would expect for  if we saw only the por�on  of the 
 graph around (but not including)  . If the resul�ng  value is  , 
 then we denote the limit as follows: 

 Limit vs Func�on Value 

 For example, for the func�on  , the limit as  is  the 
 same as the actual value of the func�on, which is  . 

https://www.codecogs.com/eqnedit.php?latex=a%0
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 On the other hand, for the func�on 

 the limit as  is not the same as the actual value  of the 
 func�on: the limit is  , while the actual value of  the func�on is 

 . 

 Remember, the limit is the value we would expect if we only saw the 
 surrounding parts of the graph -- and in this graph, the surrounding 
 y-values get closer and closer to  as the x-value  gets closer and 
 closer to  . 

 Based on this, we expect that the y-value is  , so  we say the limit is 
 , even though our expecta�on here is incorrect.  The limit is s�ll  , 

 and it is different from the actual func�on value  . 
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 Con�nuity 

 Most of the func�ons we’re familiar with from algebra are 
 con�nuous  , meaning that the actual output value  is the same 
 as the limit as  . 

 However, for  discon�nuous  func�ons such as some  piecewise 
 func�ons and ra�onal func�ons, the limit as  might  be 
 different from the actual output value  . 

 If a func�on can be drawn in a single stroke, then it is con�nuous, 
 and the limits are the same as the func�on values. However, if you 
 need to pick up your pen at some point while drawing the func�on, 
 then the func�on is discon�nuous, and some limits might be 
 different from the actual func�on values. 

 Existence of Limits 

 Some�mes, limits don’t even exist. For example, for the func�on 

 the limit comes out to different values, depending on whether we 
 approach  from the  le�  (denoted  ) or the  right 
 (denoted  ). 
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 ●  Coming from the le�, we are on the piece  , so 
 the limit is  . 

 ●  Coming from the right, we are on the piece  , so 
 the limit is  . 

 In general, a limit exists when its le� and right limits are equal, and 
 does not exist if its le� and right limits are not equal. 

 For example, for the func�on  , we have 

 because  and  . 

 On the other hand, for the func�on  , we have that 

 does not exist because  while 

 . 
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 Limits at Infinity 

 One excep�on to the rule that le� and right limits must be equal is 
 limits at infinity  , i.e. limits with  or  . In this  case, it 
 doesn’t make sense to talk about a limit in more than one direc�on, 
 because we can’t choose numbers greater than  , and  we can’t 
 choose numbers more nega�ve than  . As a consequence,  limits 
 with  are just taken as le� limits (  ), and limits  with 

 are just taken as right limits (  ). 

 Limits at infinity can be thought of in terms of end behavior and 
 horizontal asymptotes. For example, the polynomial 

 has end behavior  as  , 
 and  as  . Its limits at infinity are then 

 , and  . 
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 On the other hand, the end behavior of the ra�onal func�on 

 consists of a horizontal asymptote  . As a result, 

 its limits at infinity are  , and  . 

 The exponen�al func�on  has mixed end behavior:  it 
 blows up to infinity as  , and se�les down towards  an 
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 asymptote  as  . Consequently, its limits at infinity 

 are  , and  . 

 Indeterminate Form 

 Some limits like the one below can be difficult to think about 
 graphically, because the func�on itself is difficult to graph. 

 At first sight, it’s not clear how the func�on behaves as 
 approaches  . We can’t evaluate the func�on at  because it is 
 undefined there, and it’s not easy to see what happens as 
 or  , since both the numerator and denominator go  to  . 
 (Therefore, we say that the limit is  indeterminate  in its current 
 form.) 
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 Thankfully, algebraic tricks can o�en be used to simplify difficult 
 limits into easier limits. In this case, if we mul�ply the numerator 
 and denominator by the  conjugate  of the numerator,  then we can 
 simplify the limit to a point where we are able to evaluate the 
 func�on at  . 

 Similarly, to solve indeterminate limits where the numerator and 
 denominator are both polynomials, we can o�en simplify the limit 
 by factoring and canceling common factors: 
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 Es�ma�ng Limits Numerically 

 Another trick for evalua�ng limits is thinking about them 
 numerically. We can try subs�tu�ng a number for  that is close to 
 the intended limit in each direc�on, and doesn’t make computa�ons 
 too hard. 

 For example, to evaluate the limit 

 numerically, we can approximate the le� and right limits by 
 subs�tu�ng  and  , respec�vely. 

 Both the le� and right limits are approximately  , so we would 
 es�mate the limit to be  . Indeed, this matches the  result we 
 found earlier. 

 Likewise, to evaluate the limit 

https://www.codecogs.com/eqnedit.php?latex=x%0
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 numerically, we can approximate the le� and right limits numerically 
 by subs�tu�ng  and  , respec�vely. 

 Both the le� and right limits are approximately  , so we would 
 es�mate the limit to be  . Indeed, this matches the  result we 
 found earlier. 

 Caveat to Numerical Evalua�on 

 One caveat to numerical evalua�on is that it always results in 
 decimal approxima�ons, and if the actual limit value is irra�onal, it 
 can be difficult to find the exact value of the limit. 

 In a simple case, we might be able to recognize that an 
 approxima�on of  actually corresponds to the value  . 
 However, in a trickier case, we might not be able to recognize that 

 an approxima�on of  actually corresponds to the  value  . 
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 Exercises 

 Evaluate the indicated limits. If the limit does not exist, list the le� 
 and right limits separately (if applicable). 



 22  Jus�n Math |  Calculus 



 Jus�n Math |  Calculus  23 



 24  Jus�n Math |  Calculus 



 Jus�n Math |  Calculus  25 

 1.2 Limits by Logarithms, Squeeze Theorem, 
 and Euler’s Constant 

 A useful property of limits is that they can be brought inside 
 con�nuous func�ons, i.e. the limit of a con�nuous func�on is the 
 func�on of the limit. 

 For example,  is a con�nuous func�on, so to take  the limit of the 
 square root of some expression, we can first find the limit of the 
 expression and then take the square root. 

 We can do the same thing with other con�nuous func�ons, such as 
 . 
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 Exponen�al Limits 

 Logarithms in par�cular are useful for evalua�ng exponen�al limits, 
 which have variables in both the limit and the base. 

 For example, to evaluate the limit 

 it is easiest to start by evalua�ng the logarithm of the limit. 

 Since we know the logarithm of the limit is  , the  limit is just 
 raised to the power of  . 
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 Using the same process, we can show that 

 because this �me, the logarithm of the limit evaluates to  . 

 Squeeze Theorem 

 Another useful trick for evalua�ng difficult limits is squeezing them 
 between limits that are easier to evaluate. 

 For example, to evaluate the limit 
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 we can make use of the fact that  is bounded between  and 
 . Then as  we have the following: 

 The inequality states that the limit must be between  and  , and 
 the only number that is between  and  is  itself,  so by the 
 squeeze theorem  , the limit must evaluate to  . 

 In other words, the limit must be  because we squeezed  it between 
 two other limits, both of which evaluate to  . 
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 As another example, we can show that 

 by performing a squeeze between the bounds of  : 

 Euler’s Constant 

 Lastly,  Euler’s constant  can be expressed as the  following limit: 

 It also holds as  : 

 Subs�tu�ng  , we can also express the limit as 

 . 



 30  Jus�n Math |  Calculus 

 Knowing the above limit forms of Euler’s constant allows us to 
 compute limits that are in a similar form. For example, to compute 
 the limit 

 we can make a subs�tu�on that results in  . Then  , and 
 translates to  , and the limit becomes computable 

 in terms of Euler’s constant: 

 Similarly, to compute the limit 
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 we can make a subs�tu�on that results in  . Then 

 , and  translates to  , and the limit becomes 
 computable in terms of Euler’s constant: 

 Exercises 

 Evaluate the following limits using logarithms. 
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 Evaluate the following limits using the squeeze theorem. 

 Evaluate the following limits using Euler’s constant. 
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 1.3 Deriva�ves and the Difference Quo�ent 

 The  deriva�ve  of a func�on is the func�on’s slope  at a par�cular 
 point. We can approximate the deriva�ve at a point  by 
 choosing another nearby point on the func�on, and compu�ng the 
 slope. If we increase the input  by a small amount  , then we 
 reach an x-coordinate of  , and the corresponding  point on 
 the func�on is  . 

 We compute the slope between the points  and 
 , and simplify. 
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 The above expression is called the  difference quo�ent  of the 
 func�on  . As the point  gets closer and 
 closer to the point  , the difference quo�ent becomes  a 
 be�er and be�er approxima�on for the exact slope at  . 

 Thus, we can compute deriva�ve, which is the exact slope at 
 , by taking the limit as the second point approaches  the 

 first point. In other words, the deriva�ve is the limit of the 
 difference quo�ent as the difference  between the  two input 
 x-values approaches  . 

 The deriva�ve of the func�on  at the point  is  indicated 

 by the nota�on  . However, to simplify nota�on,  we o�en 

 write the deriva�ve as  instead of  . 
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 Demonstra�on 

 As an example, we’ll use the difference quo�ent show that the 

 deriva�ve of  is  . 

 This means that the slope of  at any point  is 
 given by  . 

 In par�cular, the slope at  is given by  , the 
 slope at  is given by  , and the slope at  is given 
 by  . 

 Looking at the graph, these values make sense: 

 ●  At  , the graph is falling down at a steep angle,  which 
 matches the nega�ve deriva�ve  . 
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 ●  At  , the graph is flat at the bo�om of a valley, which 
 matches the deriva�ve  . 

 ●  At  , the graph is climbing up at a steep angle, which 
 matches the posi�ve deriva�ve  . 

 The values for the deriva�ve also make sense numerically: 

 ●  If we start at the point  and pick another point 

 on the func�on  , the slope 

 between the two points is  , which 
 approximates our deriva�ve value  . 

 ●  If we start at the point  and pick another point 

 on the func�on  , the slope 

 between the two points is  , which 
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 approximates our deriva�ve value  . 

 ●  If we start at the point  and pick another point 

 on the func�on  , the slope 

 between the two points is  , which 
 approximates our deriva�ve value  . 

 Exercises 

 Use the difference quo�ent to differen�ate the following 
 func�ons. 



 38  Jus�n Math |  Calculus 



 Jus�n Math |  Calculus  39 

 1.4 Power Rule 

 It can be a pain to evaluate the difference quo�ent every �me we 
 want to take the deriva�ve of a func�on. Luckily, there are some 
 pa�erns in deriva�ves that allow us to compute deriva�ves without 
 having to go through all the steps of compu�ng the limit of the 
 difference quo�ent. 

