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1.1 Evaluating Limits

The limit of a function f(ﬂU), as x approaches some value a, is the

value we would expect for f(a) if we saw only the portion of the
graph around (but not including) « = a. If the resulting value is L,
then we denote the limit as follows:

lim f(z) =L

r—a

Limit vs Function Value

. _ .2 . .
For example, for the function flz) == ,the limitas x — 2 is the
same as the actual value of the function, which is 4.
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On the other hand, for the function

2 if z #£ 2

F@ =01 ire—2

the limit as z — 2 is not the same as the actual value of the
function: the limit is 4, while the actual value of the function is

f2)=1,

Remember, the limit is the value we would expect if we only saw the
surrounding parts of the graph -- and in this graph, the surrounding
y-values get closer and closer to 4 as the x-value gets closer and
closer to 2.

Based on this, we expect that the y-value is 4, so we say the limit is
4, even though our expectation here is incorrect. The limit is still 4,

and it is different from the actual function value f(2) =1
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Continuity

Most of the functions we’re familiar with from algebra are

continuous, meaning that the actual output value f(a) is the same
as the limitas * — a.

However, for discontinuous functions such as some piecewise
functions and rational functions, the limit as £ — a might be

different from the actual output value fla),

If a function can be drawn in a single stroke, then it is continuous,
and the limits are the same as the function values. However, if you
need to pick up your pen at some point while drawing the function,
then the function is discontinuous, and some limits might be
different from the actual function values.

Existence of Limits

Sometimes, limits don’t even exist. For example, for the function

—x—3 ifa<-1
f($)_{x+4 ifz>-—1

the limit comes out to different values, depending on whether we
approach z — —1 from the left (denoted = — —17) or the right
(denoted x — —17T).
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e Coming from the left, we are on the piece f(z) = -z — 3, so
the limitis —(—1) =3 =—

e Coming from the right, we are on the piece flz) =2+ 4, o)
the limitis —1 +4 = 3.

In general, a limit exists when its left and right limits are equal, and
does not exist if its left and right limits are not equal.

_ 1
For example, for the function flx) = 22, we have x%O flz) =
li li =
because a:i%l_ flw) = and mgg+ fw) =

On the other hand, for the function fz) = % we have that

I
xg% f(z) does not exist because x%O— m fl@) =

while
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Y

lim & =ocof i lim 4 = o0 i
IS N B i

r—0~

Limits at Infinity

One exception to the rule that left and right limits must be equal is
limits at infinity, i.e. limits with z — o0 or * — —o0. In this case, it
doesn’t make sense to talk about a limit in more than one direction,
because we can’t choose numbers greater than oo, and we can’t
choose numbers more negative than —oo. As a consequence, limits
with © — o0 are just taken as left limits (x — oco™), and limits with
x — —00 are just taken as right limits (z — —oo™).

Limits at infinity can be thought of in terms of end behavior and
horizontal asymptotes. For example, the polynomial

p(z) = —2® + 2% + 5 has end behavior P(Z) = —0C as 1 — 00,
and P(T) = 00 a5 7 — —o0. Its limits at infinity are then
lim p(z) = —oc0 lim p(z) =00

T—00 , and z——c
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lim p(z) = o0
z——00

lim p(z) = —o0
T—00

On the other hand, the end behavior of the rational function

r(r) = =22 . . _
z+1 consists of a horizontal asymptote ¥ = —2. As a result,
r(x) = -2 lim r(x) = -2

T o lim
its limits at infinity are 2—oo ,and z——co

IlgrolC r(z) = -2

The exponential function f(x) = 2% + 3 has mixed end behavior: it
blows up to infinity as x — oo, and settles down towards an
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asymptote ¥ = 3 as x — —00. Consequently, its limits at infinity

are a:lg,glo flz) = OO, and Igr_noof(x) - 3.

2, (7 =00

Indeterminate Form

Some limits like the one below can be difficult to think about
graphically, because the function itself is difficult to graph.

o V1it+z—1
111’1’17
z—0 xT

At first sight, it’s not clear how the function behaves as =
approaches 0. We can’t evaluate the function at = 0 because it is
undefined there, and it’s not easy to see what happensas = — 0
or x — 0, since both the numerator and denominator go to 0.
(Therefore, we say that the limit is indeterminate in its current
form.)
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Thankfully, algebraic tricks can often be used to simplify difficult
limits into easier limits. In this case, if we multiply the numerator
and denominator by the conjugate of the numerator, then we can
simplify the limit to a point where we are able to evaluate the
functionat x = 0.

V14 x-1 V1t —1 J1+zxz+1
lim ——— = lim .
2—0 x z—0 x vVi+zxz+1
. (1+2z)—1
= lim
x—>0$(\/1—|—3;‘—|—1)

T
I
rg%x(\/l—l—m—l—l)

T VIH0+1
1

2

Similarly, to solve indeterminate limits where the numerator and
denominator are both polynomials, we can often simplify the limit
by factoring and canceling common factors:

2 _ _ _
lim &% 6 _ lim (x+2)(z —3)
z—=—2 x+2 z——2 x+2
= lim z—3
r——2
=-2-3

=5
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Estimating Limits Numerically

Another trick for evaluating limits is thinking about them
numerically. We can try substituting a number for = that is close to
the intended limit in each direction, and doesn’t make computations
too hard.

For example, to evaluate the limit

. 2 —r—6
lim ———
T——2 xr+ 2

numerically, we can approximate the left and right limits by
substituting x = —2.001 and = = —1.999, respectively.

22 —x—6 _ (—2.001)% —(—2.001) — 6

i o~ — —5.001
o S —2.001 + 2
2 . _ 2 (_ _
o @@= 6 (21.999)7— (<1.999) =6 _ o
e T g2 ~1.099 1 2

Both the left and right limits are approximately —5, so we would
estimate the limit to be —5. Indeed, this matches the result we
found earlier.

Likewise, to evaluate the limit

V1t —1
hmi

z—0 T
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numerically, we can approximate the left and right limits numerically
by substituting x = —0.001 and =z = 0.001, respectively.

JITz-1 /IF(=0001) 1
fim YitT o1 VI ) =1 . 0.5001

20— x - —0.001
itz —-1 V1+0001-1
lim ~ ~ 0.4999
o0t x 0.001

Both the left and right limits are approximately 0.5, so we would
estimate the limit to be 0.5. Indeed, this matches the result we
found earlier.

Caveat to Numerical Evaluation

One caveat to numerical evaluation is that it always results in
decimal approximations, and if the actual limit value is irrational, it
can be difficult to find the exact value of the limit.

In a simple case, we might be able to recognize that an

approximation of 1.4142 actually corresponds to the value V2.
However, in a trickier case, we might not be able to recognize that

2
an approximation of 1.1547 actually corresponds to the value v3.
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Exercises

Evaluate the indicated limits. If the limit does not exist, list the left
and right limits separately (if applicable).

1) f(:li):%x—l—l 2) J;'(x)fZ(fi)xi—i-x—él
x1_1>IE6f(1') =_ z—2 - —

24z ifzr<-=3

3) f(x):{x+9 if x> —3

22—1 ifz>2

4 —
) f@) 20 +1 ifx<?2
lim f(a) =
r—2
»w4+x ifx>5
5 —
) J@) 20 —3 ifzx <5
lim f(x) =
z—0
6) f(x) l+sinz ifx>7F
€T g
CcosST if:pgg
lim f(z) = __
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11)

13)

15)

17)
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sinz ifx>-—7
flw) = {COS (z+3%) ifz<—m
Jim f(z) = __
N e
il_% fl@)=__
1 -3
1@ = =57 10) @) = 5
lim f(z) = __ Jm, fl@) =
1
f(z) = |tanz| 12)  fla)= sin x
mhi% flz)=__ lir% (x)=__
L yf 0
O — 14) f<x>={f o
lim f(z) = __ lim f(z) = __
x
f@) = 5o 16)  f(z)=4"""
lim f(z)= o0 F () = —
‘ 2x
f(x) =3+ 2sinzx 18)  f(x) = N
lim f(z)=__ lim f(z)=__
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19)

21)

23)

25)

27)

29)

f(z) =logyx
Jim f(z) = _

243z 42
o - 21
xli}r—llf(x):_

2 _
flaoy =
lim f(z) =

3 2
oy = £ e
lim f(z) = __

V3+2z -3
fl@) = —"—
lim f(z) = __

V=13
="

lim f(z)=__

r——2

20)

24)

26)

28)

23
logs
f(w)z—logﬂ
222 — 13z + 15
flay ==
;ig%f(w)=

2 _

f@) = =5
iiggf(w)z_

4 — 2
f(x)_x2—4§+4
lim f(z) = _

r—2

VA+ 322 -2
f(x)_ +332
iigg)f(x)z_
f(m):\/x—;21+1
;igbf(w)Z
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1.2 Limits by Logarithms, Squeeze Theorem,
and Euler’s Constant

A useful property of limits is that they can be brought inside
continuous functions, i.e. the limit of a continuous function is the
function of the limit.

For example, \/5 is a continuous function, so to take the limit of the
square root of some expression, we can first find the limit of the
expression and then take the square root.

lim 2z \/lim 2z —\/5
xr

T—+00 a:—|—1: —>oox+1_

We can do the same thing with other continuous functions, such as
Inzx.

lim [ln(m2 —z—2) —1In(z* — 3z + 2)]

r—21
. 22 —x—2
= limn{ ———
r—2+ $2—3$+2
. 2 —x—2
=In{( lim —————
m—>2+$2—3$+2

B . (2=2)(z+1)
=l (Jféﬂ (z—2)(z — 1))

. r+1
=In{ lim
z—2+ 1 — 1
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Exponential Limits

Logarithms in particular are useful for evaluating exponential limits,
which have variables in both the limit and the base.

For example, to evaluate the limit

lim z™®
z—0T

it is easiest to start by evaluating the logarithm of the limit.

In ( lim a:lnm>
z—0Tt

= lim In <xlnx)

z—07t

= lim (Inz)lnx
xz—07F

= lim (Inz)?
i, (n)

2
= < lim ln:ﬂ)
z—0t
— (~00)?

=00

Since we know the logarithm of the limit is oo, the limit is just e
raised to the power of co.

lim 2% = ™ = o0
z—0+
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Using the same process, we can show that

lim (@) — ¢= —
z—0t

because this time, the logarithm of the limit evaluates to —oc.

In ( lim a:(ln‘r)2>
z—0t

= lim In <x(lnx)2)

x—07t
= lim (Inz)?Inz
z—0t

= lim (Inz)3
A )

3
= < lim lnx>
z—07F
= (—o0)?

= —

Squeeze Theorem

Another useful trick for evaluating difficult limits is squeezing them
between limits that are easier to evaluate.

For example, to evaluate the limit

sin x

lim
Tr—r00 r
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we can make use of the fact that sin x is bounded between —1 and
1. Then as £ — oo we have the following:

—1< sinx <1

-1 sinx 1

T T T
.o —1 . sinx o1
lim — < lim < lim —
r—o0 I T—r 00 X T—00 I

. sinx
0 < lim <0
r—o0 I

The inequality states that the limit must be between 0 and 0, and
the only number that is between 0 and 0 is 0 itself, so by the
squeeze theorem, the limit must evaluate to 0.

sinx

=0

lim
Tr—r00 €T

In other words, the limit must be 0 because we squeezed it between
two other limits, both of which evaluate to 0.

f\‘um
sinxz \ |77
el

= T
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As another example, we can show that

o ()
limzxcos|— ) =
x—0 xT

by performing a squeeze between the bounds of cos:

1
lim z(—1) < lim x cos (—) < lim z(1)

r—0— x—0 x x—0

1
0 < lim x cos (—)
x—0 x

IN

0

Euler’s Constant

Lastly, Euler’s constant e can be expressed as the following limit:

1 n
e = lim (1 + —)
n—00 n

It also holds as n — —oc:

1 n
e= lim (1 + —)
n——oo n

_ 1 -
Substituting € = =, we can also express the limit as

e = lim (1—!—:1:)%

z—0
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Knowing the above limit forms of Euler’s constant allows us to
compute limits that are in a similar form. For example, to compute

the limit
' 92 3n
lim (14 —
n—oo n

2 1
we can make a substitution that results in » = ». Then n = 2u, and
n — oo translates to © — o0, and the limit becomes computable
in terms of Euler’s constant:

2 3n
lim <1 + —)
n—oo n

1 uq 6

= lim {(1—#—) ]
U—»00 u

u1 6
1

= | lim <1+—> ]
U—00 u

266

Similarly, to compute the limit

8] |

lim (1 — 3x)

x—0
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we can make a substitution that results in —3x = u. Then

—_1 .
L= 73U and x — 0 translates to « — 0, and the limit becomes

computable in terms of Euler’s constant:

8 |

lim (1 — 3x)
z—0

5
= lim (1 + u)*%“

u—0

15
=lim (14+u)

u—0
:| —15

—-15

g =

= lim [(1 + u)

u—0

= [tim 1 +¥]

15

Exercises

Evaluate the following limits using logarithms.

1) lim z(n)’ 2) lim x(n®)
z—07F z—0+t
3) lim zme 4)  lim m(lnlzﬂ
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Evaluate the following limits using the squeeze theorem.

. sinz +cosx . 1
5 fm —— o 6 Jim, Vwcos (1 - )
3 si 1
7)  lim ST ST 8) lim (Inz)sin [ —
z—00 /372 — 1 z—1+ Inz
4x + 3cosx . 2x+4xsinx
i _— 10 lim ————
2 IEIPOO 2x +1 ) amr00 Vs —4
Evaluate the following limits using Euler’s constant.
1 4n 9 =
11 li 14+ — i -
(14 3,) )i (1457

5 —2n T\ <
13)  lim (1+—> 1) lim (1+2)°

n—»—oo 3n z—0
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1.3 Derivatives and the Difference Quotient

The derivative of a function is the function’s slope at a particular

point. We can approximate the derivative at a point (z, f()) by
choosing another nearby point on the function, and computing the
slope. If we increase the input x by a small amount Ax, then we
reach an x-coordinate of * + Az, and the corresponding point on

the function is (z + Az, f(z + Ax)).

(z + Az, f(z + Ax))
A= e
(x.f(z))
xr
Az

We compute the slope between the points (z, f(7)) and
(z + Az, f(z + Ax)), and simplify.