 One such pa�ern is the  power rule  , which tells us  that the deriva�ve 
 of a func�on  , where  is some constant number,  is 

 given by  . Several examples are shown below. 

 Further Applica�ons 

 We can also use the power rule to differen�ate constants and radical 
 expressions. 
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 When a term is mul�plied by some constant number, we can move 
 the number outside of the deriva�ve, i.e. we can take the deriva�ve 
 of the term and mul�ply it by that number. 

 In general, for any number  , we have 

 . 

 When we have a sum or difference of terms, we can apply the 
 power rule to each term individually. 
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 Deriva�on 

 To see why the power rule works, we can compute the deriva�ve for 
 using the difference quo�ent. 

 Exercises 

 Use the power rule to differen�ate the following func�ons. 
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 1.5 Chain Rule 

 The  chain rule  tells us how to take deriva�ves of  composi�ons of 
 func�ons. Informally, it says that we can “forget” about the inside of 
 a func�on when we take the deriva�ve, as long as we mul�ply by 
 the deriva�ve of the inside a�erwards. 

 For example, to differen�ate  , we can use the power 

 rule, as long as we mul�ply by the deriva�ve of the inside 
 a�erwards. 

 Subs�tu�on 

 More precisely, the chain rule states that we can make a subs�tu�on 
 for an expression of  , as long as we mul�ply by  the deriva�ve of 

 the subs�tu�on a�erwards. 

 To differen�ate the func�on  , we subs�tuted 

 to simplify the func�on to  . 
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 Intui�vely, the chain rule says that we can cancel deriva�ves just like 
 we cancel frac�ons. 

 We can extend this to an unlimited number of subs�tu�ons, 
 building a “chain” of cancella�ons. 

 For example, to differen�ate the func�on 

 we can proceed one layer at a 
 �me. 
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 Exercises 

 Use the chain rule to find the deriva�ves of the following 
 func�ons. 
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 1.6 Proper�es of Deriva�ves 

 We know that when differen�a�ng polynomials, we can 
 differen�ate each term individually. But why are we able to do this? 
 Does mul�plica�on work the same way? What about division? We 
 answer these ques�ons in this chapter. 

 Sum Rule 

 First of all, we are able to differen�ate each term in a polynomial 
 individually, because in general, deriva�ves can be separated over 
 addi�on. The deriva�ve of a sum, is the sum of deriva�ves of 
 individual terms. 

 To see why this is true, we can look at what happens in the 
 difference quo�ent when we take the deriva�ve of the sum of two 
 func�ons. We are able to rearrange the difference quo�ent into the 
 sum of difference quo�ents of the two func�ons, which shows that 
 the deriva�ve of the sum is just the sum of the deriva�ves. 
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 Constant Mul�ple Rule 

 Another useful property of deriva�ves is that constants can be 
 moved outside the deriva�ve. 

 Combining this with the power rule, we can differen�ate en�re 
 polynomial expressions. 

 To see why we can move constants outside the deriva�ve, we can 
 inspect what happens in the difference quo�ent when we take the 
 deriva�ve of a func�on mul�plied by a constant. The constant 
 factors out, and we can write the result as the product of the 
 constant and the deriva�ve. 
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 Product Rule 

 Taking the deriva�ve of a product, perhaps surprisingly, results in a 
 sum. For each term that is mul�plied in the product, a copy of the 
 product is added in the sum, with the par�cular term replaced by its 
 deriva�ve. 

 To see why this works, we can look at what happens in the 
 difference quo�ent when we take the deriva�ve of the product of 
 two func�ons. We are able to rearrange the difference quo�ent into 
 the sum of the difference quo�ents of the two func�ons, with each 
 difference quo�ent mul�plied by the other func�on. This shows that 
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 the deriva�ve of the product is a sum of copies of the product, each 
 with one par�cular term replaced by its deriva�ve. 

 Quo�ent Rule 

 To take the deriva�ve of a quo�ent, we can use the product rule in 
 conjunc�on with the power rule and chain rule. 
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 Applying this formula can save us the work of combining frac�ons 
 a�er differen�a�ng. 

 Exercises 

 Use the proper�es of deriva�ves to differen�ate the following 
 func�ons. 
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 1.7 Deriva�ves of Non-Polynomial Func�ons 

 In this chapter, we introduce rules for the deriva�ves of exponen�al, 
 logarithmic, trigonometric, and inverse trigonometric func�ons. 
 Although it’s possible to compute each deriva�ve using the 
 difference quo�ent, it will take a long �me to compute deriva�ves 
 during calculus problems if we have to start from scratch with the 
 difference quo�ent process every �me -- so it’s advantageous to 
 remember the deriva�ve rules. The deriva�ve rules are to calculus, 
 what the mul�plica�on table is to arithme�c. 

 Natural Logarithm 

 We start with the  natural logarithm  , which has the  deriva�ve 

 . To see where this formula comes from, we can start  by 
 wri�ng and simplifying the difference quo�ent for  . 
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 Does the limit inside the natural log look familiar? Remember that 
 the constant  can be wri�en as the following limit: 

 If we subs�tute  and simplify/rearrange, then we  can come 
 up with an expression for the limit inside the natural log. (The limit 

 as  can be thought of as  , which is the same as 
 .) 
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 Subs�tu�ng this expression into the natural log, we find that 

 . 
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 Knowing this, we can use the chain rule to find the deriva�ve of any 
 natural log func�on. 

 General Logarithms 

 To differen�ate a logarithmic func�on other than the natural 
 logarithm, we can use the change-of-base formula to rewrite the 
 logarithmic func�on in terms of natural logarithms. 

 For example, to find the deriva�ve of  , we can convert  it into 

 and then take the deriva�ve. 

 In general, performing this procedure on any func�on of the form 

 where  is a constant, we find that  . 
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 Exponen�al Func�ons 

 Next, we cover  exponen�al func�ons  . The exponen�al  func�on 
 is very elegant in calculus, because its deriva�ve is simply itself, 

 . 

 To see why this is, we can start with the equa�on  , then 
 take the logarithm and deriva�ve of both sides, and finally solve for 

 . 

 Now that we know the deriva�ve of  , we can use the  chain rule to 
 find the deriva�ve of any exponen�al func�on. 

 If we want to take the deriva�ve of an exponen�al func�on whose 
 base is not  , we can rewrite the exponen�al func�on  so that its 
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 base is  , and then differen�ate using the chain rule. For example, 
 since  , we see that 

 . 

 Now that we have a func�on which has base  , we can  use the 
 chain rule to find the deriva�ve. 

 Using the fact that  , we can simplify the result  a bit to 
 look like the original func�on. 

 In general, performing this procedure on any func�on of the form 
 where  is a constant, we find that  . 

 Trigonometric Func�ons 

 Now, let’s talk about  trig func�ons  . Their deriva�ves  are shown 
 below. 
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 To see why the deriva�ve of sine is cosine, consider a sec�on of the 
 unit circle, where  . If we increase  by an infinitesimally 
 small amount  , the addi�onal arc length  matches  the 
 hypotenuse of a triangle that has a leg  adjacent  to an angle  . In 

 this triangle, we have  . 

 Furthermore, we can use the deriva�ve of sine in conjunc�on with 

 the iden��es  and  to 
 compute the deriva�ve of cosine. 
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 The fundamental trig deriva�ves are  and 
 ; all the other trig deriva�ves come from using 

 them. 

 For example, to see that  , we express  as 

 , take the deriva�ve using the chain rule, and simplify. 

 Mnemonics 

 However, it will take a long �me to compute deriva�ves if we have 
 to start from scratch with the above process every �me, so it’s 
 advantageous to remember the table of trig deriva�ves. 

 To make it easier to remember the table, think about three key 
 trends in the table: func�ons have buddies, “co” func�ons turn 
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 nega�ve, and deriva�ves of func�ons other than  and  have 
 two terms. 

 More precisely, the func�ons  and  are buddies  because the 
 deriva�ve of  contains  and the deriva�ve of  contains 

 . Likewise,  and  are buddies because the deriva�ve  of 
 contains  and the deriva�ve of  contains  , and 

 and  are buddies because the deriva�ve of  contains  and 
 the deriva�ve of  contains  . 

 “Co” func�ons include  ,  , and  , and each of their 
 deriva�ves has a nega�ve sign, whereas the other func�ons do not 
 have a nega�ve sign in their deriva�ves. 

 Lastly, if we think of squared terms as two terms being mul�plied 
 together, then  and  are the only func�ons whose  deriva�ves 
 consist of a single term. For example, the deriva�ve of  is the 
 product of two terms  and  , and the deriva�ve of  is 
 which can be interpreted as the product of two terms  and  . 
 On the other hand, the deriva�ve of  is just a single  term,  . 

 Just as we did for exponen�al and logarithmic deriva�ves, we can 
 use the chain rule to take the deriva�ve of any trig func�on. 
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 Inverse Trigonometric Func�ons 

 Now that we know the deriva�ves of trig func�ons, we can use 
 them to find the deriva�ves of inverse trig func�ons, which are 
 shown below. 

 To see where these deriva�ves come from, we can proceed in the 
 same way as earlier when we used the logarithmic func�on to find 
 the deriva�ve of the exponen�al func�on. We start with the 
 equa�on  , then take the  and deriva�ve of both 
 sides, and finally solve for  . 
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 To simplify the denominator, we solve for  in the iden�ty 
 with  . 

 We only need to consider the posi�ve root because  is always 

 nonnega�ve on the range of  , which is  . Subs�tu�ng 
 , our expression simplifies. 

 Subs�tu�ng the above iden�ty in the denominator of our deriva�ve 
 expression, we obtain the final result. 



 64  Jus�n Math |  Calculus 

 The rest of the inverse trig deriva�ves can be computed by the same 
 process. Now, we can use the chain rule to take the deriva�ve of any 
 inverse trig func�on. 

 Exercises 

 Compute the deriva�ve of each func�on. 
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 1.8 Finding Local Extrema 

 Deriva�ves can be used to find a func�on’s  local  extreme values  , its 
 peaks and valleys. At its peaks and valleys, a func�on’s deriva�ve is 
 either  (a smooth, rounded peak/valley) or undefined  (a sharp, 
 pointy peak/valley). 

 Cri�cal Points 

 The points at which a func�on’s deriva�ve is  or  undefined, and the 
 func�on itself exists, are called  cri�cal points  of the func�on. We 
 can find the cri�cal points by taking the deriva�ve, no�ng any 
 singulari�es, se�ng the deriva�ve to  , and solving. 
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 For example, to find the cri�cal points of the func�on 

 , we start by taking the deriva�ve and 
 simplifying. 

 The deriva�ve has a singularity when the denominator  is 
 , which happens at  . The deriva�ve itself is zero  when the 

 numerator  is  , which happens at  . The func�on 
 is defined at all of these x-values, so they all correspond to cri�cal 

 points:  . 

 Classifying Cri�cal Points 

 Now, how do we tell which cri�cal points correspond to maxima 
 (peaks), and which correspond to minima (valleys)? 

 It may be temp�ng to decide whether a cri�cal point is a maximum 
 or minimum by observing whether the resul�ng func�on value is 
 large or small. However, it is en�rely possible that some local 
 minima may be greater than some local maxima. Think of a 
 mountain range -- some valleys may be higher than some peaks. 

https://www.codecogs.com/eqnedit.php?latex=0%0
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 It may also be possible that some cri�cal points are neither peaks 
 nor valleys, but  saddle points  on the side of a mountain  where the 
 terrain is flat. At saddle points like the one indicated below, the 
 deriva�ve is  but the point is neither a maximum  nor a minimum. 

https://www.codecogs.com/eqnedit.php?latex=0%0
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 First Deriva�ve Test 

 There are two main methods for determining whether a cri�cal 
 point is a local minimum, local maximum, or neither. One way is to 
 inspect the sign of the deriva�ve on either side of the cri�cal point, 
 which tells whether we are ascending or descending on either side 
 of the cri�cal point. 

 ●  If the deriva�ve is posi�ve to the le� of the cri�cal point and 
 nega�ve to the right of the cri�cal point, then we are ascending 
 to a peak and then descending down the peak, which tells us 
 that the cri�cal point is a local maximum. 

 ●  On the other hand, if the deriva�ve is nega�ve to the le� of the 
 cri�cal point and posi�ve to the right of the cri�cal point, then 
 we are descending down a valley and then climbing up the 
 valley, which tells us that the cri�cal point is a local minimum. 

 ●  Lastly, if the deriva�ve does not switch sign from the le� of the 
 cri�cal point to the right of the cri�cal point, then we are either 
 ascending up the whole way or descending down the whole 
 way, which indicates that the cri�cal point is a saddle point. 

 This method is called the  first deriva�ve test  , because  it makes use 
 of the first deriva�ve of the func�on. 
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 Demonstra�on of First Deriva�ve Test 

 To use the first deriva�ve test on the cri�cal points 

 that we found for the func�on  , we first split up 
 the number line over the cri�cal points. 

 The number line splits into  intervals: 

 However, on the intervals  and  our func�on 

 is not defined because the argument of the 
 square root becomes nega�ve. We remove these intervals from 
 considera�on. 

 We want to know whether our func�on is increasing or decreasing 
 on each of these intervals. To find out this informa�on, we choose a 
 test value in each of the remaining intervals. The actual values of the 
 test values don’t ma�er, because the deriva�ve maintains the same 
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 sign within any given interval. For the sake of example, we choose 
 our test values as, say,  ,  , and  . 

 Lastly, we evaluate the sign of the deriva�ve at each of these test 
 values. 

 The sign of the deriva�ve at each par�cular test value tells us the 
 sign of the deriva�ve throughout the interval containing the 
 par�cular test value. As a result, we know whether the func�on is 
 increasing or decreasing on each interval, and we can sketch a rough 
 graph of the peaks and valleys of the func�on. 
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 We see that the func�on  has maxima at 

 and minima at  . 

 Second Deriva�ve Test 

 The other method for classifying a cri�cal point of a func�on as a 
 maximum or minimum is called the  second deriva�ve  test  , because 
 it makes use of the second deriva�ve of the func�on. 

 ●  If the second deriva�ve is posi�ve at the cri�cal point, then the 
 func�on is concave up in the shape of a smile, which means the 
 cri�cal point is a local minimum. 

 ●  If the second deriva�ve is nega�ve at the cri�cal point, then 
 the func�on is concave down in the shape of a frown, which 
 means the cri�cal point is a local maximum. 

 ●  If the second deriva�ve is  or undefined at the  cri�cal point, 
 then we cannot conclude whether the cri�cal point is a local 
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 maximum or minimum, and we need to fall back to the first 
 deriva�ve test. 

 The second deriva�ve test is some�mes inconclusive, but it is 
 men�oned because it is o�en faster than the first deriva�ve test. 

 Demonstra�on of Second Deriva�ve Test 

 To use the second deriva�ve test on the cri�cal points 

 which we found for the func�on 

 , we first take the second deriva�ve of the 
 func�on. We computed the first deriva�ve earlier, so we just have to 
 differen�ate once more. 

 We evaluate the sign of the second deriva�ve at each of the cri�cal 
 points. 
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 Based on the results of the second deriva�ve test, we see that 

 is a minimum, and  is a maximum. The test is 
 inconclusive for  and  , so we would need to fall  back 
 to the first deriva�ve test for these cases. 

 When to Use Each Test 

 In general, it’s a good idea to use the first deriva�ve test when the 
 second deriva�ve is more complex than the first deriva�ve, and the 
 second deriva�ve test when the second deriva�ve is less complex 
 than the first deriva�ve. 
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 For example, for polynomial func�ons, it is usually easiest to use the 
 second deriva�ve test because the second deriva�ve is less complex 
 than the first deriva�ve. 

 We find the cri�cal points by solving for where the first deriva�ve is 
 zero. 

 Then, we find the sign of the second deriva�ve at these points. 

 The cri�cal point  has a nega�ve second deriva�ve, 
 which means the func�on is concave down and thus the cri�cal 

 point is a maximum. Likewise, the cri�cal point  has a 
 posi�ve second deriva�ve, which means the func�on is concave up 
 and thus the cri�cal point is a minimum. 
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 On the other hand, for the func�on below, it is easiest to use the 
 first deriva�ve test because the computa�ons for the second 
 deriva�ve will get a bit messy when we use the product rule. 

 We find the cri�cal points by solving for where the first deriva�ve is 
 zero. 

 We choose test points  and  on each side of our 
 cri�cal point, and evaluate the sign of the first deriva�ve at these 
 points. 

 The func�on has a nega�ve deriva�ve to the le� of the cri�cal point 
 and a posi�ve deriva�ve to the right of the cri�cal point, which 
 means it is descending to the cri�cal point and then ascending from 
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 the cri�cal point. Therefore, the cri�cal point  is a 
 minimum of the func�on. 

 Func�ons Defined on Closed Intervals 

 Lastly, when a func�on is defined on a closed interval, we need to 
 use the endpoints as cri�cal points as well, because the deriva�ve 
 isn’t defined there but the func�on is. 

 For example, to find the extrema of the func�on 
 with  , we should also consider  and  as 
 cri�cal points, in addi�on to the point  which  makes the 
 deriva�ve  equal to zero. 

 To apply the first deriva�ve test, we choose a test point  for 
 the interval  and  for the interval  . 

 The func�on is decreasing from  to  , and then 
 increasing from  to  . Therefore, the func�on has  a 
 minimum at  and maxima at  and  . 
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 Exercises 

 For each func�on, find the cri�cal points and label each cri�cal 
 point as a local maximum, local minimum, or saddle point. 
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 1.9 Differen�als and Approxima�on 

 The chain rule tells us that we can treat the deriva�ve  like a 
 frac�on when mul�plying by other deriva�ves. In this chapter, we 
 con�nue the idea of interpre�ng the deriva�ve as a frac�on, 
 extending it to an even more literal sense. 

 The main idea of  differen�als  is that we can interpret  the deriva�ve 

 as an approxima�on for how the func�on output  changes, when 
 the func�on input is changed by a small amount. The terms  and 

 are called  differen�als  , and we can interpret them  as small 
 changes in the func�on’s output and input. 

 Demonstra�on 

 For example, if we know that  and  for some 
 func�on  , then we can es�mate the value of  by  trea�ng 
 the differen�als as small changes in  and  . 

https://www.codecogs.com/eqnedit.php?latex=dx%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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 Es�ma�ng Trig Func�ons and Roots 

 We can use this method to es�mate values of func�ons that are 
 difficult to compute, like trig func�ons and roots. 

 For example, we know that  and that 

 , so we can es�mate the value of 
 using differen�als. 

https://www.codecogs.com/eqnedit.php?latex=%5Csin%200.1%0
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 Our es�ma�on is pre�y good -- the actual value of  is 

 Similarly, we know that  and that 

 , so we can es�mate the value of 
 using differen�als. 

 Again, our es�ma�on is pre�y good -- the actual value of  is 

 Intui�on 

 To understand why we can interpret the differen�als as small 
 changes, remember that the difference quo�ent is a good 
 approxima�on for the deriva�ve, when the difference  is small. 
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 The numerator is really just the change in the values of the func�on 
 , so we can represent it by  . 

 Graphically, approxima�ng via differen�als amounts to 
 approxima�ng with a tangent line. We start at the point  , 
 travel  units horizontally, and find the y-value  that allows us to 
 maintain a slope of  . 

https://www.codecogs.com/eqnedit.php?latex=f%0
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 Since the tangent line goes through the point  with  slope 
 , the points  on the tangent line are given by the 

 following linear equa�on in point-slope form: 

 Interpre�ng  and  , we see that this 
 equa�on is equivalent to the one we’ve been working with. 
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 Exercises 

 Approximate each value by using differen�als and the given 
 equality. In your computa�ons, use  ,  , and 

 , and round to 2 decimal places. 
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 1.10 L’H  ô  pital’s Rule 

 L’H  ô  pital’s rule provides a way to evaluate limits  that take the 

 indeterminate forms of  or  . It says that, for such  limits, we can 
 differen�ate the numerator and denominator separately, without 
 changing the actual value of the limit. 

 For example, the following limit has indeterminate form. 

 Therefore, we can apply L’H  ô  pital’s rule to solve  it. 

 Products in Indeterminate Form 

 Limits of the form  are also indeterminate, but we  need to 
 convert them to an equivalent frac�on before applying L’H  ô  pital’s 
 rule. 
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 For example, the following limit has indeterminate form of  , so 
 we convert it to an equivalent frac�on which has indeterminate 

 form  . 

 We could use other equivalent frac�ons, too, as long as they are 

 equivalent to the original limit and have indeterminate form of  or 

 . 