_ fla+A0)— f()
r+Ar—=x
f(z+ Az) — f(z)
Az




34 Justin Math | Calculus

The above expression is called the difference quotient of the
function /. As the point (z + Az, f(z + Az)) gets closer and
closer to the point (z, f(x))’ the difference quotient becomes a

better and better approximation for the exact slope at (z, f(z)).

Thus, we can compute derivative, which is the exact slope at

(z, f(i’)), by taking the limit as the second point approaches the
first point. In other words, the derivative is the limit of the
difference quotient as the difference Ax between the two input
x-values approaches 0.

d . flz+Az) — f(x)

il -1
dx (@) Aigo Az

The derivative of the function f at the point (z, f(%)) is indicated
d
by the notation @f(x) However, to simplify notation, we often

d
write the derivative as fl(x) instead of %f(:c)_
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Demonstration

As an example, we’ll use the difference quotient show that the
derivative of f(z) = 2 is ['(z) = 2z

b (r + Az)? — 22
fw) = i %,
2 2,2
— fim © + (2Az)z + (Ax)* —x
Az—0 Az
2
— lim (2Az)z + (Ax)
Az—0 Az
= lim 2z + Ax
Azxz—0
=2x+0
=2z

This means that the slope of f(z) = a? at any point (z, f(2)) is
given by fl(z) =2z,

In particular, the slope at x = —3 is given by f[(=3) = —6, the

slope at = = 0 is given by f(0)= 0, and the slope at = = 3 is given
by f'(3)=6.

Looking at the graph, these values make sense:

e At x = —3, the graph is falling down at a steep angle, which

matches the negative derivative f(=3)=-6,
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e At z = 0, the graph is flat at the bottom of a valley, which
matches the derivative .f'(0) = 0.

e At z = 3, the graph is climbing up at a steep angle, which
matches the positive derivative f'(3)=6.

The values for the derivative also make sense numerically:

e If we start at the point (—3,9) and pick another point
(—2.999, 8.994001) on the function f(z) = 552, the slope

8.994001-9 _ _
between the two points is —2.999—(-3) 5'999, which
approximates our derivative value f'(=3) =6,

o If we start at the point (0,0) and pick another point

(0.001, 0.000001) on the function f(z) = xg, the slope

. 0.000001=0 _ (001 _
between the two pointsis ~0.001—0 — “- , Which
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approximates our derivative value f(0)=0,

e If we start at the point (3,9) and pick another point

(3.001,9.006001) on the function f(z) = 1'2, the slope

. . 9.006001—-9 __ 6.001 .
between the two pointsis ~3.001—3 — - , Which

approximates our derivative value f'(3)=6.

Exercises

Use the difference quotient to differentiate the following
functions.

1) f(z)=5a 2) f(z)=-3x+1
3) f(z) =2 1) flz)=T2"

5) fla)=2"-ua 6) flz)=2a?

) f(2) =23 8) f(a) =3z
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1.4 Power Rule

It can be a pain to evaluate the difference quotient every time we
want to take the derivative of a function. Luckily, there are some
patterns in derivatives that allow us to compute derivatives without
having to go through all the steps of computing the limit of the
difference quotient.

One such pattern is the power rule, which tells us that the derivative
of a function f (%) = xn, where n is some constant number, is

. / _ n—1
given by f'(x) =na"" several examples are shown below.

() = 5t () = (2} =12 =1 (x73) = 3274

Further Applications

We can also use the power rule to differentiate constants and radical
expressions.
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When a term is multiplied by some constant number, we can move
the number outside of the derivative, i.e. we can take the derivative
of the term and multiply it by that number.

\/_
(197 =4 (¥77) =4 (30) - ¥

In general, for any number c, we have

(ca™) = c(z") = cna:"_l'

When we have a sum or difference of terms, we can apply the
power rule to each term individually.
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Derivation

To see why the power rule works, we can compute the derivative for
x™ using the difference quotient.

n (x+ Ax)" — 2"
= A
~ tim (x+ Ax)(z+ Az)--- (x + Az) — 2"
Az—0 Ax
~ m 2" + na"" ' Az + [other terms of at least (Az)?] — 2™
Az—0 Az
. nz" 'Az + [other terms of at least (Az)?]
~ lim nz" 1Az + (Az)%(other terms)
Az—0 Az
= Aligo [nz"~! + (Az)(other terms)]
= na™"! 4 (0)(other terms)
=nz""' 40
= nz"!
Exercises

Use the power rule to differentiate the following functions.
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5) flz)= = +3

7 fla)= -3V

9)  fz)=a2+3aV3

10)  f(z) = % +n2® — mx=

8)

Justin Math | Calculus

f(@) = a7 — o2

f(a:) = 2231 ¢ %x102
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1.5 Chain Rule

The chain rule tells us how to take derivatives of compositions of
functions. Informally, it says that we can “forget” about the inside of
a function when we take the derivative, as long as we multiply by
the derivative of the inside afterwards.

. . 2 100
For example, to differentiate (2 +1) , we can use the power

rule, as long as we multiply by the derivative of the inside (1’2 +1)
afterwards.

[(2? + 1)1 = 100(2? + 1)*(2® + 1)’
= 100(z” + 1)*(2x)
= 200z(z% 4 1)%

Substitution

More precisely, the chain rule states that we can make a substitution
u for an expression of x, as long as we multiply by the derivative of
the substitution afterwards.

df _ df du
dr  dudz

To differentiate the function /(%) = (1’2 + 1)100, we substituted

u = 22 + 1 to simplify the function to flu) =u'"
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df 99 du df df du
— =100 — =2 — ==
du “ dx . der dudz
=100(2* + 1)% = 100(z% 4+ 1) (2z)

= 200z (x? +1)%

Intuitively, the chain rule says that we can cancel derivatives just like
we cancel fractions.

df  df du

dr ~ duw dr

We can extend this to an unlimited number of substitutions,
building a “chain” of cancellations.

df _ df ~durdy e

dr — —dur—dug—drs  —dat— dr

For example, to differentiate the function
f@) = (((z° + D"+ 1)° + 1) we can proceed one layer at a
time.

!/

(2" + 1) + 1) +1)°]

=6(((®+Dr+1)°4+1)°
(@ + 1)t +1)° 1]
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=6(((z° +1)" +1)° +1)°
523+ D)4+ 1)*

Exercises

Use the chain rule to find the derivatives of the following
functions.

1) f(a)= (22" +1)° 2)  flz)=(z* —2?)°*
3) flx)=va2?2+1 4)  f(x)=+/(2x+1)2+3

5 f() = 5 6) J(x) = gelee
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Fla) = s

flz) = (Vz+1)°

Justin Math | Calculus
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1.6 Properties of Derivatives

We know that when differentiating polynomials, we can
differentiate each term individually. But why are we able to do this?
Does multiplication work the same way? What about division? We
answer these questions in this chapter.

Sum Rule

First of all, we are able to differentiate each term in a polynomial
individually, because in general, derivatives can be separated over
addition. The derivative of a sum, is the sum of derivatives of
individual terms.

To see why this is true, we can look at what happens in the
difference quotient when we take the derivative of the sum of two
functions. We are able to rearrange the difference quotient into the
sum of difference quotients of the two functions, which shows that
the derivative of the sum is just the sum of the derivatives.

flz+Az) +g(z+A) = (f(z) +9())

Az—0 Az

o f@t A — f(2) + 9o+ A) — g(o)
Az—0 Az

o L@ A= f@) L gla+ A) —gla)
Az—0 Az Az—0 Ax
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Constant Multiple Rule

Another useful property of derivatives is that constants can be
moved outside the derivative.

(223) = 2(23) = 2(32?) = 622

Combining this with the power rule, we can differentiate entire
polynomial expressions.

3z + 2% — 20 + 1) = (321 + (2?) + (—22)" + (1)
=3(z") + (%) = 2(=)' + (1)
= 3(42®) 4 (22) — 2(1) + 0
= 1223 + 22 — 2

To see why we can move constants outside the derivative, we can
inspect what happens in the difference quotient when we take the
derivative of a function multiplied by a constant. The constant
factors out, and we can write the result as the product of the
constant and the derivative.

I =8m ™ a
o J@+ Be) — f(@)

Ax—0 Az
L [+ A2) — f(@)

Az—0 Ax
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Product Rule

Taking the derivative of a product, perhaps surprisingly, results in a
sum. For each term that is multiplied in the product, a copy of the
product is added in the sum, with the particular term replaced by its
derivative.

(322 + 2)(z + 3)%(2z + 1))

= (322 +2)(z +3)?(2z 4+ 1)°
+ (322 +2) [(z +3)%] (2 + 1)°
+ (322 +2)(x +3)2 [(22 + 1)°]

= (62)(z +3)%(2z + 1)°
+ (322 +2) [2(z + 3)] (22 + 1)°
+ (32% + 2)(x + 3)% [10(2z + 1)*]

6x(z+3)(2z +1)
=(+3)2z+ 1)* [+(322 +2)(2)(2z + 1)
+(32% 4 2)(x + 3)(10)

= (z + 3)(2z + 1)*(5423 + 13822 + 46x + 64)

To see why this works, we can look at what happens in the
difference quotient when we take the derivative of the product of
two functions. We are able to rearrange the difference quotient into
the sum of the difference quotients of the two functions, with each
difference quotient multiplied by the other function. This shows that
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the derivative of the product is a sum of copies of the product, each
with one particular term replaced by its derivative.

f(z+ Ax)g(z + Az) — f(x)g(x)

Az—0 Ax
— lim flz+ Az) [g(z + Az) — g(x)] + g(z) [f(z + Az) — f(z)]
Az—0 Az
_ i f(o+ A EADZ0@) |y o Sl A0) = flo)

~ fw40) fim SEFAD 9@ oy, St A - [(@)
Az—0 Az - Az—0 Az

= f(2)d'(x) + g(x) f'(x)

= f'(x)g(x) + f(x)g'(2)

Quotient Rule

To take the derivative of a quotient, we can use the product rule in
conjunction with the power rule and chain rule.

(%%)—%ﬂ@mwly
= f'(x)g(x) " + f(x) (g(x) ")
= f'(2)g(z) 7 + f(z) (—g(z)7%d ()
_ @) f@) (@)
g() g@f
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Applying this formula can save us the work of combining fractions
after differentiating.

( a2 ) _ @)@z +1) - (2*)(2z + 1)
21 + 1 (27 +1)2
_(22)(2z + 1) — (22)(2)
(2z 4+ 1)2
_ 2x2 + 2z
(224 1)2

Exercises

Use the properties of derivatives to differentiate the following
functions.

1) flx) = Va(z +2)° 2)  f(z)=(z—3)*(x+1)°
3)  f(z)=2%(x+1)>3

1) f(x) =2z +3)(a? - 5)°Vz

5 S =2t O @)=z
.CCQ X .':53_ X
7) f(x):% 8) f($):T_21
1'3 X 4 CU2 — xr
I U
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1.7 Derivatives of Non-Polynomial Functions

In this chapter, we introduce rules for the derivatives of exponential,
logarithmic, trigonometric, and inverse trigonometric functions.
Although it’s possible to compute each derivative using the
difference quotient, it will take a long time to compute derivatives
during calculus problems if we have to start from scratch with the
difference quotient process every time -- so it’s advantageous to
remember the derivative rules. The derivative rules are to calculus,
what the multiplication table is to arithmetic.

Natural Logarithm

We start with the natural logarithm, which has the derivative

_1
(Inx)" = % To see where this formula comes from, we can start by
writing and simplifying the difference quotient for In x.
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In(x + Az) —lnzx

(Inz) = lim

Axz—0 Az
. 1
= Alxgo Ao (In(z + Az) — Inz)
lim 1 In T+ Ax
= 1 —_—
Az—0 Az T
1 x
= Am R (” 7)
-
Az
= lim In (1 + &>
Axz—0 x

. Az a5 |
=In| lim {1+ —
Axz—0 xT

Does the limit inside the natural log look familiar? Remember that
the constant e can be written as the following limit:

e = lim(1 +u)%

u—0

_ Ax
If we substitute ¥ = 7z and simplify/rearrange, then we can come

up with an expression for the limit inside the natural log. (The limit

Az =0 L
as =z can be thought of as Ax — Oz, which is the same as

Ax —0.)
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1

A Az

e = lim (1 + _x) v
Aa) X

1

m, (157
e = lim —
Az—0 X

) ( Aalt)ﬁ
e = lim —
Az—0 X

Ax

1Az
Ax
ez[lim (1+—> ]
Az—0 €T

1
Az 2e

es = lim <1+—x>
Az—0 xT

Substituting this expression into the natural log, we find that
(Inz) =1

55
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Knowing this, we can use the chain rule to find the derivative of any
natural log function.

(11(1(2562 + x)), -

((lnm)z)l =2(lnx)(Inz) = 2(Inz) <§> _ 2l

General Logarithms

To differentiate a logarithmic function other than the natural
logarithm, we can use the change-of-base formula to rewrite the
logarithmic function in terms of natural logarithms.

For example, to find the derivative of logy T, we can convert it into

Inx
In2 and then take the derivative.

Inz\" 1 1 /1 1
]_ /: _— = — 1 /:— — -
(log, ) (1112) ln2(nx) In2 <x> zln2

In general, performing this procedure on any function of the form

! __ 1
log, = where a is a constant, we find that (log, )" = 773,
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Exponential Functions

Next, we cover exponential functions. The exponential function e*
is very elegant in calculus, because its derivative is simply itself,
(e7) =,

To see why this is, we can start with the equation f(z) = ex, then
take the logarithm and derivative of both sides, and finally solve for

(@),

flz) =e"
Inf(z) =2
(In f(2))" = (z)'
L pay =1
f(x)
f'(x) = f(x)
f(z)=¢"

Now that we know the derivative of €%, we can use the chain rule to
find the derivative of any exponential function.

<6‘T2>I = er(a:Q)/ =" (2x)
(7 = () = (@) - ke

If we want to take the derivative of an exponential function whose
base is not ¢, we can rewrite the exponential function so that its
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base is e, and then differentiate using the chain rule. For example,

since 2 = ¢!*2, we see that

9T _ (eln2>x — 6(ln2):1:

Now that we have a function which has base e, we can use the
chain rule to find the derivative.

(237)/ _ <6(1n2)x), — 6(1112)30 In2

Using the fact that 2% = (2% we can simplify the result a bit to
look like the original function.

2%y =222 = 27102

In general, performing this procedure on any function of the form

a® where a is a constant, we find that (a®) =a"Ina,

Trigonometric Functions

Now, let’s talk about trig functions. Their derivatives are shown
below.
(sinz) = cosx (cosx) = —sinz
2 2

(tanz)" = sec® x (cotz) = —csc?x

(secx) = secztanx (cscx) = —cscxcotx
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To see why the derivative of sine is cosine, consider a section of the
unit circle, where ¥ = sinf _ |f we increase 6 by an infinitesimally
small amount df, the additional arc length df matches the
hypotenuse of a triangle that has a leg 4¥ adjacent to an angle 6. In

cosf = Elz_g = (sin@)"

this triangle, we have

Furthermore, we can use the derivative of sine in conjunction with
T _

the identities COS % = sin (2 a:) and Sinz = cos (% - x) to

compute the derivative of cosine.

cosz = sin (g — .’L’)
(cosz) = [sin (g — :r:)}
=cos(5-2) (5-2)

= cos (g - m) (—1)
= (sinz)(—1)

= —sinx
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The fundamental trig derivatives are (sinz)' = cosx ang
(cosz) = — SINZ; 3| the other trig derivatives come from using

them.

! __
For example, to see that (secx) =secx tanx e express secx as

1
cosz, take the derivative using the chain rule, and simplify.

et = ()

1
= oz )

= o2z ()

T ot (—sinz)
sin x

cos?
1 sinx

COSX COSZT
=secxtanx

Mnemonics

However, it will take a long time to compute derivatives if we have
to start from scratch with the above process every time, so it’s
advantageous to remember the table of trig derivatives.

To make it easier to remember the table, think about three key
trends in the table: functions have buddies, “co” functions turn
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negative, and derivatives of functions other than sin and cos have
two terms.

More precisely, the functions sin and cos are buddies because the
derivative of sin contains cos and the derivative of cos contains
sin. Likewise, sec and tan are buddies because the derivative of
sec contains tan and the derivative of tan contains sec, and csc
and cot are buddies because the derivative of csc contains cot and
the derivative of cot contains csc.

“Co” functions include cos, csc, and cot, and each of their
derivatives has a negative sign, whereas the other functions do not
have a negative sign in their derivatives.

Lastly, if we think of squared terms as two terms being multiplied
together, then sin and cos are the only functions whose derivatives
consist of a single term. For example, the derivative of sec is the
product of two terms sec and tan, and the derivative of tan is sec
which can be interpreted as the product of two terms sec and sec.
On the other hand, the derivative of sin is just a single term, cos.

2

Just as we did for exponential and logarithmic derivatives, we can
use the chain rule to take the derivative of any trig function.

(sin(lnz))’ = cos (Inz) (Inz)" = w

(sec? x)/ = (2secx) (secx) = 2sec? xtanx
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Inverse Trigonometric Functions

Now that we know the derivatives of trig functions, we can use
them to find the derivatives of inverse trig functions, which are
shown below.

1
. /
arcsinz) = ————=
1
(arccosz) = ————n
V1— 22
1
arctan z)’ =
(arctan x) T 22

To see where these derivatives come from, we can proceed in the
same way as earlier when we used the logarithmic function to find
the derivative of the exponential function. We start with the

equation flz) = arcsinac, then take the sin and derivative of both

sides, and finally solve for fl(l').

f(z) = arcsinx
sin f(z) =z
(sin f(z))" = ()’
(cos f(x))f'(z) = 1
, 1
fla) = cos f(x)
1

cos(arcsin )
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To simplify the denominator, we solve for cos 8 in the identity
sin? @ + cos? @ = 1 with § = arcsin z.

sin®6 + cos? 0 = 1
cos?f =1 —sin?0

cosf = +v/1 —sin% 6

We only need to consider the positive root because cos is always

T T
nonnegative on the range of arcsin, which is (_7’ 5}. Substituting
0 = arcsin x, our expression simplifies.

cos (arcsinzx) = \/ 1 — sin? (arcsin z)

cos (arcsinzx) = /1 — a2

Substituting the above identity in the denominator of our derivative
expression, we obtain the final result.

1
cos(arcsin x)
1

V1—22

@) =
) =
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The rest of the inverse trig derivatives can be computed by the same

process. Now, we can use the chain rule to take the derivative of any

inverse trig function.

((arcsin x)2)/ = 2(arcsin x)(arcsin z)

(arctan(e®))’

Exercises

1+ (e7)?

(ez)/ —

e$

1+ e2®

, 2arcsinz

vV1—22

Compute the derivative of each function.

1)

f(x)

f(z)

f(z)

f(x) = arccos (logs )

f(x)

Inx

— 2sin T

=In (cos :U2)

_1+e”
1 —er

2)

f(x) — el+tanx

f(z) = arctan (1)

f(z) = logs (sin 2z)

f(x) = sin?(z) cos®(x)

arcsin x

fz) =

arccosr



Justin Math | Calculus 65

11)  f(z) = arctan < ) 12)  f(x) = arccos(x) arcsin®(z)

1+ e®

61‘

13)  f(z) = )2 14)  f(z)=
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1.8 Finding Local Extrema

Derivatives can be used to find a function’s local extreme values, its
peaks and valleys. At its peaks and valleys, a function’s derivative is
either 0 (a smooth, rounded peak/valley) or undefined (a sharp,
pointy peak/valley).

f'(z) = undefined

\ AN
V

f'(z) = undefined

Critical Points

The points at which a function’s derivative is 0 or undefined, and the
function itself exists, are called critical points of the function. We
can find the critical points by taking the derivative, noting any
singularities, setting the derivative to 0, and solving.
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For example, to find the critical points of the function

f(z) =2V1—2? , we start by taking the derivative and
simplifying.

f(z) =21 —22
22
e e

1—2a?

1 — 22

The derivative has a singularity when the denominator V1 — z2 s
0, which happens at z = £1. The derivative itself is zero when the

. . T = :I:\/I .
numerator 1 — 222 is 0, which happens at 2, The function
is defined at all of these x-values, so they all correspond to critical

— 1
points: z ==L i\/;.

Classifying Critical Points

Now, how do we tell which critical points correspond to maxima
(peaks), and which correspond to minima (valleys)?

It may be tempting to decide whether a critical point is a maximum
or minimum by observing whether the resulting function value is
large or small. However, it is entirely possible that some local
minima may be greater than some local maxima. Think of a
mountain range -- some valleys may be higher than some peaks.


https://www.codecogs.com/eqnedit.php?latex=0%0
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high valley
2
\\lo‘}i

It may also be possible that some critical points are neither peaks
nor valleys, but saddle points on the side of a mountain where the
terrain is flat. At saddle points like the one indicated below, the
derivative is 0 but the point is neither a maximum nor a minimum.

saddle point



https://www.codecogs.com/eqnedit.php?latex=0%0
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First Derivative Test

There are two main methods for determining whether a critical
point is a local minimum, local maximum, or neither. One way is to
inspect the sign of the derivative on either side of the critical point,
which tells whether we are ascending or descending on either side
of the critical point.

o If the derivative is positive to the left of the critical point and
negative to the right of the critical point, then we are ascending
to a peak and then descending down the peak, which tells us
that the critical point is a local maximum.

e Onthe other hand, if the derivative is negative to the left of the
critical point and positive to the right of the critical point, then
we are descending down a valley and then climbing up the
valley, which tells us that the critical point is a local minimum.

e Lastly, if the derivative does not switch sign from the left of the
critical point to the right of the critical point, then we are either
ascending up the whole way or descending down the whole
way, which indicates that the critical point is a saddle point.

This method is called the first derivative test, because it makes use
of the first derivative of the function.
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Demonstration of First Derivative Test

. _— » =41 i\ﬁ
To use the first derivative test on the critical points ’ 2

that we found for the function f(z) = V1 — 22 , we first split up
the number line over the critical points.

8]

[
D=

The number line splits into 5 intervals:
( Hu|( -1 \/T U \/T \/T U \/T 11U(1,00)
OO? ) 2 27 2 27 7OO

However, on the intervals (=00, —1) and (1,0) our function

f(z) = 2V'1 — 2% s not defined because the argument of the
square root becomes negative. We remove these intervals from
consideration.

(ol ()5

We want to know whether our function is increasing or decreasing
on each of these intervals. To find out this information, we choose a
test value in each of the remaining intervals. The actual values of the
test values don’t matter, because the derivative maintains the same
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sign within any given interval. For the sake of example, we choose
our test values as, say, —0.9, 0, and 0.9.

B

—-0.9

o—> 0
o
—>
s

Lastly, we evaluate the sign of the derivative at each of these test
values.

R
o2
ro- 1
(0.9) = 1 —2(0.9)2 —

JI-(092 v+

The sign of the derivative at each particular test value tells us the
sign of the derivative throughout the interval containing the
particular test value. As a result, we know whether the function is
increasing or decreasing on each interval, and we can sketch a rough
graph of the peaks and valleys of the function.
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decreasing inCI‘eaSing decreasing

We see that the function J (%) = V1 — 22 has maxima at

1 1
x:—l\/j - T =—4/3,1
"V 2 and minima at 20,

Second Derivative Test

The other method for classifying a critical point of a function as a
maximum or minimum is called the second derivative test, because
it makes use of the second derivative of the function.

73

If the second derivative is positive at the critical point, then the
function is concave up in the shape of a smile, which means the

critical point is a local minimum.

If the second derivative is negative at the critical point, then
the function is concave down in the shape of a frown, which
means the critical point is a local maximum.

If the second derivative is 0 or undefined at the critical point,
then we cannot conclude whether the critical point is a local
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maximum or minimum, and we need to fall back to the first
derivative test.

The second derivative test is sometimes inconclusive, but it is
mentioned because it is often faster than the first derivative test.

Demonstration of Second Derivative Test

To use the second derivative test on the critical points

— 1
=+l i\/; which we found for the function

f(x) = 2v1 — a2 , we first take the second derivative of the
function. We computed the first derivative earlier, so we just have to
differentiate once more.

1 — 222

!

r) = ———
—zy/T— a2 4 20220 2”“"

(@) = —
_ —4z(1 — 22) 4+ 2(1 — 222)
(1-a22)3
B 223 — 3z
C(1-a?)s

We evaluate the sign of the second derivative at each of the critical
points.
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f”(—l) — ﬁ = % = undefined

H<¢ﬂ\@+%@+

PV =7 ~ 57
(1-3)

f// 1 _\/2_3\/g___
2} -t
2—-3

f”(l) == " — _ — undefined
(1-12 0

Based on the results of the second derivative test, we see that

1 1
T = —4/5. . r=14/5. . .
\/g is @ minimum, and 2 js a maximum. The test is

inconclusive for x = —1 and = 1, so we would need to fall back
to the first derivative test for these cases.

When to Use Each Test

In general, it’s a good idea to use the first derivative test when the
second derivative is more complex than the first derivative, and the
second derivative test when the second derivative is less complex
than the first derivative.
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For example, for polynomial functions, it is usually easiest to use the
second derivative test because the second derivative is less complex
than the first derivative.

p(z) =223 — 322 — 11z + 6
p(z) = 62% — 62— 11
p’(z) =122 -6

We find the critical points by solving for where the first derivative is
zero.

0=6z>—6x—11

x_3i5\/§
=

Then, we find the sign of the second derivative at these points.

p"<3_5‘/§> =12 (M) —-6=2(3-5V3)—6=-10V3<0

6 6
p"<3+65‘/§> =12 (3%*@) —6=2(3+5V3)—6=10V/3>0

S

_ 3-5V3
The critical point © = 6  has a negative second derivative,

which means the function is concave down and thus the critical

point is a maximum. Likewise, the critical point * = ~— 6 hasa

positive second derivative, which means the function is concave up
and thus the critical point is a minimum.
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On the other hand, for the function below, it is easiest to use the
first derivative test because the computations for the second
derivative will get a bit messy when we use the product rule.

fla) = et
f(z) = (21‘ — i) &t

72

We find the critical points by solving for where the first derivative is

zero.
1
0 = <2$ — —2> €x2+1
T
1
0=2x— —
x >
1=223
s/1
2
We choose test points x = —1 and = = 1 on each side of our

critical point, and evaluate the sign of the first derivative at these
points.

—2-1)e' ™ = (=) (+) = -
2—1e!tt = (4)(+) =+

f(=1) =(
f@)=(
The function has a negative derivative to the left of the critical point
and a positive derivative to the right of the critical point, which
means it is descending to the critical point and then ascending from



78 Justin Math | Calculus

3/1
. . . L T=4]5.
the critical point. Therefore, the critical point \/; isa
minimum of the function.

Functions Defined on Closed Intervals

Lastly, when a function is defined on a closed interval, we need to
use the endpoints as critical points as well, because the derivative
isn’t defined there but the function is.

For example, to find the extrema of the function f(z) = x? + 2

with © € [=3, 5], we should also consider z = —3 and z =5 as
critical points, in addition to the point x = —1 which makes the

derivative f' (%) = 2z + 2 equal to zero.

To apply the first derivative test, we choose a test point = = —2 for
the interval [=3: —1) and = = 0 for the interval (—1,5].

f(=2)=2-2)+2=-
f(0)=20)+2=+

The function is decreasing from « = —3 to z = —1, and then
increasing from x = —1 to = = 5. Therefore, the function has a
minimum at x = —1 and maximaat x = —3 and =z = 5.
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"/’

Exercises

For each function, find the critical points and label each critical
point as a local maximum, local minimum, or saddle point.

) flx)=2®—-2zx+1 2)  f(z) =2 4+102® -5
3) f(x)=xzlnzx 4)  f(z) = In(5x — z?)
2 1 2_
5 @)= 6) f() = e
7 flx)=4—2° 8) f(z)=a> — 4a?
z € [-1,2] x € [-3,3]
x? 1+ nz
0 f@)=-"1 10) f@)="1
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1.9 Differentials and Approximation

The chain rule tells us that we can treat the derivative g_J; like a
fraction when multiplying by other derivatives. In this chapter, we
continue the idea of interpreting the derivative as a fraction,
extending it to an even more literal sense.