 However, even though L’H  ô  pital’s rule applies to any  frac�on having 
 indeterminate form, some frac�ons are be�er than others. For 
 example, if we wrote the previous limit as 

 we would s�ll have indeterminate form and thus be able to apply 
 L’H  ô  pital’s rule, but we wouldn’t get anywhere with  it because the 

 deriva�ve of  gets more complex. The point of using  L’H  ô  pital’s 
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 rule is to use differen�a�on to reduce the complexity of the limit, 
 not increase it. 

 Combining L’Hôpital’s Rule with Other 
 Methods 

 Some�mes, we may have to use other methods in conjunc�on with 
 L’H  ô  pital’s rule. For example, to solve the limit 

 we can first compute the logarithm of the limit, using L’H  ô  pital’s 
 rule. 
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 So, we have: 

 Limits that are Not in Indeterminate Form 

 One BIG word of cau�on:  L’H  ô  pital’s rule does NOT  apply when a 
 limit does not have indeterminate form. If you try to use L’H  ô  pital’s 
 rule on a limit that does not have indeterminate form, then it may 
 lead you to an erroneous result. 
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 For example, the limit  , does not take indeterminate 
 form since the numerator does not go to zero nor infinity, and we 
 know using the squeeze theorem that the limit evaluates to  . But if 
 we apply L’H  ô  pital’s rule on this limit, we conclude  that the limit 
 does not exist, which is incorrect since it actually does exist and 
 evaluates to  . 

 Deriva�on and Mean Value Theorem 

 To see why L’H  ô  pital’s rule works, we can start off  no�cing that the 
 limit 

 implies that  and  . This is obvious, but it’s very 
 important to no�ce, because it lets us express the above limit as the 
 ra�o of difference quo�ents. 

https://www.codecogs.com/eqnedit.php?latex=0%0
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 This is pre�y close to the full statement of L’H  ô  pital’s  rule, but it is a 
 bit more limited because it assumes that  is nonzero  -- it 

 assumes that the limit  can be evaluated through  direct 

 subs�tu�on, to yield  . But we have broken these  assump�ons 
 in some examples, where we applied L’H  ô  pital’s rule  mul�ple �mes 
 in a row -- in these examples, the limit s�ll couldn’t be evaluated by 
 direct subs�tu�on a�er a single itera�on of L’H  ô  pital’s  rule. 

 To overcome these assump�ons and prove the full statement of 
 L’H  ô  pital’s rule we need to understand the  mean value  theorem  , 
 which says that for any func�on  that is con�nuous  on an 
 interval  and differen�able on the interval  , there  is some 
 point  at which the deriva�ve of  is equal to its  average rate 
 of change: 
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 In other words, the mean value theorem says that if we draw a line 
 between the endpoints of  , it will be parallel to  the tangent line of 

 somewhere in the interval. 

 When fiddling with the mean value theorem, you might no�ce that 
 the mean value theorem is a par�cular case of a more general and 
 elegant equa�on, with  . 

 To check whether this extended result is true for any func�on  , 
 we can ask whether the deriva�ve of the following func�on  is 

 at some point  . 
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 Interes�ngly, this func�on has the property  , so  the 
 mean value theorem tells us that, indeed, as long as  is 
 con�nuous on an interval  and differen�able on  the interval 

 , then it is true that  for some point  . And 
 the assump�ons of con�nuity and differen�ability are true for 
 whenever they are true for  and  , so the mean value 
 theorem does in fact extend to the result 

 . 

 This result is known, rather intui�vely, as the extended mean value 
 theorem. 

 L’H  ô  pital’s rule comes from applying the extended  mean value 
 theorem to the limit in ques�on. If we have the indeterminate limit 

 then we consider the interval  . Here, both  and 
 , and the extended mean value theorem tells us that  for 

 some  we have the following: 



 Jus�n Math |  Calculus  95 

 Taking the limit as  , we have  and thus 

 . 

 The indeterminate limit 

 can be understood the same way using the interval  , and the 
 indeterminate limits 

 can be understood similarly, using the intervals  and 
 . Likewise, in the case of 
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 we can rewrite the limit as 

 and apply L’H  ô  pital’s rule, which ends up simplifying  to its original 
 form. 
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 Exercises 

 Evaluate the indicated limits by applying L’Hôpital’s rule. 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%205)%20%5Chspace%7B.5cm%7D%20%5Clim%5Climits_%7Bx%5Cto%201%7D%20%5Cfrac%7Bx%20%5Cln%20x%7D%7Bx%5E2-1%7D%20%5Cend%7Balign*%7D%0
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 Part 2 
 Integrals 
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 2.1 An�deriva�ves 

 An  an�deriva�ve  of a func�on  is a func�on  whose 
 deriva�ve is  , i.e.  . 

 For example, an an�deriva�ve of  is  , because  . 

 Another an�deriva�ve of  is  , because  . To 
 encapsulate all possibili�es, we say that the an�deriva�ve of  is 

 where  is a constant. 

 The an�deriva�ve of a func�on  is wri�en symbolically  as 

 . For example, to say that the an�deriva�ve of  is 

 , we can write  . 

 The symbol  is called an  integral  , and the differen�al  tells us 
 that  is the variable of integra�on. (The variable  of integra�on may 
 seem unnecessary right now, but it will become more relevant in 
 later chapters when we talk about techniques to solve integrals.) 

 Power Rule 

 The power rule for differen�a�on tells us that  . 
 Through a bit of clever intui�on, we find a func�on whose deriva�ve 
 is  . 

https://www.codecogs.com/eqnedit.php?latex=dx%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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 Consequently, we have a power rule for integra�on: 

 A few examples are shown below. 
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 Integral of the Reciprocal Func�on 

 You might no�ce that if we try to use this power rule to integrate  , 
 which simplifies to  , we come up with a nonsense  result. 

 The case of  is an excep�on to the power rule, and  if we try 
 to perform the power rule anyway, we obtain an invalid result. We 

 will see in a later chapter that, surprisingly, the an�deriva�ve of  is 
 . 

 Sum and Constant Mul�ple Rules 

 Integrals exhibit some of the same proper�es as deriva�ves. For 
 example, the integral of a sum can be computed as the sum of 
 integrals of the integral terms. Also, constants can be moved outside 
 of integrals. 
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 Note that although each individual integral in the sum is associated 
 with a  constant term, they are redundant, because  when we 
 combine all the terms together we s�ll get a constant. Thus, we are 
 able to write a single  at the very end to account  for all 
 constants that arise from the mul�ple individual integrals. 

 Integra�ng Products and Quo�ents 

 Unfortunately, there is no simple rule for integra�ng a product or 
 quo�ent. We will learn techniques later to make such integrals 
 easier, but for now, the best strategy is to expand out the func�on as 
 much as possible before trying to take the integral. 

 For example, to integrate the product  , we 
 can mul�ply out the product and then integrate each term 
 individually. 
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 Similarly, to integrate the quo�ent  , we can split  up each 
 term in the numerator and then simplify. 

 Integra�ng Non-Polynomial Func�ons 

 Below are some useful rules for finding an�deriva�ves of 
 non-polynomial func�ons. (For the sake of readability, the  and 

 have been removed.) 
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 Non-polynomial func�ons can be integrated similarly: we simplify 
 the integral as much as we can, and then find the an�deriva�ve of 
 each term separately. A few examples are shown below. 
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 Exercises 

 Evaluate the following integrals. 
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 2.2 Finding Area 

 In the last chapter, we learned how to evaluate integrals of the form 

 , which are also known as  indefinite integrals  . In  this 
 chapter, we shall be concerned with  definite integrals  ,  which have 
 bounds of integra�on. 

 The definite integral  is evaluated by first finding  the 

 an�deriva�ve  , and then compu�ng the 
 difference between the values of the an�deriva�ve at the indicated 
 bounds. 

 Deriva�on 

 Subtrac�ng at the bounds yields the area between the x-axis and the 
 func�on  , between the bounds  and  . To see why, 
 first consider that  is the sum of infinitely many, 
 infinitely small changes in  , one for each value  of  . At each value 

 , the func�on has slope  , so if it travels an infinitesimal 
 units to the right, then it also travels an infinitesimal  units 
 up. 
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 This is true even if the func�on doubles back on itself, because the 
 upward and downward displacements cancel each other out. 
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 Because  , we have  , so we can 
 write the sum in terms of  . 

 Each term in the sum then corresponds to the area of a rectangle of 
 width  and height  , and all the rectangles together  make up 
 the area between the x-axis and the graph of  . 
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 Sanity Check 

 Below is an example of evalua�ng a simple definite integral. 

 We can verify that this result represents the area between the x-axis 
 and the func�on  between the bounds  and 

 , because this region is just a triangle. The results  match up! 
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 Demonstra�on 

 Now, let’s compute the area between the x-axis and the parabola 

 , between the same bounds  and  . The 
 parabola dips a li�le lower than the triangle which we found has 
 area  , so we should expect a result a li�le smaller  than  . 

 The area is  , which is indeed slightly smaller than  , so it matches 
 up with our expecta�ons. 
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 Nega�ve Area 

 When a func�on dips below the x-axis, the area below the x-axis is 
 counted as nega�ve area. 

 For example, if we integrate the func�on  between  the 
 bounds  and  , we get a result of  . This is the  same 
 triangle as before, but flipped over the x-axis. 

 As a consequence of nega�ve area, for a region that has the same 
 amount of area above the x-axis as below the x-axis, the integral will 
 evaluate to  . 
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 For example, the func�on  integrates to zero on the 
 interval from  to  because its two triangles above  and 
 below the x-axis cancel each other out. 

 Area Between Two Func�ons 

 In addi�on to finding the area under a single func�on, integrals can 
 also be used to find the area between two func�ons. 
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 If we have two func�ons  and  with  on the 
 interval  , then the area between the func�ons on the interval 

 is given by the integral of the difference: 

 One way to interpret the integral above is to see it as the difference 
 of two separate integrals, the integral of  minus  the integral of  . 
 Then the area between  and  is the area under  minus the 
 overlapping area under  , which leaves only the area  between 
 and  . 

 Another way to interpret the integral is to see it as integra�ng the 
 height from  to  . In this case, we are defining  a height func�on 

 and breaking the region between the func�ons 
 into infinitesimally small rectangles, each rectangle having height 

 and infinitesimal width  . 
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 For example, to find the area between  and 

 on the interval  , we first need to iden�fy which 
 func�on is the higher one on this interval. We can do this by 
 sketching graphs of the func�ons. 
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 We see that  is the higher func�on and  is 
 the lower func�on. The integral is the higher func�on  minus 
 the lower func�on  , over the interval  . 