The main idea of differentials is that we can interpret the derivative
df
dz as an approximation for how the function output changes, when

the function input is changed by a small amount. The terms 4/ and
dz are called differentials, and we can interpret them as small
changes in the function’s output and input.

Demonstration

For example, if we know that f(4) =2 and f'(4) =5 for some
function f(x)' then we can estimate the value of f(4.1) by treating

the differentials as small changes in x and f(x),


https://www.codecogs.com/eqnedit.php?latex=dx%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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df B
% r=4 °
Af N
A_I r=4 ~0
f(4.1) — f(4) ~5
41-4
f(4.1) =2
0.1 e
f(41)—2~05
f(4.1) =25

Estimating Trig Functions and Roots

We can use this method to estimate values of functions that are
difficult to compute, like trig functions and roots.

For example, we know that sin 0 = 0 and that

. / _ _
(sinz) ‘x:O =cos( = 1, so we can estimate the value of sin 0.1

using differentials.

d(sin ) _ A(sinx)
dr |,_, T Az 2=0
cos0 ~ sin0.1 —sin0
0.1-0
1~ sin0.1 —0
0.1

0.1 = sin0.1


https://www.codecogs.com/eqnedit.php?latex=%5Csin%200.1%0
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Our estimation is pretty good -- the actual value of sin0.1 is
0.099833 ...

Similarly, we know that V144 = 12 and that

/ . 1 _ 1
(Vo) [ mias = 2V/144 ~ 24 so we can estimate the value of V' 149
using differentials.

d(vz) ~ AW)
dr  |,_144 Az |,y
1 V149 - V144
o0v144 149 — 144
1 V149-12
24~ 5

)
— ~ V147 - 12
24

5
12— ~ /147

24
12.208 ~ /147

Again, our estimation is pretty good -- the actual value of V147 is
12.206555 ...

Intuition

To understand why we can interpret the differentials as small
changes, remember that the difference quotient is a good
approximation for the derivative, when the difference Az is small.
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§_ o St A~ f@)

dr  Az—0 Az
_ [z +Azx) — f(z)
- Ax

The numerator is really just the change in the values of the function
/', so we can represent it by Af = flz+ Az) — f(z),

df _Af

dr ~ Ax

Graphically, approximating via differentials amounts to

approximating with a tangent line. We start at the point (z, f(if)),
travel Ax units horizontally, and find the y-value that allows us to

maintain a slope of f(z),



https://www.codecogs.com/eqnedit.php?latex=f%0
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Since the tangent line goes through the point (z, f(7)) with slope

f’(x)’ the points (X,Y) on the tangent line are given by the
following linear equation in point-slope form:

Y — fz) = f'(@)(X —x)

Interpreting X = 2 4+ Az and ¥ ~ f(7 + AZ)  we see that this
equation is equivalent to the one we’ve been working with.

Y — f(z) = f(2)(X — )

Y—f(CE)_ /
X 1@
Y — f(x) o
x+A:U—ac_f(x)
Y — f(z) /
T:f(l’)

Az

)
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Exercises

Approximate each value by using differentials and the given
equality. In your computations, use 7 ~ 3.14, e ~ 2.72, and

V3 ~ 1.73, and round to 2 decimal places.

1) (4.8)*~__ 2) Vibx~__
52 =25 V16 = 4
2) Ty
3) VT~ cos | o5 | ~
V8= -2 (%)= L
cos 5) =3
117 o
in| — |~ 6 t — | =
5) s1n<30) o ) an(16> o
<7r) V3 tan (1) =1
sin{—= ) = — 4
2
7)) In3~__ 8) ela
In2.72~1 el ~2.72
9) arcsin047 =~ ___ 10)  arccos0.54 ~ _
arcsin 0.5 = % arccos 0.5 = g
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1.10 LU'Hopital’s Rule

L'Hopital’s rule provides a way to evaluate limits that take the

0 o0
indeterminate forms of 0 or ~o. It says that, for such limits, we can
differentiate the numerator and denominator separately, without
changing the actual value of the limit.

For example, the following limit has indeterminate form.

. Inx 0
lim = —
=11 —2x 0

Therefore, we can apply L'H6pital’s rule to solve it.

Inz . (Inz)
= lim ———
a=>11l—xz a1 (1 —x)
1

= lim %

z—1 —1

1

= lim ——

z—1 X
=-—1

Products in Indeterminate Form

Limits of the form 0 - oo are also indeterminate, but we need to
convert them to an equivalent fraction before applying L'Hopital’s
rule.
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For example, the following limit has indeterminate form of 0 - oc, so
we convert it to an equivalent fraction which has indeterminate

=)
form ~.

Inx —00

lim Vzlnz = lim —— = —
+ + 1

z—0 =0T —= (0.¢]
Jz

1 !
lim (In7)

(L)

1
T

__1
243/2

= lim —2vx

z—0t

=0

= lim
z—0t

We could use other equivalent fractions, too, as long as they are

0
equivalent to the original limit and have indeterminate form of 0 or
x

o .

However, even though L'Hopital’s rule applies to any fraction having
indeterminate form, some fractions are better than others. For
example, if we wrote the previous limit as

. . T
lim v/zlnz = lim 4
z—0t z—0t ne

we would still have indeterminate form and thus be able to apply
L'Hopital’s rule, but we wouldn’t get anywhere with it because the

1
derivative of nz gets more complex. The point of using L'Hopital’s
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rule is to use differentiation to reduce the complexity of the limit,
not increase it.

lim v/zlnz = lim T =5

z—0t z—0t

Combining L'Hopital’s Rule with Other
Methods

Sometimes, we may have to use other methods in conjunction with
L'Hopital’s rule. For example, to solve the limit

1 xT
lim (—)
z—0+t \ T

we can first compute the logarithm of the limit, using L'H6pital’s
rule.
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1\* 1\*
In lim (—) = lim In [(—) }
z—0t \ T z—0+ X

So, we have:

Limits that are Not in Indeterminate Form

One BIG word of caution: L'Hopital’s rule does NOT apply when a
limit does not have indeterminate form. If you try to use L'Hopital’s
rule on a limit that does not have indeterminate form, then it may
lead you to an erroneous result.
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For example, the limit limg o0 %, does not take indeterminate
form since the numerator does not go to zero nor infinity, and we
know using the squeeze theorem that the limit evaluates to 0. But if
we apply L'Hbpital’s rule on this limit, we conclude that the limit
does not exist, which is incorrect since it actually does exist and
evaluates to 0.

. sinx . Ccosx . .
lim = lim (invalid)
r—00 I T—00
= lim cosx (invalid)
T—00

= does not exist  (invalid)

Derivation and Mean Value Theorem

To see why L'Hopital’s rule works, we can start off noticing that the
limit
f@) 0

lim 22 = —
eag(z) 0

implies that f(a) =0 and 9(a) =0 Thisis obvious, but it’s very
important to notice, because it lets us express the above limit as the
ratio of difference quotients.


https://www.codecogs.com/eqnedit.php?latex=0%0
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lim —= =

f) _ . flatA)
z—a g(x)  Az—0 g(a+ Azx)
( )
( )

Climagso 7

limaz—0 =R,
0
9'(a)

This is pretty close to the full statement of L'Hopital’s rule, but it is a

bit more limited because it assumes that g'(a) is nonzero -- it
I'(z)

... lim % .
assumes that the limit z—a 9'(%) can be evaluated through direct
f'(a)

substitution, to yield ¢'(a) . But we have broken these assumptions
in some examples, where we applied L'Hopital’s rule multiple times
in a row -- in these examples, the limit still couldn’t be evaluated by
direct substitution after a single iteration of L'Hopital’s rule.

To overcome these assumptions and prove the full statement of
L'Hopital’s rule we need to understand the mean value theorem,
which says that for any function f(Z) that is continuous on an
interval [a, b] and differentiable on the interval (a, b), there is some

point x = ¢ at which the derivative of fis equal to its average rate
of change:



Justin Math | Calculus 93

In other words, the mean value theorem says that if we draw a line
between the endpoints of ./, it will be parallel to the tangent line of
/ somewhere in the interval.

When fiddling with the mean value theorem, you might notice that
the mean value theorem is a particular case of a more general and

elegant equation, with g(z) ==z,

f'e) _ f(b) = f(a)
1 b—a
f'(e) _ f(b) — f(a)
g'(c)  g(b) —g(a)

To check whether this extended result is true for any function g(z)'
we can ask whether the derivative of the following function h(z) is

0 at some point € € [a,b],
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Interestingly, this function has the property h(a) = h(b), so the
mean value theorem tells us that, indeed, as long as h(ZF) is
continuous on an interval [@: 0] and differentiable on the interval
(a, b), then it is true that 7/'(¢) = 0 for some point € € [a,b]. And
the assumptions of continuity and differentiability are true for h(x)

whenever they are true for f(z) and 9(33), so the mean value
theorem does in fact extend to the result

This result is known, rather intuitively, as the extended mean value
theorem.

L'Hopital’s rule comes from applying the extended mean value
theorem to the limit in question. If we have the indeterminate limit

. f(x) 0
mli)I(Ill+ m N 6

then we consider the interval [a, z], Here, both fla) =0 and
g(a) = 0, and the extended mean value theorem tells us that for

some € € [a, 7] we have the following:
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Taking the limit as © — a™, we have ¢ — a™ and thus

lim fe) = lim @)
z—a™t gI(C) z—at g(x)
lim ['(z) = lim M

z—at g’(x) z—at g(w) .
The indeterminate limit

fl®) 0

lim ———= = -

T—a~ g(:c) 0

can be understood the same way using the interval [z, a]' and the
indeterminate limits

can be understood similarly, using the intervals [7,00) and

(=00, 7] Likewise, in the case of
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96

we can rewrite the limit as

and apply L'Hopital’s rule, which ends up simplifying to its original

form.

—~ —~ 8
| — B 1Tw\ﬁ
lifm\lifx\ “~ )
~ D |
= =
— —
I I
—~| = —~| =
B |~8 —&|~E —~
| I= —| |I=

| |

| o~

8 SRS

— | — | —

D= ==

|~ N~ N~ N~
8 B8 8|8 8|8
Nl i Daglihag hagivag by
S PN S RS Y
g2 E E E
I I I I
—~ | N ot

li(x\l RN 8 ) 88

~| >




Justin Math | Calculus 97

Exercises

Evaluate the indicated limits by applying L'Hopital’s rule.

<1 1 _
1) lim 2)  lim —
z—0 T x—0 €T
. tan x 1 2
3 i Yt 02
T2 9 — L =0+ T
rlnz :
: 6 lim (Inz)tanx
5) il_)nll IQ -1 ) anW‘( )
7 1 t cosT . L
)l y i
. 1 . 1
9) lim(cosz)=? 10)  lim zme

z—0
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2.1 Antiderivatives

An antiderivative of a function f(m) is a function F(fU) whose
derivative is f(l’), ie. F'(z) = f(z),

. . 2V _
For example, an antiderivative of 2z is 22, because ()" =2z,

e . 2 _
Another antiderivative of 2z is 2 + 1, because (22 4+ 1) =22 10
encapsulate all possibilities, we say that the antiderivative of 2z is
2?2 + C where C is a constant.

The antiderivative of a function /() is written symbolically as
f f(z)dz For example, to say that the antiderivative of 2z is
22 + C, we can write J2zdr=2"+C,

The symbol [ is called an integral, and the differential dz tells us
that x is the variable of integration. (The variable of integration may
seem unnecessary right now, but it will become more relevant in
later chapters when we talk about techniques to solve integrals.)

Power Rule

. - _ -1
The power rule for differentiation tells us that (") =na"" "

Through a bit of clever intuition, we find a function whose derivative

is ™.

!
1 n+1 — an
(n—&—lx ) =7


https://www.codecogs.com/eqnedit.php?latex=dx%0
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Consequently, we have a power rule for integration:

1
/.’17” d.%' = n—_'_l$n+1 -+ C

A few examples are shown below.

/x2dx:1:c3+C’
3
/—dx—/ r 0 dx

= —4$_4+C

1
:—4—4+C

/\/Ed:c:/:ﬂ%d:v

1

2
:§ZB§ +C

/1d:v—/:c dx

1+C

=xz+C
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Integral of the Reciprocal Function

1
You might notice that if we try to use this power rule to integrate z,
which simplifies to 2—!, we come up with a nonsense result.

1
/—dx:/x_ld:c
T

1
== 13:0 +C (invalid)
1
=5 +C (invalid)
The case of n = —1 is an exception to the power rule, and if we try

to perform the power rule anyway, we obtain an invalid result. We

1
will see in a later chapter that, surprisingly, the antiderivative of z is
Inzx.

/ldx:lna:vLC
z

Sum and Constant Multiple Rules

Integrals exhibit some of the same properties as derivatives. For
example, the integral of a sum can be computed as the sum of
integrals of the integral terms. Also, constants can be moved outside
of integrals.
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/31‘3+x2—4x+2d$

:/3$3da:+/x2d:c+/—41:dx+/2dx+c
:3/$3d$+/$2dx—4/xd:v+2/1dsc+C

1 1 1
=3 <1x4> + §$3 —4 <§x2) +2(x)+C
3 1

Note that although each individual integral in the sum is associated
with a +C constant term, they are redundant, because when we
combine all the terms together we still get a constant. Thus, we are
able to write a single +C at the very end to account for all
constants that arise from the multiple individual integrals.

Integrating Products and Quotients

Unfortunately, there is no simple rule for integrating a product or
guotient. We will learn techniques later to make such integrals
easier, but for now, the best strategy is to expand out the function as
much as possible before trying to take the integral.

For example, to integrate the product (z 4+ 1)(z - 1)(2® + 2), we
can multiply out the product and then integrate each term
individually.
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/(x + 1)(x — 1) (2> + 2) dx
_ /(gﬂ “ 1)@+ 2)de

= /x4 + 2% - 2dx
5 3
= -z x> —2x+C
5 + 3 +
- . . 2z34a? 4 .
Similarly, to integrate the quotient z2, we can split up each

term in the numerator and then simplify.

/2x3+x2—4dx

2

_ 23 2 4d
@t a"
:/2x+1—4x2dx
2 —1
=x*+x+4x " +C

4
=2’ +z+-+C
xr

Integrating Non-Polynomial Functions

Below are some useful rules for finding antiderivatives of
non-polynomial functions. (For the sake of readability, the d= and
+C have been removed.)
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/x”:nilnl(n#l) /x Inx

/cos(n:c) = %sin(nm) /sm = 1 cos(nm)

/sec2(na:) = ltam(na:) /csc (nx) = 1 cot(nx)
n n

/sec(nx) tan(nz) = %sec(nx)
/csc(nm) cot(nz) = —% csc(nx)

— arcsin(nz)

/m n

1
= — arccos(nz)

/m = %arctan(n:p)

Non-polynomial functions can be integrated similarly: we simplify
the integral as much as we can, and then find the antiderivative of
each term separately. A few examples are shown below.
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/ (sin 32) (2 t—y (55 Sm( 3$)) do

1
= [ 2sin3 d
/ Sin ox + cos? X

= /2 sin 3x + sec? 5z dx

:2/sin3xdx+/secz5mdx

1 1
=2 (—gcosi’)x) + 5tan5x+0

2 1
= —gcos3x+ gt&me—i—C’

4x dr
/(e +3e)5(: 3 7.9 g ay

S —9 - 1\*
3z —bx T 1$
= [ e* —9e + 72"+ 3 dzx

T
:/e3xdx—9/e_5xdx+7/2xdx+/(%) dz

1, - 1 1 /1
—ced g )y o)+ — (=
3° (—56 )J“ <1n2 >+1n§ <3

1, 9 . 7 1
_ 3 e xT _2:17 - x
g€ g T 52+ =84 C
1, 9 & 7 1
— 3 e xr _Qm__ x
R-CIE e A et AN

107
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1 1
— d
/3+2x2 Nowra
1
3

1 1
- 5> | — dx

1 1
1 (ﬁxf =y
1
———dr — / T TE dx

1
( arctan :[: — —arcsin 2z + C

]
]

L =

1
3

2

1
= \/6 arctan \/;:v —3 arcsin 2z + C'

Exercises

Evaluate the following integrals.

6
1) /x3—3x2+—4dx 2) /x<8$2—1> dx
T T

3) /(m2+2)2d:v 4) /<x+1)(2$+3)da¢

3x:2
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5) / 2sec? 3z + csc = cot = dz
2 2
sin 3x

6 d

) / cos23z T

1 4

7 sin —x 3——— | dx

) /( 4 ) < cos25xsinix>

) /cos(mc) — 10 de

3sin?(7x)

9) /64‘” —3e 3 e Tdx
10) /(26390 — 1) (e +2)da

24m_ 2x T
11) /( e 64)(6 +1) s
el’

\/ 3T 2
12) /% da
. €

13) / L by
— X
4+4x2 /1= 22

14) / 2 + L d
X
1+22 /3 —322

15) / ! 54
— X
1+922  /1— 1622

109
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1 1
16 d
) /5—103J’2+\/4+9:102 v
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2.2 Finding Area

In the last chapter, we learned how to evaluate integrals of the form

f f(x) df’f, which are also known as indefinite integrals. In this
chapter, we shall be concerned with definite integrals, which have
bounds of integration.

b
The definite integral Jo £(2) dz i5 evaluated by first finding the
antiderivative () = [ f(2) dCC, and then computing the
difference between the values of the antiderivative at the indicated
bounds.

Derivation

Subtracting at the bounds yields the area between the x-axis and the
function f(x)' between the bounds x = a and = = b. To see why,

first consider that £'(0) — F(@) is the sum of infinitely many,
infinitely small changes in ', one for each value of x. At each value

x, the function has slope Fl(x), so if it travels an infinitesimal dax
units to the right, then it also travels an infinitesimal F'(z) dx ynits
up.

F(b)—F(a)= Y _ F'(z)dx

z€[a,b]
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This is true even if the function doubles back on itself, because the
upward and downward displacements cancel each other out.

Fb) L
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Because £'(%) = [ f(2) da:’ we have () = f(a:), SO we can
write the sum in terms of .f.

F(b)—F(a)= Y F'(z)dz

z€|a,b]

= Z f(x)dx

z€(a,b]

Each term in the sum then corresponds to the area of a rectangle of
width dz and height f(x)' and all the rectangles together make up
the area between the x-axis and the graph of /.
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Sanity Check

Below is an example of evaluating a simple definite integral.

1
/ 2vdr = [xz](l]
=1-0
=1

We can verify that this result represents the area between the x-axis

and the function /(Z) = 22 petween the bounds = = 0 and
x = 1, because this region is just a triangle. The results match up!

b

1
area of triangle = §(base)(height)
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Demonstration

Now, let’s compute the area between the x-axis and the parabola

2

f(z) =2z , between the same bounds z = 0 and x = 1. The
parabola dips a little lower than the triangle which we found has
area 1, so we should expect a result a little smaller than 1.

2
The area is 3, which is indeed slightly smaller than 1, so it matches
up with our expectations.
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Negative Area

When a function dips below the x-axis, the area below the x-axis is
counted as negative area.

For example, if we integrate the function f(z) = =22 petween the
bounds = 0 and x = 1, we get a result of —1. This is the same
triangle as before, but flipped over the x-axis.

1

As a consequence of negative area, for a region that has the same
amount of area above the x-axis as below the x-axis, the integral will
evaluate to 0.
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For example, the function f(z) =2z integrates to zero on the
interval from x = —1 to = = 1 because its two triangles above and
below the x-axis cancel each other out.

f(z) =2z

Area Between Two Functions

In addition to finding the area under a single function, integrals can
also be used to find the area between two functions.
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If we have two functions /() and 9(2) with f() > 9() on the
interval (@, b], then the area between the functions on the interval

[a,b] s given by the integral of the difference:
b
area between f and g = / flz) —g(x)dx
a

One way to interpret the integral above is to see it as the difference
of two separate integrals, the integral of ./ minus the integral of 9.
Then the area between J and 9 is the area under J minus the

overlapping area under 9, which leaves only the area between f
and 9.

/abf(:r,) d:r—/f dx—/ g(z)dx

= (area under f) — (area under g)

= area between f and g

‘/f\_/
a b

Another way to interpret the integral is to see it as integrating the
height from 9 to /. In this case, we are defining a height function
h(z) = f(x) — 9(%) and breaking the region between the functions
into infinitesimally small rectangles, each rectangle having height
h(x) and infinitesimal width dz.
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For example, to find the area between ¥ = 3z + 1 and

Y= 2% — on the interval [1; 2], we first need to identify which
function is the higher one on this interval. We can do this by
sketching graphs of the functions.
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We see that ¥ = 3z + 1 is the higher function and ¥ = 202 — x i
the lower function. The integral is the higher function 3z + 1 minus

the lower function 222 — z, over the interval [1,2],

2
/(3x+1)—(2x2—x)dx
1
2
:/ 3z +1—22% 4 xdx
1

2
:/ —22% + 4z + 1dx
1

9 2
= —§x3 + 222 +m]

1

- —%(2)3 +2(2)2 + (2)] — {—%(1)3 +2(1)% + (1)

- 16+8+2 2+2+1
| 3 3

JERH

W

. )
So, the area between the functions ¥ = 32 + 1 and ¥ = 20 —

7
on the interval [1,2] is 3.
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Area Between Two Functions that Intersect

Sometimes, two functions will cross on an interval, and each will
take its turn being the higher function. For example, the functions

_ 2 . . .
Y =2 and ¥ = Z° cross twice on the interval [ 1: 3], The points of
intersection are obtained by setting the functions equal to each
other and solving:

2

r=ux
0=a’—2z
0=z(x—1)
rz=0,1

On {_17 0] the higher functionis ¥ = 1’2, on [0, 1] the higher

functionis ¥ = %, and on [1,3] the higher functionis ¥ = 1’2. To
find the total area bounded between the functions, we integrate the
higher function minus the lower function on each interval and add
the results together.

1 3
1 1
xﬂ + [—mg - —xQ}
0 3 2 1y

|
[ (5-3)]+ 53]+ [0-9)-G-3)]
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To perform the computation faster, we can ignore which function is
higher vs lower provided we take the absolute value of each integral
before adding them together. Even if we end up “incorrectly”
computing the lower function minus the higher function in some
integral, the result will still represent area -- it will just be negative
area, so we can correct it by making it positive.

2 . . .

If we treat ¥ = 2~ as the higher function on all intervals but take
the absolute value of the integrals before adding them, we reach the
same result as before.

3
’/ 22— xdz| + 22— xdx| + /l‘ZQZd:L‘
1
1 1,01 1 3
+ || =2® — =22 + —x3—1x2
3 2 0 3 2 1
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Likewise, if we treat ¥ = Z as the higher function on all intervals
but take the absolute value of the integrals before adding them, we
reach the same result as before.

0 1 3
’/ z:chx+/xx2d:c+/:r:c2d:r
-1 0 1
0 1 3
_ 1x2—1m3 + 1$2_1x3 + 11,2_11,3
2 37 |, 2 37 1, 2 37 ],
_75+1 28
| 6 6 6
_5+1+%
6 6 6
Y
3
Exercises

Find the net (signed) area below each function on the given
interval.

1) y=1223+x 2) y=sinz —sec’z
S [_172] x € |:O E}
3
3) y=3e" 4) y=+/r+sinz

x € [—2,0] x € [m,97]
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Find the area between the two functions on the given interval.

5)

y=2°
y=e¢’
x € [0,1]
y=vVz
y=Inx
z € [e, €]
y=x+1
y:x2—1
x € [1,3]
=
x € [—1,8]

6)

10)

12)
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2.3 Substitution

Complicated integrals can sometimes be made simpler through the
method of substitution. Substitution involves condensing an
expression of x into a single variable, say u, and then expressing
the integral in terms of u instead of .

Demonstration

To make the idea of substitution more concrete, consider the

integral J(Bz + 1)* dz e may be tempted to use the power rule,

1 9
and say that the integral evaluates to §(3$ +1)

differentiate to check our result, we see that, because of the chain
rule, the derivative of this expression is not equal to the function
inside the integral.

. But if we

B(i’)x + 1)9}/ = [Bz+1)°]

93z +1)83z + 1)



126 Justin Math | Calculus

To turn the integral into one that can be solved with the power rule,
we condense the 3z + 1 expression into a single variable u,
through the substitution © = 3z + 1.,

/(3x+1)8dx:/u8dx

Before we apply the power rule, we need to take care of one issue:
the differential is still d=, and we need it to be du. In general, we
can’t just replace the dz differential with a du differential.
However, by interpreting the derivative as a fraction, we can solve
for the dx differential in terms of the du differential.

du

— =3z +1)

T 3z +1)

du_3

de

du = 3dx

1

—du = dx

3

d:vzldu
3

Once our integral is fully expressed in terms of u, we can solve it via
the power rule, and then substitute © = 3z 4 1 again to write our
answer in terms of x.
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We verify that the derivative of the result is indeed the original
function within the integral.

{2%(39: + 1)9] = % (32 + 1))
= % 293z 4+ 1)%(3z + 1)
- %(3:;; +1)8(3)
= 3z +1)%

Choosing the Right Substitution

The key to substitution is choosing the right substitution. But how
can we tell what is the right substitution? For example, in the
integral below, should we substitute © = sinx or u = cosx?

/ sin? z cos = dx
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Whenever we are torn between multiple substitution choices, we
should choose the substitution whose derivative will cancel out
other terms in the integral.

In this case, we should choose u = sin x, because the derivative
u/ = cos x will cancel out the existing cos = inside the integral. On
the other hand, © = cos x would not work, because the derivative

u/ = — sin z would not fully cancel the existing sin? z inside the
integral.

: . du — cosx o dr = —L-du
Choosing u = sin x, we have dx , SO = Cosz P,

Substituting into the integral, we are able to evaluate.

. 1
sinfzcosxrdr = [ u?cosz - du
cos T

Exercises

Evaluate each integral using substitution.

1) /\/m&r 2) /(4x+3)8 dz
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3) /ﬁdm

5) / sec? z tan? z dx

2
t
7) / (sec rtanzx da

sec2z + 1)*
9) /x2e$3+1 dx

er\/x3—1
——dx
Vs —1

ex
13) / o dx

15) /ﬁ dx

11)

129

322
4) /—(x3 e dx

6)

COS ™

dx
vsinx

8) / cos(cos x) sinz dx

10)

12)

14)

16)

CSC2 X
—dx
ecot T
€T
/ et dr

v

x
——d
/x4+1 v
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2.4 Integration by Parts

Integration by parts is another technique for simplifying integrals.
We can apply integration by parts whenever an integral would be
made simpler by differentiating some expression within the integral,
at the cost of anti-differentiating another expression within the
integral. The formula for integration by parts is given below:

/udv:uv—/vdu

The formula is really just a direct consequence of the product rule --
we can obtain it by applying the product rule to a product uv,
integrating with respect to «, and rearranging a bit.

i [uv] = ud—v 4+ v du
dx dx dz

/%[uv] dx—/uj—dx—{—/vi—udm
uv—/udv+/vdu
/udvzuv—/vdu
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Demonstration

To see why integration by parts is useful, consider the integral

f ze® dz |f we differentiate the x term, then the term goes away,
and if we integrate the e* term, the term stays the same. Therefore,
by applying integration by parts, we can simplify the integral.

du
We choose © = x and dv = e* dx. Since u = x, we have dz — 1,

SO du = dz. Since dv = e® dr, we have ¥ = Jetdr =e” (We
ignore the constant of integration now because we’re saving it for
the very end.) Substituting this information into the integration by
parts formula, we are able to evaluate the integral.

/xexd:v::ce‘”—/lexd:r
:mem—/e‘”dsc

=z —e"+C
=(x—-1e"+C

Repeated Application

Sometimes, we may have to perform integration by parts more than
once.

For example, in the following integral, the first integration by parts
reduces the z2 to 2z, and the second integration by parts reduces
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the 2z to 2, which finally simplifies the integral to a point where we

/:1:2 sinx dx

To start off, we choose © = 22 and dv = sinz dx. Then
du = 2z dx and v = — cos z, and the integral simplifies a bit.

/x2 sin x dx

= 2%(—cosx) — /(—Cosx)Zxd:c

can solve it.

= —a2%cosx + /2a:cosxdx

For the final round of integration by parts, we choose ©« = 2x and
dv = cosx dx.Then du = 2dxr and v = sin z, and the integral
simplifies a bit more, to a point where we can solve it.