 So, the area between the func�ons  and 

 on the interval  is  . 
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 Area Between Two Func�ons that Intersect 

 Some�mes, two func�ons will cross on an interval, and each will 
 take its turn being the higher func�on. For example, the func�ons 

 and  cross twice on the interval  . The points  of 
 intersec�on are obtained by se�ng the func�ons equal to each 
 other and solving: 

 On  the higher func�on is  , on  the higher 

 func�on is  , and on  the higher func�on is  .  To 
 find the total area bounded between the func�ons, we integrate the 
 higher func�on minus the lower func�on on each interval and add 
 the results together. 
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 To perform the computa�on faster, we can ignore which func�on is 
 higher vs lower provided we take the absolute value of each integral 
 before adding them together. Even if we end up “incorrectly” 
 compu�ng the lower func�on minus the higher func�on in some 
 integral, the result will s�ll represent area -- it will just be nega�ve 
 area, so we can correct it by making it posi�ve. 

 If we treat  as the higher func�on on all intervals  but take 
 the absolute value of the integrals before adding them, we reach the 
 same result as before. 
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 Likewise, if we treat  as the higher func�on on  all intervals 
 but take the absolute value of the integrals before adding them, we 
 reach the same result as before. 

 Exercises 

 Find the net (signed) area below each func�on on the given 
 interval. 



 124  Jus�n Math |  Calculus 

 Find the area between the two func�ons on the given interval. 
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 2.3 Subs�tu�on 

 Complicated integrals can some�mes be made simpler through the 
 method of  subs�tu�on  . Subs�tu�on involves condensing  an 
 expression of  into a single variable, say  , and  then expressing 
 the integral in terms of  instead of  . 

 Demonstra�on 

 To make the idea of subs�tu�on more concrete, consider the 

 integral  . We may be tempted to use the power rule, 

 and say that the integral evaluates to  . But if we 
 differen�ate to check our result, we see that, because of the chain 
 rule, the deriva�ve of this expression is not equal to the func�on 
 inside the integral. 
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 To turn the integral into one that can be solved with the power rule, 
 we condense the  expression into a single variable  , 
 through the subs�tu�on  . 

 Before we apply the power rule, we need to take care of one issue: 
 the differen�al is s�ll  , and we need it to be  . In general, we 
 can’t just replace the  differen�al with a  differen�al. 
 However, by interpre�ng the deriva�ve as a frac�on, we can solve 
 for the  differen�al in terms of the  differen�al. 

 Once our integral is fully expressed in terms of  , we can solve it via 
 the power rule, and then subs�tute  again to write  our 
 answer in terms of  . 
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 We verify that the deriva�ve of the result is indeed the original 
 func�on within the integral. 

 Choosing the Right Subs�tu�on 

 The key to subs�tu�on is choosing the right subs�tu�on. But how 
 can we tell what is the right subs�tu�on? For example, in the 
 integral below, should we subs�tute  or  ? 
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 Whenever we are torn between mul�ple subs�tu�on choices, we 
 should choose the subs�tu�on whose deriva�ve will cancel out 
 other terms in the integral. 

 In this case, we should choose  , because the deriva�ve 
 will cancel out the exis�ng  inside the integral.  On 

 the other hand,  would not work, because the deriva�ve 
 would not fully cancel the exis�ng  inside the 

 integral. 

 Choosing  , we have  , so  . 
 Subs�tu�ng into the integral, we are able to evaluate. 

 Exercises 

 Evaluate each integral using subs�tu�on. 
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 2.4 Integra�on by Parts 

 Integra�on by parts  is another technique for simplifying  integrals. 
 We can apply integra�on by parts whenever an integral would be 
 made simpler by differen�a�ng some expression within the integral, 
 at the cost of an�-differen�a�ng another expression within the 
 integral. The formula for integra�on by parts is given below: 

 The formula is really just a direct consequence of the product rule -- 
 we can obtain it by applying the product rule to a product  , 
 integra�ng with respect to  , and rearranging a bit. 
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 Demonstra�on 

 To see why integra�on by parts is useful, consider the integral 

 . If we differen�ate the  term, then the term goes  away, 
 and if we integrate the  term, the term stays the  same. Therefore, 
 by applying integra�on by parts, we can simplify the integral. 

 We choose  and  . Since  , we have  , 

 so  . Since  , we have  . (We 
 ignore the constant of integra�on now because we’re saving it for 
 the very end.) Subs�tu�ng this informa�on into the integra�on by 
 parts formula, we are able to evaluate the integral. 

 Repeated Applica�on 

 Some�mes, we may have to perform integra�on by parts more than 
 once. 

 For example, in the following integral, the first integra�on by parts 
 reduces the  to  , and the second integra�on by  parts reduces 
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 the  to  , which finally simplifies the integral to a point where we 
 can solve it. 

 To start off, we choose  and  . Then 
 and  , and the integral simplifies a bit. 

 For the final round of integra�on by parts, we choose  and 
 . Then  and  , and the integral 

 simplifies a bit more, to a point where we can solve it. 

 Cyclic Cases 

 Other �mes, integra�on by parts will never simplify an integral to a 
 point where it can be directly computed. 
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 For example, in the integral 

 differen�a�ng the  term will not reduce its complexity  because it 
 just stays  , and differen�a�ng the  term will  not reduce its 
 complexity because it just flips back and forth between  and 

 . 

 However, we can use integra�on by parts to set up a recurrence 
 equa�on, which can be used to solve algebraically for the integral. 
 Choosing  and  we have  and 

 . 

 We perform one more round of integra�on by parts with 
 and  , so that we have  and  . 
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 Now that the original integral has reappeared in our expression, we 
 can solve for it algebraically. 

 Then, since the integral is an indefinite integral, we just need to add 
 a constant at the end. 

 Exercises 

 Use integra�on by parts to compute the following integrals. 
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 2.5 Improper Integrals 

 Improper integrals  have bounds or func�on values  that extend to 
 posi�ve or nega�ve infinity. 

 For example,  is an improper integral because its  upper 

 bound is at infinity. Likewise,  is an improper integral 

 because  approaches infinity as  approaches the  lower bound 
 of integra�on,  . 

 Convergence 

 It seems intui�ve that improper integrals should always come out to 
 infinity, since an infinitely long or infinitely high func�on would 
 seemingly have infinite area. 
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 However, although this can some�mes happen, it is not always the 
 case. In fact, both of the two improper integrals given as examples in 
 the previous paragraph evaluate to normal, non-infinite results. As 
 such, we say that these integrals  converge  . 

 If the func�on decreases quickly enough as it extends out to infinity, 
 then the area underneath it can come out to a finite number. 
 Likewise, if a func�on blows up to infinity slowly enough as it 
 approaches an asymptote, then the area underneath it can come 
 out to a finite number. 

 Divergence 

 Below, we integrate the func�on  , which decreases  more 
 slowly as it extends out to infinity and blows up to infinity more 
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 quickly as it approaches its ver�cal asymptote  . The integrals 
 of this func�on do indeed integrate to infinity. As such, we say that 
 these integrals  diverge  . 

 Discon�nui�es within the Interval of 
 Integra�on 

 Some�mes, a func�on may blow up to infinity somewhere within 
 the interval of integra�on, rather than at the bounds of integra�on. 
 In such a case, we have to separate the integral across its 
 discon�nui�es. 

 For example, to compute the integral  , we may be 
 tempted to ignore the singularity at  and simply  evaluate the 
 an�deriva�ve at the bounds. This leads us to an invalid result. 
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 This result of nega�ve area doesn’t make any sense, because the 

 func�on  is always posi�ve! 

 In order to properly evaluate the integral  , we have  to 
 split it up across the singularity, into two separate integrals. 

 The first integral spans from  to  and consequently 
 approaches  from the nega�ve side, so its computa�ons  involve 

 . 

 The second integral spans from  to  and consequently 
 approaches  from the posi�ve side, so its computa�ons  involve 

 . 
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 Now, we see that the integral actually diverges to infinity. This 
 makes much more sense, since we know that it represents a region 
 that contains a por�on of infinite area. 

 Lastly, below is an example of a more complicated integral that 
 converges. 
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 Exercises 

 Evaluate the improper integrals below. 
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 Part 3 
 Differen�al Equa�ons 
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 3.1 Separa�on of Variables 

 In differen�al equa�ons, we are given an equa�on in terms of the 
 deriva�ve(s) of some func�on, and we need to solve for the func�on 
 that makes the equa�on true. 

 For example, a simple differen�al equa�on is  ,  and its 

 solu�on is just the an�deriva�ve  . 

 The simplest differen�al equa�ons can be solved by  separa�on of 
 variables  , in which we move the deriva�ve to one  side of the 
 equa�on and take the an�deriva�ve. 
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 Equa�ons with a Higher-Order Deriva�ve 

 This method can be used to solve simple equa�ons with 
 higher-order deriva�ves, as well. 

 Note that, although the an�deriva�ve of  is  ,  the term 

 is itself just a constant:  just means any constant  mul�plied by 
 . But  also means any constant mul�plied by  ,  so wri�ng 

 the frac�on in  is redundant. To keep the nota�on  simple and 
 free of redundancy, we just write  . 
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 Equa�ons with Both Func�on and Deriva�ve 

 When differen�al equa�ons contain  terms as well  as  terms, we 
 can s�ll separate variables by using the differen�al nota�on for the 
 deriva�ve and trea�ng it as a frac�on. 

 Even differen�al equa�ons that contain two different variables 
 mul�plied together can some�mes be solved by separa�on of 
 variables. 
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 But other �mes, there is no way to separate the variables from each 
 other completely. We will learn more advanced methods to solve 
 such non-separable differen�al equa�ons in the coming chapters. 
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 Exercises 

 Solve the following differen�al equa�ons using separa�on of 
 variables. 
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 3.2 Slope Fields and Euler Approxima�on 

 When faced with a differen�al equa�on that we don’t know how to 
 solve, we can some�mes s�ll approximate the solu�on by simpler 
 methods. If we just want to get an idea of what the solu�ons of the 
 differen�al equa�on look like on a graph, we can construct a  slope 
 field  . 

 Slope Fields 

 A slope field consists of an array of line segments, each line segment 
 angled so that it represents the slope at the corresponding point. 
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 For example, to construct the slope field for the differen�al equa�on 

 , we start with an array of points. 
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 Then, we evaluate  at each point  . 
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 Lastly, we replace each value of  with a short arrow  having that 
 slope. 
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 Now, we have an idea of what the solu�ons of the differen�al 
 equa�on look like. For example, if we start at the point  and 
 follow the slopes as we go le� and right, then we end up with the 
 following curve. 
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 We can also choose a different point, say  to see  the solu�on 
 curve which contains that point. 

 You can think of the coordinate plane as a river rapid, and the slope 
 fields as the individual currents within the river rapid. If you launch a 
 ra� at a par�cular point, then the solu�on curve shows you where 
 the river will take the ra�. 

 Imprecision of Slope Fields 

 Although a slope field can show us the shapes of solu�ons to a 
 differen�al equa�on, it isn’t very precise. 
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 For example, if a par�cular solu�on starts at the point  , 
 then the slope field tells us that it travels up and right -- but exactly 
 how far? If we travel right one units un�l the x-coordinate is  , 
 then what will the y-coordinate be? 

 Based on the sketch of the slope field, it’s hard to tell whether the 
 y-coordinate will be closer to  or  . We need a more  precise 
 method. 

 Euler Es�ma�on 

 We can es�mate par�cular solu�ons more precisely using  Euler 
 approxima�on  . In Euler approxima�on, we travel horizontally  in 
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 small steps and use the deriva�ve to compute how far we travel up 
 or down at each step. The idea is that, since the solu�on curve is 
 generated by this process with infinitesimally �ny step sizes, we can 
 compute a good approxima�on to the solu�on curve if we use a 
 small enough step size. 

 As an example, we will use Euler approxima�on to es�mate the 
 value of  when  , star�ng from the point  . We will 
 use a step size of  . 

 We start by compu�ng  at the point  , using the 

 differen�al equa�on  , and obtaining a result of 

 . 

 Then, using  , we es�mate  as  , which is 
 . We arrive at the point  , which 

 simplifies to  . 

 At this point, we compute the deriva�ve again, use it and  to 
 es�mate  , arrive at a new point, and con�nue the  process un�l 
 the x-coordinate is  . 

 As shown in the table below, our resul�ng es�mate of the 
 y-coordinate is  . 
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 Euler approxima�on tends to yield decent approxima�ons for 
 differen�al equa�ons whose slope fields aren’t too turbulent, and 
 the approxima�ons can be made more accurate by decreasing the 
 step size. 

 However, for differen�al equa�ons that have singulari�es, one must 
 be careful applying Euler approxima�on because it can “step over” 
 asymptotes. 

 Exercises 

 Draw slope fields for the following differen�al equa�ons on the 
 grid  . 

 Then, sketch a rough graph of the solu�on that passes through 
 the point  . 

 Finally, star�ng at the point  , use Euler es�ma�on  with 
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 steps to approximate the value of  when  . (Round to two 
 decimal places throughout your calcula�ons.) 
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 3.3 Subs�tu�on 

 Some�mes, non-separable differen�al equa�ons can be converted 
 into separable differen�al equa�ons by way of  subs�tu�on  . 

 For example,  is a non-separable differen�al equa�on 
 as-is. However, we can make a variable subs�tu�on  to 
 turn it into a separable differen�al equa�on. Differen�a�ng both 
 sides of  with respect to  , and interpre�ng  as  a 
 func�on of  , we have  , so  . Subs�tu�ng, 
 the equa�on becomes separable and thus solvable in terms of  . 
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 Lastly, to find what  is, we can solve for  in our original 
 subs�tu�on  . 

 Choosing the Right Subs�tu�on 

 In general, to determine what subs�tu�on we need to perform, it is 
 helpful to rearrange the equa�on un�l we see a group of terms 
 whose deriva�ve also appears in the equa�on. 

 A�er rearranging the above equa�on, we see that  is a 
 good subs�tu�on. We rewrite the equa�on in terms of  , solve it, 
 and then solve for  in terms of  . 
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 We don’t always have to use addi�on in our subs�tu�ons. In the 
 equa�on below, for example, we require the subs�tu�on  . 

 = 

 Exercises 

 Use subs�tu�on to solve the following differen�al equa�ons. 
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 3.4 Characteris�c Polynomial 

 In this chapter, we learn a technique for solving differen�al 
 equa�ons of the form 

 where  are constant coefficients, and 
 denotes the n  th  deriva�ve of  . 

 The  characteris�c polynomial  of the differen�al  equa�on above is 
 given by 

 . 

 Each root  of the characteris�c polynomial corresponds  to a 

 solu�on  of the 
 original equa�on, where  is the mul�plicity of  the root and 

 are unknown constants of integra�on. 

 The constants of integra�on are labeled intricately, each with two 
 subscripts, so that we can stay organized, in case we have to deal 
 with mul�ple roots. 

https://www.codecogs.com/eqnedit.php?latex=r%0
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 Demonstra�on 

 For example, the differen�al equa�on  has the 
 characteris�c polynomial  , which factors to 

 and has roots  . 

 The root  has mul�plicity  , which corresponds to  a solu�on 

 or more simply  . 

 The root  also has mul�plicity  , which corresponds  to a 

 solu�on of  . 

 The full solu�on of the equa�on, then, is  . 

 Another Demonstra�on 

 Next, consider the differen�al equa�on  . 

 This differen�al equa�on has the characteris�c polynomial 

 , which factors to  and has a single root 
 with mul�plicity  . 

 The solu�on of the equa�on, then, is  . 
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 Case of Imaginary Roots 

 Some�mes, the characteris�c polynomial of a differen�al equa�on 
 may have imaginary roots. 

 For example, the differen�al equa�on  has the 
 characteris�c polynomial  , which has roots  . In 
 these cases, we apply the same procedure as before, but we take it 
 a step further. We use  Euler’s formula 

 to evaluate any exponen�als with imaginary powers, and then we 
 remove any  ’s from the solu�on. We can remove the  ’s because in 
 general, if  is a solu�on, then so is  . This is  true because 
 the  can be factored out: 

 Con�nuing the example, the root  corresponds to  a solu�on 

 , which simplifies to  . Removing 

 the  from this solu�on yields  . 

 By the same reasoning, the root  corresponds to a  solu�on 

 . Since  and 
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 for all inputs  , this solu�on simplifies further 

 to  . 

 The full solu�on, then, is 

 which simplifies to 

 . 

 It is redundant to use four constants in this solu�on, though, since 
 represents a single constant and 

 represents another single constant. 

 For example, if  and  , then the solu�on is just 
 . We can make  and 

 come out to anything we want, by choosing  and 
 accordingly. 

 Therefore, to avoid redundancy in the full solu�on, we replace the 
 expression  with a single constant  , and the 
 expression  with a single constant  . 
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 Case of Complex Roots 

 When the characteris�c polynomial has complex roots, the solu�ons 
 will contain exponen�als and trig func�ons. 

 For example, the differen�al equa�on  has 
 characteris�c polynomial  , whose roots are given  by 
 the quadra�c equa�on. 

 The root  corresponds to the following solu�on: 

 Likewise, the root  corresponds to the following  solu�on: 
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 Assigning new constants  and 
 , the full solu�on becomes the following: 

 Repeated Imaginary Roots 

 Repeated imaginary and complex roots are treated just like we 
 treated repeated real roots. 

 For example, the equa�on  has 
 characteris�c polynomial  , which factors to 

 , and thus has roots  , each with mul�plicity  .  The 
 solu�on to this differen�al equa�on is then 

 . 

 A�er removing the  and grouping the constants, the  solu�on 
 simplifies to 

 . 
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 Deriva�on of the Characteris�c Polynomial 

 Lastly, let’s gain a be�er understanding of why the characteris�c 
 polynomial method works. The characteris�c polynomial really just 
 comes from guessing a solu�on  . The deriva�ves  for this 
 guess are listed below. 

 We subs�tute the deriva�ves in the differen�al equa�on, and 
 simplify. 

 We see that  is a solu�on whenever  is a root of  the 
 characteris�c polynomial. 
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 Exercises 

 Use the characteris�c polynomial to solve the following 
 differen�al equa�ons. 
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 3.5 Undetermined Coefficients 

 In the previous chapter, we learned how to solve differen�al 
 equa�ons of the form 

 . 

 Now, we consider differen�al equa�ons of the form 

 where the right hand side is no longer strictly  ,  but rather some 
 func�on  . The solu�on to such a differen�al equa�on  is given 
 by 

 where  is the general solu�on to the “homogeneous”  equa�on 

 and  is a par�cular solu�on that sa�sfies the  “inhomogeneous” 
 equa�on 

 . 
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 We already know how to use the characteris�c polynomial to find 
 , and now we will learn how to use the method of  undetermined 

 coefficients  to find  . 

 The method of undetermined coefficients involves guessing a 

 solu�on  having the same form as  , except possibly 
 mul�plied by some other coefficients. We then subs�tute this guess 
 into the differen�al equa�on, and solve for the value of the 
 coefficient that will make the guess correct. 

 Case of Exponen�al Func�on 

 For example, to find a par�cular solu�on to the differen�al equa�on 

 , we can guess that 
 for some values of  and  . Subs�tu�ng our guess  into the 
 equa�on, we can solve for the correct values of  and  . 

 Our par�cular solu�on is then given by  . Then, 
 using the characteris�c polynomial method, we solve 

 to find  . The full 
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 solu�on to the differen�al equa�on  is 
 then given by 

 . 

 Case of Trig Func�ons with Same Angle 

 In cases where  contains  or  , we include both 
 and  in our guess for  . 

 For example, to find a par�cular solu�on to the differen�al equa�on 
 , we need to construct a guess that 

 contains both  and  . Our guess, then, is 

 . 

 We subs�tute this guess into the differen�al equa�on and simplify. 

 Equa�ng coefficients on the le� and right sides of the equa�on 
 yields a system of equa�ons for  and  . 
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 Solving this system, we find  and  . The par�cular 

 solu�on is then  . 

 Using the characteris�c polynomial to solve 

 yields  , and the full solu�on of the 
 differen�al equa�on  is then given by 

 . 

 Case of Trig Func�ons with Different Angles 

 When we have mul�ple values of  , we end up with  even more 
 unknown coefficients in our guess. 

 For example, to find a par�cular solu�on to the differen�al equa�on 
 , we need to construct a guess that 

 contains both  and  , for both  and  . Our 
 guess, then, is 

 . 
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 We subs�tute this guess into the differen�al equa�on and simplify. 