= —a2%cosz + <2xsinx—/2sinxdaz)
= —a2%cosz + 2xsinz + 2cosx + C

= 2zsinz + (2 — 2%) cosz + C

Cyclic Cases

Other times, integration by parts will never simplify an integral to a
point where it can be directly computed.
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For example, in the integral

/ e’ cosz dx

differentiating the ¢ term will not reduce its complexity because it
just stays e?, and differentiating the cos x term will not reduce its
complexity because it just flips back and forth between sin z and
cos .

However, we can use integration by parts to set up a recurrence

equation, which can be used to solve algebraically for the integral.
Choosing © = cosx and dv = e¢* dx we have du = — sin x dz and

/ew cos x dx

= e’ cosx —/—exsin:cda:

v =e".

=e"cosz + /exsinxdx

We perform one more round of integration by parts with © = sinx
and dv = e® dx, so that we have du = cosxz dx and v = e%.

=e"cosz + (ewsinx—/excos:vdx>

= (sinz + cosz)e® — /em cos z dx
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Now that the original integral has reappeared in our expression, we
can solve for it algebraically.

/e”’j coszdr = (sinx + cosz)e” — /e”’ cosz dx
2 / e® coszdr = (sinx + cosx)e”

1
/e‘”” coszdr = §(sinx + cosx)e”

Then, since the integral is an indefinite integral, we just need to add
a constant at the end.

1
/ex cosxdr = E(sinx + cosx)e® + C

Exercises

Use integration by parts to compute the following integrals.

1) /x2e‘r dx 2) /xlnxd:c

3) /(a: +1)coszdx 4) /(2352 — 3z)e” dx

5) / 25’ da 6) / e’ sinx dx
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7) /(xln z)? dx 8) /6233 sin () dx

9) / arctan (1) da 10) / sin(2z) cos(3z) da

X
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2.5 Improper Integrals

Improper integrals have bounds or function values that extend to
positive or negative infinity.

0 1
For example, fl z? dx is an improper integral because its upper

L1
bound is at infinity. Likewise, fo Ve dx is an improper integral

1
because vz approaches infinity as = approaches the lower bound
of integration, 0.

B

Convergence

It seems intuitive that improper integrals should always come out to
infinity, since an infinitely long or infinitely high function would
seemingly have infinite area.
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However, although this can sometimes happen, it is not always the
case. In fact, both of the two improper integrals given as examples in
the previous paragraph evaluate to normal, non-infinite results. As
such, we say that these integrals converge.

1 1 1
/Oﬁdx[z\/ﬂo
= 2v1-2V0
=2-0
=2

If the function decreases quickly enough as it extends out to infinity,
then the area underneath it can come out to a finite number.
Likewise, if a function blows up to infinity slowly enough as it
approaches an asymptote, then the area underneath it can come
out to a finite number.

Divergence

_ 1
Below, we integrate the function f(x) = z, Which decreases more
slowly as it extends out to infinity and blows up to infinity more
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quickly as it approaches its vertical asymptote x = 0. The integrals
of this function do indeed integrate to infinity. As such, we say that
these integrals diverge.

1
/ —dz = [Inz]{°
1

X

=Inl—1n0
=0 (~o0)

=0

Discontinuities within the Interval of
Integration

Sometimes, a function may blow up to infinity somewhere within
the interval of integration, rather than at the bounds of integration.
In such a case, we have to separate the integral across its
discontinuities.

2 1
For example, to compute the integral f—l zZ d:c, we may be
tempted to ignore the singularity at = 0 and simply evaluate the
antiderivative at the bounds. This leads us to an invalid result.
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2 2
/ % dx = [—E] (invalid)
1 T]_4
1 1
1 . .
=—5- 1 (invalid)
= —g (invalid)

This result of negative area doesn’t make any sense, because the

1
function z? is always positive!

d

2 1
In order to properly evaluate the integral f—l 22 % e have to

split it up across the singularity, into two separate integrals.

The first integral spans from © = —1 to « = 0 and consequently
approaches 0 from the negative side, so its computations involve
0.

The second integral spans from = = 0 to x = 2 and consequently
approaches 0 from the positive side, so its computations involve
0r.



Justin Math | Calculus 141

2 0 2
1 1 1
1 1 o X

Now, we see that the integral actually diverges to infinity. This
makes much more sense, since we know that it represents a region
that contains a portion of infinite area.

Lastly, below is an example of a more complicated integral that
converges.

/000 e\/\; dx = [—26_‘/5}00
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Exercises

Evaluate the improper integrals below.

1) /loo%dx 2) goo%dac

3) /:oédx 4) /_:(m_ll)4d:c

5) /leilda: 6) /_Zﬁdx

7 ;ﬁd:g 8) /3 mmdx
9) /Oooﬁdw 10) /medm

o0 o0 1
11) / e Vdx 12) / ——dx
0 0 1 +x
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Part 3
Differential Equations
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3.1 Separation of Variables

In differential equations, we are given an equation in terms of the
derivative(s) of some function, and we need to solve for the function
that makes the equation true.

For example, a simple differential equation is Y = 233, and its

L . _ .2
solution is just the antiderivative ¥ = Z° + C.

y =22
(>4 C) =2z
2¢ = 2z

The simplest differential equations can be solved by separation of
variables, in which we move the derivative to one side of the
equation and take the antiderivative.

3y’ +cosx = 622 + Y
2y + cosx = 622

2y’ = 622 — cosz

1
/:3 2__
Y z 20053:
5 1
y= [ 3z —§cosxdaj

1
y:x3—§sinx+0
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Equations with a Higher-Order Derivative

This method can be used to solve simple equations with
higher-order derivatives, as well.

nmn

y +r=1
y///:_$+1

y”:/—x—i—ldx

1
Y=g tr+ G

1
y’z/—§x2+x+c‘1daz

1 1
y' =22+ -2’ + Clz + Oy

6 2
1, 1,
Y= —al‘ +§JL‘ + Ciz + Cydx
y:—ix4+1x3+C’1fE2+C’2$+C’3
24 6

e . C1g2 (&}
Note that, although the antiderivative of C17 is 2 ", the term 2

. . G2, -
is itself just a constant: 2 % just means any constant multiplied by

22, But C12% also means any constant multiplied by 2, so writing

C1 .2
the fractionin 2 ¥ is redundant. To keep the notation simple and

free of redundancy, we just write Cia?,
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Equations with Both Function and Derivative

/
When differential equations contain ¥ terms as well as ¥ terms, we
can still separate variables by using the differential notation for the
derivative and treating it as a fraction.

yy==x

ay, _

Y=
dyy = xdx
ydy = xdz
/ydy:/xd:c
Lo 1,

—y° == C
2y 2$ +

y2:x2+c

y=+vVr2+C

Even differential equations that contain two different variables
multiplied together can sometimes be solved by separation of
variables.
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2

y'e¥cos’x =1

y'e¥ = sec?® x
dy
—Ze¥ =sec’ x
dx

dy eV = sec® x dx

e¥ dy = sec® x dx

/eydy:/sec2:cd:v

e’ =tanz + C
y = In(tanz + C)

But other times, there is no way to separate the variables from each
other completely. We will learn more advanced methods to solve
such non-separable differential equations in the coming chapters.

y+ty==z
dy
%w&y—m

dy+ydr =xdx

(unable to separate)
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Exercises

149

Solve the following differential equations using separation of

variables.

1) ¢ =4

3) v =xz(1+axy)

5) y'y=sinz

7 (y+1)(1—=xe®)=xy

y// o 462;1: — oT

8) 4y cosy =axsiny

10) y" +cosz ==z
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3.2 Slope Fields and Euler Approximation

When faced with a differential equation that we don’t know how to
solve, we can sometimes still approximate the solution by simpler
methods. If we just want to get an idea of what the solutions of the
differential equation look like on a graph, we can construct a slope
field.

Slope Fields

A slope field consists of an array of line segments, each line segment
angled so that it represents the slope at the corresponding point.
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For example, to construct the slope field for the differential equation

2 . .
y =t — Y, we start with an array of points.

Yy
(-3,3) (-23) (-13) (0,3) (L3) (23 (3.3
(-3,2) (-2,2) (-1,2) (0,2 (1,2) (220 (3,2
(=31 (=21 (=Ly (@1 (L) 21 G
—(=3,0)—(=2,0)—(~1,0)— (0,0) — (1,0) — (2,0) — (3,0) — &
(=3,-1) (-2,-1) (-1.-1) (0,-1) (1,-1) (2-1) (3,-1)

(=3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2)

(=3,-3) (=2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3)
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Then, we evaluate Y at each point (z,y).

Yy
|
6 1 —2 -3 —2 1 6
7 2 -1 —2 —1 2 7
8 3 0 —1 0 3 8
—9—4—1 1 4 —9—0
10 5 2 1 2 5 10
11 6 3 2 3 6 11

12 7 4 3 4 7 12
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Lastly, we replace each value of y' with a short arrow having that

slope.
Yy
A = G
e
A .
= —f—x
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Now, we have an idea of what the solutions of the differential

equation look like. For example, if we start at the point (0,0) and
follow the slopes as we go left and right, then we end up with the
following curve.
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We can also choose a different point, say (—2,2) to see the solution
curve which contains that point.

You can think of the coordinate plane as a river rapid, and the slope
fields as the individual currents within the river rapid. If you launch a
raft at a particular point, then the solution curve shows you where
the river will take the raft.

Imprecision of Slope Fields

Although a slope field can show us the shapes of solutions to a
differential equation, it isn’t very precise.
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For example, if a particular solution starts at the point (=3, —3),
then the slope field tells us that it travels up and right -- but exactly
how far? If we travel right one units until the x-coordinate is —2,
then what will the y-coordinate be?

Based on the sketch of the slope field, it’s hard to tell whether the
y-coordinate will be closer to —2 or 4. We need a more precise
method.

Euler Estimation

We can estimate particular solutions more precisely using Euler
approximation. In Euler approximation, we travel horizontally in
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small steps and use the derivative to compute how far we travel up
or down at each step. The idea is that, since the solution curve is
generated by this process with infinitesimally tiny step sizes, we can
compute a good approximation to the solution curve if we use a
small enough step size.

As an example, we will use Euler approximation to estimate the

value of ¥ when x = —2, starting from the point (—3,-3). We will
use a step size of Ax = 0.25.

We start by computing Y’ at the point (=3, _3), using the

differential equation Y =a? - Y, and obtaining a result of
(~3)% — (-3) =12,

Then, using Ax = 0.25, we estimate Ay as y/AfE, which is
(0.25)(12) = 3. we arrive at the point (—3 + 0.25, =3 + 3)  which
simplifies to (—2.75,0),

At this point, we compute the derivative again, use it and Az to
estimate AY, arrive at a new point, and continue the process until
the x-coordinate is —2.

As shown in the table below, our resulting estimate of the
y-coordinate is 3.5.
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x Yy y'_x2—y Ax Ay: "Ax
-3 -3 12 0.25 3
—2.75 0 7.56 0.25 1.89
—2.5 1.89 4.36 0.25 1.09
—2.25 2.98 2.08 0.25 0.52
—2 3.5

Euler approximation tends to yield decent approximations for

differential equations whose slope fields aren’t too turbulent, and

the approximations can be made more accurate by decreasing the

step size.

However, for differential equations that have singularities, one must
be careful applying Euler approximation because it can “step over”

asymptotes.

Exercises

Draw slope fields for the following differential equations on the

grid —3 < x,y < 3,

Then, sketch a rough graph of the solution that passes through

the point (0,0).

Finally, starting at the point (0, 0), use Euler estimation with 4
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steps to approximate the value of ¥ when z = 1. (Round to two
decimal places throughout your calculations.)

1) ¢y=y—= 2) Y =a"+y°

1
3) Y =+Va2+y? 4)

- 1+ |z + vy
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3.3 Substitution

Sometimes, non-separable differential equations can be converted
into separable differential equations by way of substitution.

For example, Y +y=misa non-separable differential equation
as-is. However, we can make a variable substitution * = * — ¥ to
turn it into a separable differential equation. Differentiating both
sides of ¥ = T — ¥ with respect to «, and interpreting ¥ as a
function of x, we have u' =1-— y', so y=1-1, Substituting,
the equation becomes separable and thus solvable in terms of u.

v+y==z
y=z-y

1—u =u
v=1-u
d—uzl—u
dx
du= (1 —wu)dz

1iudu:1d:ﬂ
1
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Lastly, to find what ¥ is, we can solve for ¥ in our original
substitution ¥ =2 — Y,

U= —Yy
Uu+y=x

Yy=x—u

y=x— (1 e—m+(1)

y=a—1+etC

Choosing the Right Substitution

In general, to determine what substitution we need to perform, it is
helpful to rearrange the equation until we see a group of terms
whose derivative also appears in the equation.

2y’ — y2 =22 -2
2y’ + 2z =z + 42
(y2 + xz)/ — 22 4 o2

. . 2 2.
After rearranging the above equation, we see that ¥ = Z° +¥” js a
good substitution. We rewrite the equation in terms of u, solve it,
and then solve for ¥ in terms of x.
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u=u
u=Ce"
224y =Ce®

yQZCEm—$2

y=+vCe® — 22

We don’t always have to use addition in our substitutions. In the
equation below, for example, we require the substitution © = 2y,

xy' =3~y
2y +y=3
(zy)' =3
u =3
u=3x+C
xy =3x+C
y:3+%

Exercises

Use substitution to solve the following differential equations.

1) 1+y = (z+y)? 2) 20—y =1-u

= e oy ) Byt ="t — 2

1
5) 2y+ay = ~ 6) axyt+22%5 =1
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3.4 Characteristic Polynomial

In this chapter, we learn a technique for solving differential
equations of the form

any™ + ap_1y™ Y 4o agy” + a1y + apy = 0

where an,an—1,...,a2,a1,ao are constant coefficients, and y(n)
denotes the n'" derivative of ¥.

The characteristic polynomial of the differential equation above is
given by

an”™ 4 ap1r" 4+ agr? + a1 + ag,

Each root 7 of the characteristic polynomial corresponds to a
solution (Cr,1 + Craw + Cr3a® + ...+ Crma™ 1)e™ of the
original equation, where m is the multiplicity of the root and

Cr1,Cr2,Cr3,. .., Crm are unknown constants of integration.