 Equa�ng coefficients on the le� and right sides of the equa�on 

 yields  ,  ,  , and  . The par�cular 

 solu�on is then  . 

 Using the characteris�c polynomial to solve  yields 

 , and the full solu�on of the 
 differen�al equa�on  is then given by 

 . 

 Case of Polynomial Func�ons 

 Lastly, the differen�al equa�on  has a 
 polynomial and an exponen�al term, so our guess for the par�cular 
 solu�on needs to contain a polynomial and an exponen�al term. 
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 The polynomial in the differen�al equa�on is of degree  , and the 
 differen�al equa�on itself is of degree  , so our  guess needs to 
 contain a polynomial of degree  . 

 We subs�tute this guess into the differen�al equa�on and simplify. 

 Equa�ng coefficients on the le� and right sides of the equa�on 

 yields  ,  ,  ,  ,  , and  . The 
 coefficient  can s�ll be any number, so we leave  it as-is. The 
 par�cular solu�on is then 

 . 

 Using the characteris�c polynomial to solve  yields 
 , and the full solu�on of the differen�al 

 equa�on  is then given by 

 . 

https://www.codecogs.com/eqnedit.php?latex=F%0
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 To eliminate redundancy, we can lump the  constant into the 
 constant, since  is itself just another constant. 

 Exercises 

 Use the method of undetermined coefficients to solve the 
 following differen�al equa�ons. 
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 3.6 Integra�ng Factors 

 We know how to solve differen�al equa�ons of the form 

 where each coefficient  is a constant. In this chapter,  we consider 
 differen�al equa�ons of the form 

 where the coefficient  is itself a func�on of  . 

 To solve such equa�ons using the method of  integra�ng  factors  , we 
 start off mul�plying both sides of the equa�on by the term 

 , which is known as the  integra�ng factor  . Then,  we can 

 write the le� hand side as the deriva�ve of  , 
 an�differen�ate, and solve for  . 
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 Demonstra�on 

 For example, consider the differen�al equa�on  . 
 The integra�ng factor for this equa�on is as follows: 

 To solve the equa�on, we mul�ply both sides of the equa�on, group 
 the deriva�ve, take the an�deriva�ve, and solve for  . 
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 Case when Leading Coefficient is Not One 

 In equa�ons where the coefficient on the  is not  already  , we 
 need to start by dividing the equa�on by that coefficient. 

 For example, to solve the equa�on  , we start by 

 dividing by  , which yields  . Then, we can proceed 
 as usual to calculate the integra�on factor. 

 Now, we can mul�ply our updated equa�on by the integra�on 
 factor, and solve for  (using integra�on by parts  along the way). 
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 Exercises 

 Use integra�ng factors to solve the following differen�al 
 equa�ons. 
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 3.7 Varia�on of Parameters 

 When we know the zero solu�ons  of a differen�al  equa�on 
 , we can use a method called 

 varia�on of parameters  to find the par�cular solu�on.  This method 
 is especially useful in cases where we are unable to guess the 
 par�cular solu�on through undetermined coefficients. 

 Deriva�on 

 Varia�on of parameters is similar to undetermined coefficients in 
 that we guess a solu�on form that is relevant to the differen�al 
 equa�on, and adjust it as needed to solve the differen�al equa�on. 

 However, varia�on of parameters is more general: the guess is of 

 the form  , where  and  are 
 the two zero solu�ons of the differen�al equa�on 

 , and  and  are some 
 unknown mul�plier func�ons for which we need to solve. 

 If we also force  , then we can set 
 up a system of equa�ons to solve for  and  . (To  be clear, the 

 formula for  does not come from differen�a�ng --  rather, it is a 
 condi�on that we force, so that we obtain a solvable system of 
 equa�ons.) 
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 The first equa�on comes from differen�a�ng  : 

 The second equa�on comes from subs�tu�ng our guess for  into 
 the differen�al equa�on and simplifying, using the fact that  and 

 are the zero solu�ons. 

 Our resul�ng system 

 is solved by 

 . 
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 Integra�ng, we have 

 . 

 The par�cular solu�on is then 

 . 

 Demonstra�on 

 For example, to solve the differen�al equa�on  , 
 we start by solving  to find the zero solu�ons 

 and  . A�er compu�ng 

 we are able to compute  and  : 
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 We can then compute the par�cular solu�on: 

 Finally, we can write the full solu�on, and lump any constant terms 
 to eliminate redundancy. 



 Jus�n Math |  Calculus  189 

 Another Demonstra�on 

 As another example, we solve the differen�al equa�on 
 in the same way. The zero solu�ons to 

 are  and  , and we have 

 . 

 Compu�ng  and  , we have 

 . 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20y_1y_2%27%20-%20y_2y_1%27%20%26%3D%20(e%5Ex)(0)-(1)(e%5Ex)%20%5C%5C%20%26%3D%20-e%5Ex%20%5Cend%7B%0
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 We can then compute the par�cular solu�on: 

 Finally, we can write the full solu�on, and lump any constant terms 
 to eliminate redundancy. 

 Exercises 

 Use varia�on of parameters to solve the following differen�al 
 equa�ons. 
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 Part 4 
 Series 
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 4.1 Geometric Series 

 A  geometric series  is a sum of the form  for some 
 number  . 

 Convergence 

 For example, when  , the corresponding geometric series  is 

 . This series might look like it grows bigger and 
 bigger as you add more terms, but there is actually a limit to how 
 big it can get. 

 To understand the limit intui�vely, think of each term as 

 represen�ng a sec�on of a pie. First, you eat half of the pie,  . Next, 

 you eat half of the remaining half,  . Then, you eat  half of the 

 remaining quarter,  , and so on, ea�ng half of what’s  le� every 
 �me. 

 You’ll never finish the pie, because there will always be something 
 le� over -- but in the limit as the number of terms approaches 
 infinity, the le�over piece shrinks to  , and the  amount of pie that 
 you consume approaches  . This means that the sum  of the terms is 

 , and we say that the series  converges  to  . 
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 Divergence 

 On the other hand, the series for  legi�mately blows  up to 
 infinity -- the terms keep ge�ng bigger and bigger, so the sum has 
 to keep ge�ng bigger and bigger. We say that the series  diverges  to 
 infinity. 
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 Compu�ng the Sum 

 But what about the series for, say,  ? It’s not so  obvious 
 whether it converges or diverges. Even if we’re told that it 
 converges, what number does it converge to? We can compute this 
 algebraically. 

 We can check our formula by making sure it evaluates to  when 

 given  . 



 196  Jus�n Math |  Calculus 

 We can also use our the formula to find what the series with 
 converges to. 

 . 

 Understanding Nonsensical Results 

 But there’s one issue -- the formula gives a finite result for  , 
 which we know diverges to infinity since each addi�onal term is 
 bigger than the previous term. According to the formula, the series 
 with  should converge to  , which doesn’t make any  sense. 

 In general, the formula only gives the correct result if the series 
 converges, and the series only converges when  . (We’ll  see 
 why in a moment.) 

 When the series diverges, we can get nonsense results from the 
 formula because the method by which the formula was obtained is 
 no longer valid. Algebra doesn’t work on terms that diverge to 
 infinity -- for example, it’s true that  , but subtrac�ng 
 from both sides of the equa�on leads to the statement  , which 
 isn’t true. 
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 Determining Convergence 

 To see why the geometric series only converges when  , we 
 need to compute the sum formula again, but this �me only for the 
 first  terms of the series, so that we don’t run  into any problems 
 with divergence. 

 Now, we can find the sum of the full series by taking the limit as 
 . 

 In order for  to converge and the denominator  not 
 to go to  , we require that  . 
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 Case when Manipula�on is Required 

 Lastly, some�mes we may have to factor out and/or separate 
 numbers from a geometric series in order to find its sum. 

 For example, to find the sum of the geometric series 

 we can factor out a  and separate the first term  from the rest of 
 the series. Then, we can apply the sum formula to the rest of the 
 series and simplify the expression. 
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 Exercises 

 Compute the sum of each series. 
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 4.2 Tests for Convergence 

 Previously, we saw that sum formulas are only valid for series that 
 converge. But how can we tell whether a series converges or 
 diverges, in the first place? 

 Trivial Test 

 First of all, an easy way to tell that a series diverges is to look at the 
 terms of the series -- if the terms themselves do not converge to  , 
 then their sum cannot possibly converge. 

 But if the terms do converge to  , then we can’t tell  whether the 
 series converges or diverges, and we have to use a more powerful 
 test. 

 Integral Test 

 The  integral test  is a powerful test for proving convergence.  It says 
 that if the series can be wri�en as  for 
 some decreasing func�on  , then the series converges  if the 

 integral  converges, and diverges if the integral 

 diverges. 
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 For example, to tell whether the series 

 conveges, we can perform the integral test with  .  This 
 integral diverges to infinity, so the series above diverges to infinity as 
 well. 

 On the other hand, applying the integral test to the series 

 shows that the series converges. (But the series does not converge 
 to the same value of the integral -- the integral test can tell us that a 
 series converges, but not the value to which it converges. In general, 
 the value to which a series converges may be difficult to compute.) 
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 More generally, considering all exponents in the denominator, we 
 can use the integral test to show that any series of the form 

 converges when  (and diverges otherwise). 

 Deriva�on of the Integral Test 

 The integral test works because the value of the integral is bounded 
 above by the series, and below by the series excluding the first term. 
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 If the integral converges, then the series excluding the first term 
 must converge, and adding a single finite term to the series cannot 
 affect convergence, so the series in full must converge. 

 On the other hand, if the integral diverges, then since the series is 
 greater than the integral, the series must also diverge. 

 Ra�o Test 

 Another powerful test for proving convergence is the  ra�o test  , 
 which does not require any integra�on and thus can handle 
 hard-to-integrate series. 

 The ra�o test says that if the ra�o of terms in a series has a limit  , 
 then the series is almost like a geometric series with ra�o  -- it 
 converges if  , and diverges if  . The only catch  is that if 

 , then we can’t tell whether the series converges  or diverges 
 (whereas a geometric series with  must diverge). 

 For example, consider the following series: 

 The n  th  term of this series is given by  , and the  ra�o of the terms 
 has a limit of  , so the ra�o test tells us that  the series converges. 
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 On the other hand, the n  th  term of the series 

 is given by  , and the ra�o of the terms has a limit  that 
 diverges to  , so the ra�o test tells us that the  series diverges. 