The constants of integration are labeled intricately, each with two
subscripts, so that we can stay organized, in case we have to deal
with multiple roots.


https://www.codecogs.com/eqnedit.php?latex=r%0
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Demonstration

For example, the differential equation y" =3y +2y =0 has the
characteristic polynomial 72 — 37 + 2, which factors to
(r—=2)(r = 1) and has roots 7 = 1,2,

The root » = 1 has multiplicity 1, which corresponds to a solution

lx . T
C1,1€¢™" or more simply Crae”,

The root » = 2 also has multiplicity 1, which corresponds to a

. 2
solution of C2,1€™",

_ ] 2
The full solution of the equation, then, is ¥ = Crie” + Cype™”,

Another Demonstration

Next, consider the differential equation y' =6y +9y =0,

This differential equation has the characteristic polynomial

r? — 67 + 9, which factors to (r— 3)2 and has a single root » = 3
with multiplicity 2.

_ 3
The solution of the equation, then, is ¥ = (Cs,1 + Czoz)e’®,
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Case of Imaginary Roots

Sometimes, the characteristic polynomial of a differential equation
may have imaginary roots.

For example, the differential equation y" +4y = 0 has the
characteristic polynomial 72 + 4, which has roots 7 = 2i, —2i  |n
these cases, we apply the same procedure as before, but we take it
a step further. We use Euler’s formula

€9 = cosf + isin 6

to evaluate any exponentials with imaginary powers, and then we
remove any 7’s from the solution. We can remove the i’s because in

general, if f(x)z is a solution, then so is f(fE) This is true because
the 7 can be factored out:

an(f(@))"™ + an 1 (F(@)) ™D + -+ aa(f(2)i)” + a1 (f(2)i) + aof(z)i =0
anf ()i + an_1 PV (@)i + - + aof" ()i + a1 f'(2)i + ao f(z)i = 0
anf<”)(3:) + an,lf("_l)(x) 44 agf”(x) +arf () +aof(z)|i=0

anf™ (z) + anflf‘"*”(x) + oot asf’(x) + arf (z) + ag f(x) = 0

Continuing the example, the root » = 2i corresponds to a solution
C2i,1€2w, which simplifies to C2i,1(cos 2z + isin 2z) Removing

the 4 from this solution yields C2i,1(cos 2z + sin 2x)

By the same reasoning, the root » = —2i corresponds to a solution
C_2i1(cos(—2z) + sin(—2x)) since cos(—0) = cosb and
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sin(—0) = —sin 6 for a| inputs @, this solution simplifies further
to C—2i,1(cos 2z — sin2x)

The full solution, then, is

y = C9;,1(cos 2z + sin 2x) 4+ C_9; 1(cos 2z — sin 2z)

which simplifies to
Yy = (022'71 + 0422'71) cos 2z + (022'71 — C,QZ'J) sin 2.1,‘_

It is redundant to use four constants in this solution, though, since
Cai,1 + C2i represents a single constant and Cai1 — Czin
represents another single constant.

For example, if 021‘71 =1 and 0721‘,1 = 2, then the solution is just
3cos 22 — sin 22. We can make (21 - C-2i1 and C2i1 — C-2i1
come out to anything we want, by choosing C2i,1 and C-2i1
accordingly.

Therefore, to avoid redundancy in the full solution, we replace the
expression Cai,1 + C-2i1 with a single constant C1, and the

expression C2i,1 — C-2i1 with a single constant C2.

y = C1 cos2x + Co sin 2x
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Case of Complex Roots

When the characteristic polynomial has complex roots, the solutions
will contain exponentials and trig functions.

For example, the differential equation Y — 4y +13y = 0 has
characteristic polynomial 72 — 4r + 13, whose roots are given by
the quadratic equation.

4+ /=36
2

_ 4+6i

2

=2+3i

r =

The root 7 = 2 + 37 corresponds to the following solution:

(2+3i)z 2z  3iz

Caq3iie = Co43;,1€
= 02+3Z'71€2x (cos 3z + isin 3x)

— Coy3i1 e® (cos3xz +sin3x)  (remove i)

Likewise, the root » = 2 — 3¢ corresponds to the following solution:

02_32.716(2731):6 _ 02_31'716233673”:

= Oy_3;1€** (cos(—3x) + isin(—3x))
= 02_31',162:0 (cos 3z — isin 3x)

— Cg_3i71629” (cos3x —sin3z)  (remove i)
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Assigning new constants C1 = Cay3i1 + C2-3i1 and

Cy = Czy3i1 — 02*31‘,1, the full solution becomes the following:

02+3i7162$(COS 3z +sin3z) + 02_3i71€2w(COS 3x — sin 3z)
= ¥ ((Cay3i1 + Ca_3i1) cos 3x + (Caysig — Co_3;1) sin 3z)
= 2" (C4 cos 3z + Co sin 3x)

Repeated Imaginary Roots

Repeated imaginary and complex roots are treated just like we
treated repeated real roots.

For example, the equation y© 4+ 3y™ + 3y + 1 =0 pas
characteristic polynomial 7% + 37% + 372 + 1, which factors to

2 3 . s
(r*+1) , and thus has roots » = +¢, each with multiplicity 3. The
solution to this differential equation is then

(01‘71 + CZ',QJ} + C¢73£L‘2)6m + (sz}l + 072‘7238 + 07¢,3$2)67ix_

After removing the 7 and grouping the constants, the solution
simplifies to

(Cy + Coz + C32%) cosz + (Cy + Csz + Cez?) sinz
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Derivation of the Characteristic Polynomial

Lastly, let’s gain a better understanding of why the characteristic
polynomial method works. The characteristic polynomial really just
comes from guessing a solution ¥ = C'e™ The derivatives for this
guess are listed below.

y = Ce'™
y = Cre'™

y// — C,r2emc

y(n) — Or"e'™®

We substitute the derivatives in the differential equation, and
simplify.

0= any™ + -+ azy” + a1y +aoy
0= a,Cre™ + -+ + asCr?e"™ 4+ a1Cre"™ + age™
0=Ce™ (anr" 4+t ar? +ar + ao)

0=apr™ + - +asr® +air +ag

We see that ¥ = Ce"” js a solution whenever 7 is a root of the
characteristic polynomial.
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Exercises

Use the characteristic polynomial to solve the following
differential equations.

) ' +y -12y=0 2) 2y +16y +30y=0
3) Y +16y=0 4) Y-y +2y —2y=0
5 ' =4y +5y=0 6) ' +2y +17y=0
7y -4y +4y=0 8) y©® —y@W =0

9) 3® 443 =0 10)  y® +y@W — 243 =
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3.5 Undetermined Coefficients

In the previous chapter, we learned how to solve differential
equations of the form

any(n) _|_ e _|_ a2y// _|_ aly/ + aoy — O
Now, we consider differential equations of the form

any™ + -+ agy” + a1y’ + aoy = f(x)
where the right hand side is no longer strictly 0, but rather some
function /(%) The solution to such a differential equation is given
by

y(x) = yo(z) + ys(x)

where Y0 is the general solution to the “homogeneous” equation

any™ 4 - 4 asy” + a1y’ + agy = 0

and Y/ is a particular solution that satisfies the “inhomogeneous”
equation

any™ + -+ asy” + a1y’ + agy = f(x).
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We already know how to use the characteristic polynomial to find
Yo, and now we will learn how to use the method of undetermined
coefficients to find Yf.

The method of undetermined coefficients involves guessing a

solution yf(a;) having the same form as f(a:)' except possibly
multiplied by some other coefficients. We then substitute this guess
into the differential equation, and solve for the value of the
coefficient that will make the guess correct.

Case of Exponential Function

For example, to find a particular solution to the differential equation
Y'+2y +y=1-2¢"" e can guess that ¥ (%) = A+ Bed®
for some values of A and B. Substituting our guess into the
equation, we can solve for the correct values of A and B.

y' 42 +y=1-—2e
(A+Be*™)" +2(A+ Be™™) + A+ Bed™ =1 - 265
9Be3® + 6Be> + A+ Be® =1 — 2¢3°
16Be + A =1 — 2%
1

A=1, B=—-
8

_ 1.3

Our particular solution is then given by ys(z) =1 —ge™ Then,
using the characteristic polynomial method, we solve

y" + 2y +y = 0 to find vo(z) = (C1 + C2x)e™™ The full
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solution to the differential equation ¥” + 2y +y =1 — 2¢%7 s
then given by

y(x) = yo(z) + ys ()

1
= (Ch1+ Cax)e* +1— ée&r

Case of Trig Functions with Same Angle

In cases where /() contains sin § or cos f, we include both sin 6
and cos in our guess for %o.

For example, to find a particular solution to the differential equation

y" —3y" 4+ 2y = —3cos 235, we need to construct a guess that
contains both sin 2z and cos 2z. Our guess, then, is

ys(x) = Asin2x + Bcos2z

We substitute this guess into the differential equation and simplify.

(Asin2z + Bcos2x)” — 3 (Asin2x 4 Bcos2x)”
+2 (Asin 2z + B cos 2z)’

(—8Acos2x + 8Bsin2zx) — 3 (—4Asin 2x — 4B cos 2x)
+2 (2A cos 2z — 2B sin 2x)

(12A + 4B) sin 2z + (—4A + 12B) cos 2z = —3 cos 2x

= —3cos2x

= —3cos 2z

Equating coefficients on the left and right sides of the equation
yields a system of equations for A and B.



176 Justin Math | Calculus

12A+ 4B =0
—4A+12B = -3
. . . A=32 B=_-3% .
Solving this system, we find 40 and 40. The particular

_ 3 & 9
solution is then yr(x) = 45 8in 2z — 45 cos 2z

Using the characteristic polynomial to solve y" =3y +2y =0
yields Yo(z) = C1 + Cae” + 036236, and the full solution of the
differential equation y" —3y" + 2y = —3c08 2% is then given by

y(x) = yo(z) + yys(z)

3 9
= O + Coe® + C5e%* + 0 sin 2z — 0 cos 2:(:.

Case of Trig Functions with Different Angles

When we have multiple values of 8, we end up with even more
unknown coefficients in our guess.

For example, to find a particular solution to the differential equation
y" — 2y = 4sin 3z — cos 51‘, we need to construct a guess that
contains both sin # and cos @, for both 8 = 3x and 6 = 5x. Our
guess, then, is

yf(x) = Asin3x + Bcos 3z + C'sinbz + D cos bz
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We substitute this guess into the differential equation and simplify.

(Asin3z + B cos 3z + C'sin 5z + D cos 5z)”
—2(Asin3z + Bcos3x + C'sin 5z + D cos bx)

(=9Asin 3x — 9B cos 3z — 25C sin b — 25D cos 5x)
—2 (Asin3z + Bcos 3z + C'sin bz + D cos bz)

—11Asin3x — 11B cos3x — 27C' sin bx — 27D cos 5z = 4 sin 3x — cos bx

= 4sin3x — cos bx

= 48in3x — cos bx

Equating coefficients on the left and right sides of the equation
_ 4 _ 1
yields A= ~11,B=0,C=0,and D=5 The particular

_ 4 1
solution is then ¥f(%) = —17 sin3z + 55 cos 5z

Using the characteristic polynomial to solve y' —2y=0 yields
Yo(r) = CreV?* + 026_\/%, and the full solution of the

differential equation y" — 2y = 4sin 3z — cos 57 is then given by

y(x) = yo(z) + yy(x)

- : 4 1
= C’leﬂ* + Cge_ﬁ“ -1 sin 3z + 77 cos 53:.

Case of Polynomial Functions

. . . _ .3 2
Lastly, the differential equation ¥ +¥' = 2° — 22 4 " hag 3
polynomial and an exponential term, so our guess for the particular
solution needs to contain a polynomial and an exponential term.
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The polynomial in the differential equation is of degree 3, and the
differential equation itself is of degree 2, so our guess needs to
contain a polynomial of degree 3 +2 =5,

yr(z) = Az® + Ba* + Ca® + D2? + Ex + F + Ge*®
We substitute this guess into the differential equation and simplify.

(Ax5 + Bzt 4+ Ca® + Da? + Ex + F + Gez’”)//
+ (A2® + Bz* + C2® + Da? + Ex + F + Ge**)’
(20A2® + 12B2? 4+ 6Cx + 2D + 4Ge*”)
+ (5Az* + 4Bx® + 3Ca? 4+ 2Dz + E + 2Ge**
5Az* + (20A + 4B)z3 + (12B + 3C)x?
+(6C 4+ 2D)x + 2D + E + 6Ge**

=% — 2z + &%
):$3—2I+62m
=% — 20 + %

Equating coefficients on the left and right sides of the equation

_ 1 _1
yields A=0,8=1%,0=—-1,D=2, E=—4,and @ = 5. The
coefficient F' can still be any number, so we leave it as-is. The
particular solution is then

1 1
yr(z) = Zx4 — 2?4+ 2% —dr+ F + gezm

Using the characteristic polynomial to solve ' +y =0 yields
Yo(z) = C1 + C2e™7 | and the full solution of the differential
equation ¥’ + ¥ = 2® — 2z + €** is then given by

y(z) = yo(z) + yy(z)
1 1
:Cl+Cge_x+Zm4—x3+2x2—4x+F+662m


https://www.codecogs.com/eqnedit.php?latex=F%0
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To eliminate redundancy, we can lump the F' constant into the C1
constant, since C1 + F' is itself just another constant.

! 1
y(x) =C1+ Coe™" + Z$4 — 2?4222 —Ax + 6€2x

Exercises

Use the method of undetermined coefficients to solve the
following differential equations.

)y +y=4e" 2) ¢ + 3y = sin(2x)
3) " —y = cos(rz) 4) Y -2 =2 +1
5) 2y —y=sin(x) — cos(2x)

6) 2y +y=e"+ 3sin(z)

7) 4y — 9y = 22* — 32 + cos(z + 1)

8) ¢ +y=-sin(2z+ 1)+ cos(5x) + 1
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3.6 Integrating Factors

We know how to solve differential equations of the form
any™ + -+ agy” + a1y’ + aoy = f(x)

where each coefficient @i is a constant. In this chapter, we consider
differential equations of the form

Y +a(r)y = f(x)
where the coefficient @(Z) is itself a function of z.