 Root Test 

 Yet another test for convergence, called the  root  test  , says that if 
 the n  th  root of the n  th  term of the series has a limit  , then it is (once 
 again) almost like a geometric series with ra�o  -- it converges if 
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 , and diverges if  . The only catch (once again) is that if 
 , then we can’t tell whether the series converges  or diverges. 

 For example, consider the following series: 

 The n  th  term of this series is given by  , and the  n  th  root of 

 the n  th  term has a limit of  , so the root test tells  us that the series 
 converges. 

 On the other hand, the n  th  term of the series 

 is given by  , and the n  th  root of the n  th  term has  a limit that 
 diverges to infinity, so the root test tells us that the series diverges. 
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 Limit Comparison Test 

 Lastly, the  limit comparison  test tells us that for  any series 
 , if we create another series 

 such that  for some posi�ve constant  , then either 
 both series converge or both series diverge. 

 The limit comparison test can simplify the process of finding 
 convergence for complicated series -- for example, given a series 

 with terms  , we can construct a new series with terms 
 whose ra�o with the original series has a limit of  . 

 Since the series with terms  diverges, the original  series with terms 

 must diverge as well. 
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 Likewise, the series with terms  can be compared to the 

 series with terms  . 

 We know the series with terms  converges, so the  original series 

 with terms  must converge as well. 

 Exercises 

 Tell whether each series converges or diverges. 
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 4.3 Taylor Series 

 The sum formula for a geometric series is an example represen�ng a 
 non-polynomial func�on as an infinite polynomial within a par�cular 
 range of inputs. 

 Many other non-polynomial func�ons can be represented by infinite 
 polynomials called  Taylor series  . The general formula  for the Taylor 
 series of a func�on  , centered about a point  ,  is 

 . 

 Just like for the geometric series sum formula, the Taylor series can 
 only be used when it converges. The ra�o test is par�cularly useful 
 for finding the x-values for which the series converges. 

 For the sake of example, we will compute the Taylor series of several 
 familiar func�ons:  ,  , and  . To introduce some  variety, 
 we will center each series at a different x-value. 
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 Taylor Series of the Exponen�al Func�on 

 For  , we have  ,  , and in general 

 for all values of  . The Taylor series of 
 centered at  is then given by 

 . 

 Applying the ra�o test, we see that the series converges when 

 . 

 Thus, the series converges for all values of  . 
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 Taylor Series of Sine 

 For  , we have  ,  , 

 ,  , and in general 

 and  . 

 The Taylor series of  centered at  is then given 
 by 

 . 
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 Applying the ra�o test, we see that the series converges when 

 . 

 Thus, the series converges for all values of  . 

 Taylor Series of Natural Log 

 For  , we have  ,  ,  , 

 and in general  for  . 

 The Taylor series of  centered at  is then given  by 
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 . 

 Applying the ra�o test, we see that the series converges when 

 . 

 Thus, the series converges for  . 

 Deriva�on 

 To see where the formula for the Taylor series comes from, we start 

 by performing repeated integra�on on the func�on  . 
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 Solving for  , we find 

 . 

 Taking the limit as  , we can express  as the sum  of its 
 Taylor series and some remainder term. 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20f(x)%20%3D%20f(c)%20%2B%20f%27(c)(x-c)%20%2B%20%5Cfrac%7Bf%27%27(c)%7D%7B2%7D(x-c)%5E2%20%2B%20%5Ccdots%20%2B%20%5Cfrac%7Bf%5E%7B(n)%7D(c)%7D%7Bn!%7D%20(x-c)%5En%20%2B%20%5Cunderbrace%7B%5Cint%5Climits_c%5Ex%20%5Ccdots%20%20%5Cint%5Climits_c%5Ex%7D_%7B%5Ctext%7Bn%2B1%20integrals%7D%20%7D%20f%5E%7B(n%2B1)%7D(x)%20%5C%2C%20(dx)%5E%7Bn%2B1%7D%20%5Cend%7Balign*%7D%0
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 For many familiar func�ons, with  sufficiently close  to  , it is o�en 
 the case that the remainder decays to zero: 

 For example, the remainder decays to zero if  is  any polynomial, 
 because differen�a�ng an n  th  degree polynomial  �mes always 
 yields a result of  , and the integral of  is always  . (But this is 
 rather trivial since the Taylor series of a polynomial is the 
 polynomial itself.) 

 More generally, we can place an upper bound on the size of the n  th 

 remainder: 
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 Then, since 

 we must have that 

 . 

 Provided that the (n+1)  st  deriva�ve doesn’t grow  large enough to 
 overpower the  term in the denominator as  , the 
 remainder will decay to zero. Then the func�on will be equal to its 
 Taylor series, provided that the series converges. 
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 Exercises 

 Compute the Taylor series for the following func�ons, centered at 
 the given points. Also compute the interval of convergence. 
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 4.4 Manipula�ng Taylor Series 

 To find the Taylor series of complicated func�ons, it’s o�en easiest 
 to manipulate the Taylor series of simpler func�ons, such as those 
 given below. 



 222  Jus�n Math |  Calculus 

 Mul�plying by a Constant 

 For example, to compute the Taylor series of  centered  at  , 

 we can take the elementary Taylor series  and 
 mul�ply it by  . 

 Though not strictly necessary, we can make the exponent on the 
 match the index of summa�on by changing the index of summa�on 
 to  . 

 In this case, since we are mul�plying the series by a constant, the 
 interval of convergence of the series will stay the same: 

 . 

 This is because a convergent series has a finite sum, and mul�plying 
 by a constant cannot cause a finite number to become infinite; 
 whereas a divergent series has an infinite sum, and mul�plying by a 
 constant cannot cause an infinite number to become finite. 

https://www.codecogs.com/eqnedit.php?latex=x%0
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 Mul�plying Two Series 

 Similarly, to compute the Taylor series of  around  , we can 

 mul�ply the two elementary Taylor series  and 

 . 

 Defining a new index of summa�on  , we can write  the 
 series in order of increasing powers of  . 

 The interval of convergence of a product of series is  at least  the 
 intersec�on of the series’ individual intervals of convergence. 

 Here, recalling that the interval of convergence of the Taylor series 
 of  is  and the interval of convergence of the Taylor 
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 series of  is  , we determine that the interval of 

 convergence for the Taylor series of  must be at  least the 
 intersec�on  . 

 If we go through the trouble of performing a test of convergence, 
 it’s possible that we might find a larger interval of convergence -- 
 but just based on the intervals of convergence of the two series 
 being mul�plied, we can say with certainty that the product 
 converges for  at least  , without needing to perform  any 
 tests of convergence. 

 Adding Two Series 

 Some�mes, we can take advantage of the fact that it’s easier to add 
 or subtract series than to mul�ply series. 

 For example, to find the Taylor series of  around  , 
 one op�on is to mul�ply the Taylor series of  and  . 

 However, an easier route is to simplify the expression to  , 
 and then subtract the Taylor series of  from the  Taylor series of 

 . To compute the Taylor series of  , we can subs�tute  for 
 in the Taylor series of  . 
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 Then, we can proceed with subtrac�ng the Taylor series. 

 Again, the interval of convergence of a sum or difference of series is 
 at least  the intersec�on of the series’ individual  intervals of 
 convergence. 

 The series for  converges for  , so the series for 
 converges for  , which simplifies to 

 . The intersec�on is given by 
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 , so the interval of convergence 
 of the series for  is  at least  . 

 Note that this interval contains all real numbers, so the interval can’t 
 get any bigger. Thus, the interval of convergence of the series for 

 is  . 

 Using Differen�a�on and Integra�on 

 We can also use differen�a�on and integra�on to simplify the 
 process of finding Taylor series. 

 For example, to find the Taylor series of  , one op�on  is to 
 mul�ply the series of  by itself -- but an easier  op�on is to 
 differen�ate to yield a simpler result, then find the Taylor series of 
 the simpler result, and then integrate the Taylor series to get back to 
 the original func�on. 
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 To solve for the constant of integra�on, we can subs�tute  . 

 Thus, we have 

 . 
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 Though not strictly necessary, we can clean up the series a bit by 
 changing the index of summa�on to  . 

 Neither differen�a�ng nor integra�ng a Taylor series changes its 
 interval of convergence, so the interval of convergence of the series 
 for  is the same as the interval of convergence of  the series for 

 , which is  . 

 Subs�tu�on 

 In the previous examples, we computed the series for  and 
 by subs�tu�ng  for  in the series for  and  . We can 

 extend this idea to more clever subs�tu�ons. 

 For example, to compute the series of the func�on  , we can 

 subs�tute  for  in the elementary series  . 
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 A�er subs�tu�on, the interval of convergence becomes 

 , which simplifies to  . 

 Exercises 

 Compute the Taylor series for the following func�ons, centered at 
 . 
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 4.5 Solving Differen�al Equa�ons 
 with Taylor Series 

 Many differen�al equa�ons don’t have solu�ons that can be 
 expressed in terms of finite combina�ons of familiar func�ons. 
 However, we can o�en solve for the Taylor series of the solu�on. 

 Demonstra�on 

 For example, to solve the differen�al equa�on 

 we can subs�tute the Taylor series  and 

 and solve for the coefficients  . 

 Differen�a�ng, we have  and 

 . Subs�tu�ng the deriva�ves in the 
 differen�al equa�on, re-indexing so that all exponents are  , 
 expressing all sums with the same star�ng index, and combining 
 terms under a single sum, we condense the expression into a single 
 polynomial. 

https://www.codecogs.com/eqnedit.php?latex=a_n%0
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 For the expression to evaluate to  , we must have  and 

 for  . So, we can 
 choose  and  to be our constants  and  , set 

 , and express all other coefficients  for  in terms  of 
 the constants  and  through a recurrence: 

https://www.codecogs.com/eqnedit.php?latex=a_0%0
https://www.codecogs.com/eqnedit.php?latex=a_1%0
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 Thus, our solu�on is given by  where  , 

 ,  , and 

 . 

 As another example, we will solve the differen�al equa�on 
 using the same process. We write the solu�on as  the 

 Taylor series  , subs�tute its deriva�ves into the 
 equa�on, and simplify. 
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 We can choose  ,  , and  as our constants 
 and express all other coefficients  for  in terms  of these 
 constants through a recurrence: 

 Thus, our solu�on is given by  where  , 
 ,  , and 

 . 

 Exercises 

 Use Taylor series to solve the following differen�al equa�ons. 
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 Solu�ons 
 to Exercises 
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