To solve such equations using the method of integrating factors, we
start off multiplying both sides of the equation by the term

el al@) 4z \vhich is known as the integrating factor. Then, we can

write the left hand side as the derivative of ye/ “*) dr

antidifferentiate, and solve for ¥.

V' +a(z)y = f(z)
yefa(:r da:+ ( )yefa(x ) dz :f($)efa(x)dx
<y€fa(x dx) _f( ) a(z) dzx

yefa(:c)dac _ /f(x)efa(m)dw dx

y = 6—fa(w)dw/f(x)6fa(w)dw dx
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Demonstration

! 3,
For example, consider the differential equation ¥ — ¥ = 27 + 1,
The integrating factor for this equation is as follows:

3
ef—;dx _ e—3lnx
-3
_ <elna:>
$—3

3

To solve the equation, we multiply both sides of the equation, group
the derivative, take the antiderivative, and solve for ¥.

3
y ——y=2x+1
x
1, 1 3 1

BV @ YT
1, 3 2 1
P L

1\ 2 1
BY) Tt

1 2 1d
il B
1 2 1

-~ - —=4C

Ey: x  2x?

1
y = —22° — §x—|—C’m3
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Case when Leading Coefficient is Not One

In equations where the coefficient on the Y’ is not already 1, we
need to start by dividing the equation by that coefficient.

. f Y 3
For example, to solve the equation ¥ T Wz = %, we start by

/ y .2
dividing by =, which yields ¥ T zinz = <”. Then, we can proceed
as usual to calculate the integration factor.

efﬁd:c — oIn(inz)

=Inzx

Now, we can multiply our updated equation by the integration
factor, and solve for ¥ (using integration by parts along the way).

Y + Y — 2
rlnx
y' Inz + id ‘Inz=2%Inz
rlnx

vy Inx + y_ ?lnz
x
(ylnz) = 2%Inz

ylnx = /m21nmdx

1 2
ylnz = =23 lnz — / x—dx
3 3

3

1
ylnx = §x3lnaz— %—FC

3 a3 C

y= 3 9lnz Inz
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Exercises

Use integrating factors to solve the following differential
equations.

Y

=Inz
rlnx

1) y'+%:sinx 2) Y+

3) Yy +ycotx=1 4)  xy +y = sec?(x)

5 xy +y= sec2($) 6) y/tanx —y =secT
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3.7 Variation of Parameters

When we know the zero solutions %o of a differential equation

y" +a1(x)y +ao(x)y = f(=) we can use a method called
variation of parameters to find the particular solution. This method
is especially useful in cases where we are unable to guess the
particular solution through undetermined coefficients.

Derivation

Variation of parameters is similar to undetermined coefficients in
that we guess a solution form that is relevant to the differential
equation, and adjust it as needed to solve the differential equation.

However, variation of parameters is more general: the guess is of
the form ¥f(®) = u1(2)y1(z) + u2(2)y2(*) where ¥1 and ¥2 are
the two zero solutions of the differential equation

y" +a1(x)y’ + ao(z)y =0, and u1(2) and v2(Z) are some

unknown multiplier functions for which we need to solve.

/ — / /
If we also force yf(:r:) = ui(x)yy () + ug(x)yQ(a:)' then we can set
up a system of equations to solve for ©1 and u2. (To be clear, the
/
formula for Yf does not come from differentiating -- rather, it is a

condition that we force, so that we obtain a solvable system of
equations.)
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The first equation comes from differentiating ¥ :

Yy = ury) + uayh
(w11 + u2y2)" = wiy) + uays
Y1 +wry) + ubys + usyh = w1yl + usyh
! !
uy1 +usys =0

The second equation comes from substituting our guess for ¥f into
the differential equation and simplifying, using the fact that ¥1 and
Y2 are the zero solutions.

Y + aryy + aoys

(u1y) + uayy)' + a1 (ury) + uays) + ao(uryr + uzys)

(uhah 4 wry] + uhys + uayh) + a1 (uryy + uays) + ao(uiyr + uays)
(u1) (Y] + a1yy + aoy1) + (u2) (¥ + a1y + aoye) + uyyy + usyh
(u1)(0) + (u2)(0) + whyy + usys

uty + upyh

f
f
f
f
f
f

Our resulting system

wyy + uhy2 =0
uiy) + usyy = f

is solved by
I yaf
Uy = — / /
Y1Ys — Y2z
/ i f
U2 =

Y1Yy — Y2y
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Integrating, we have

B / yof
u =— | ———dx
Y1Ys — Y21

B / yLf
ug = —— dz
Y1Ys — Y24

The particular solution is then

Y = ur1y1 + u2yy

Y2 U1
1Yo — Y2 Y1Ys — Y2l .

Demonstration

e

" / __€”
For example, to solve the differential equation ¥ — 2¥' +¥ = 7
we start by solving y" — 2y +y = 0 to find the zero solutions

y1 = €" and y2 = z€”, After computing

Y1y — Y2y = e (e” + ze®) — ze”(e”)

— 621

we are able to compute u1 and u2:
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_/ yof d
Uy = — — ,;ax
Y1yYs — Y2yq
ret (&
NECW
eac

:—/1d33

=—x

B / yLf
ug = | ————dx

Y1Yys — Y2y
o

- [

e

1

= / —dx
T

=Inz

We can then compute the particular solution:

Yf = u1y1 + u2y2
= (—x)(e") + (Inz)(ze”)
= —ze® +xelnx

=ze’(Inx — 1)

Finally, we can write the full solution, and lump any constant terms
to eliminate redundancy.

Yy=yot+ys
= (C1 4+ Cox)e® + e*(zlnx — 1)
=(C1 + Cox +zlnx)e”
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Another Demonstration

As another example, we solve the differential equation
/! / 3 . .
Y’ — Yy = x€”Sinx jn the same way. The zero solutions to

YY" =9 =0are y1 =€" and ¥2 = 1, and we have

1y — vy = (€7)(0) — (1)(e")

Computing ©1 and u2, we have

B / yof
uy = — — 7 dx
Y1Ys — Y21

o
xre’sinx
:_/7@
_ex
:/xsinmdx
=sinx — xrcosx

B / yLf
Uy = ——— dx
Y1Ys — Y2y

e - xetsinx
= | ———— dx

_em

= —/xe%sin:vdx

1, .
=3¢ (zcosz — xsinx — cosx)


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20y_1y_2%27%20-%20y_2y_1%27%20%26%3D%20(e%5Ex)(0)-(1)(e%5Ex)%20%5C%5C%20%26%3D%20-e%5Ex%20%5Cend%7B%0
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We can then compute the particular solution:
Yr = u1y1 + u2y2
. 1 .
= (sinx — zcosz)e” + iem(:z: cosx — xsinx — cos x)
| .
=3¢ (2sinx — xcosx — rsinx — cosx)

Finally, we can write the full solution, and lump any constant terms
to eliminate redundancy.

Y ="Yo +ys
1
=C1e® +Cy + 56’0 (2sinz — xcosz — xsinx — cos x)

1
=0y + 56“3 (C1+2sinx —zcosx — wsinx — cosx)

Exercises

Use variation of parameters to solve the following differential
equations.

x

1) y”—2y’+y:% 2) Y -2 +y=e"Inzx

1

) Ve -

" pa —
3 v -4y 1+ 2)e

5 v +y==xe"cosx 6) 3 —y =a’esinx
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Part 4
Series
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4.1 Geometric Series

A geometric series is a sum of the form r + r2 4+ 73 4 .- for some
number 7.

Convergence

-1 . . Lo
For example, when " = 32, the corresponding geometric series is

1,1, 1

2 72181 " This series might look like it grows bigger and
bigger as you add more terms, but there is actually a limit to how
big it can get.

To understand the limit intuitively, think of each term as
1
representing a section of a pie. First, you eat half of the pie, 2. Next,

1
you eat half of the remaining half, 1. Then, you eat half of the

1
remaining quarter, 8, and so on, eating half of what’s left every
time.

You'll never finish the pie, because there will always be something
left over -- but in the limit as the number of terms approaches
infinity, the leftover piece shrinks to 0, and the amount of pie that
you consume approaches 1. This means that the sum of the terms is
1, and we say that the series converges to 1.
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1 1 1 1 15
S+ttt =—

2 4 8 16 16
1+1+1+1+ =1
2 4 8 16 -

1 1 1
2 4 8
1 3 7
2 4 8
Divergence

Justin Math | Calculus

—
Sl

O

—
ot

=
(o]

On the other hand, the series for » = 2 legitimately blows up to
infinity -- the terms keep getting bigger and bigger, so the sum has
to keep getting bigger and bigger. We say that the series diverges to

infinity.
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2+4=6
2+4+8=14
2+4+8+16=30

24448416+ - =00

Computing the Sum

But what about the series for, say, » = 0.9? It’s not so obvious
whether it converges or diverges. Even if we're told that it
converges, what number does it converge to? We can compute this

algebraically.

r=r+rt—rtgrd 3
r=+r24+r34+ )@+t
r=r4+r2+r34+ ) —rr+ri4+r3 4.0
r=0=r)(r+ri+rd 4.

r
=r+ri4rd4..

1—1r

We can check our formula by making sure it evaluates to 1 when

. 1
given " = 3,
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We can also use our the formula to find what the series with
r = 0.9 converges to.

0.9+0.924+09+... = =9

Understanding Nonsensical Results

But there’s one issue -- the formula gives a finite result for r = 2,
which we know diverges to infinity since each additional term is
bigger than the previous term. According to the formula, the series
with » = 2 should converge to —2, which doesn’t make any sense.

In general, the formula only gives the correct result if the series

converges, and the series only converges when rf <1, (We'll see
why in a moment.)

When the series diverges, we can get nonsense results from the
formula because the method by which the formula was obtained is
no longer valid. Algebra doesn’t work on terms that diverge to
infinity -- for example, it’s true that oo + 1 = oo, but subtracting oo
from both sides of the equation leads to the statement 1 = 0, which
isn’t true.
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Determining Convergence

To see why the geometric series only converges when | < 1, we
need to compute the sum formula again, but this time only for the
first n terms of the series, so that we don’t run into any problems
with divergence.

T e L Ry
r—r"“:(7“+T2+7“3+'~+r”)—(r2+r3+r4+--‘+r"+1)
=" = ) )

r—r”“:(l—r)(r+r2+r3+---+7’n)
r—

—:r+r2+r3+...
1—r

Now, we can find the sum of the full series by taking the limit as
n — 00.

r4+r2+rP4+ ... = lim

lim 7! .
In order for n=oo to converge and the denominator 1 — r not

to go to 0, we require that rf <1,
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Case when Manipulation is Required

Lastly, sometimes we may have to factor out and/or separate
numbers from a geometric series in order to find its sum.

For example, to find the sum of the geometric series

oy 2
379 27

we can factor out a 2 and separate the first term from the rest of
the series. Then, we can apply the sum formula to the rest of the
series and simplify the expression.

—_
_|._
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Exercises

Compute the sum of each series.

e 2) 142+3
1) 3tg T T ) 1+2+3+
11 1 2 4 8
3) -4+ —+-—+.. 4) S+ -+
) 5ttt ) 3tgtat
5) %+g+%+... 6) 0.0140.01+0.01+...

7) 09+40.0940.0094... 8) 0.9-+0.009+ 0.00009 + ...
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4.2 Tests for Convergence

Previously, we saw that sum formulas are only valid for series that
converge. But how can we tell whether a series converges or
diverges, in the first place?

Trivial Test

First of all, an easy way to tell that a series diverges is to look at the
terms of the series -- if the terms themselves do not converge to 0,
then their sum cannot possibly converge.

But if the terms do converge to 0, then we can’t tell whether the
series converges or diverges, and we have to use a more powerful
test.

Integral Test

The integral test is a powerful test for proving convergence. It says
that if the series can be written as f(1) + f(2) + f(3) + ... for
some decreasing function ./, then the series converges if the

integral f]oo f(x) dx converges, and diverges if the integral
7 f (@) da diverges.
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For example, to tell whether the series

R,
szt

o0 1
conveges, we can perform the integral test with fl z da:. This

integral diverges to infinity, so the series above diverges to infinity as
well.

X

<1
/ —dz = [Inz]{°
1

On the other hand, applying the integral test to the series

1 1 1
§+3—2+E—|—...

1+
shows that the series converges. (But the series does not converge
to the same value of the integral -- the integral test can tell us that a
series converges, but not the value to which it converges. In general,
the value to which a series converges may be difficult to compute.)
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More generally, considering all exponents in the denominator, we
can use the integral test to show that any series of the form

1 1 1
ﬁ—l_ﬁ-l-g_p_'_"'

converges when P > 1 (and diverges otherwise).

Derivation of the Integral Test

The integral test works because the value of the integral is bounded
above by the series, and below by the series excluding the first term.

f(2)+f(3)+f(4)+---</100f(:v)d93<f(1)+f(2)+f(3)+---
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If the integral converges, then the series excluding the first term
must converge, and adding a single finite term to the series cannot
affect convergence, so the series in full must converge.

On the other hand, if the integral diverges, then since the series is
greater than the integral, the series must also diverge.

Ratio Test

Another powerful test for proving convergence is the ratio test,
which does not require any integration and thus can handle
hard-to-integrate series.

The ratio test says that if the ratio of terms in a series has a limit 7,
then the series is almost like a geometric series with ratio 7 -- it
converges if r| < 1, and diverges if 7[> 1 The only catch is that if
r = 1, then we can’t tell whether the series converges or diverges
(whereas a geometric series with » = 1 must diverge).

For example, consider the following series:

3 9 27 81
+i+§+a+...

n

The n'" term of this series is given by =T, and the ratio of the terms
has a limit of 0, so the ratio test tells us that the series converges.
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. TnFI) . n! - 3ntl
li = lim —m——
3
= 111m
n—oon + 1

=0
On the other hand, the n'" term of the series

1 n 2! 3! n 4!
10 102 10% 104

n!-(=1)"
is given by — 107 , and the ratio of the terms has a limit that

diverges to —o0, so the ratio test tells us that the series diverges.

n+1)!-(—1)7+1 n n
lim % — lim (n+ D! (=1)"* .10
N300 n!-go—nl)" n— o0 n! - (_1>n . 1ont+1
oy (D (D)
n—0o 10
~ lim _n+1
oo 10
= —0
Root Test

Yet another test for convergence, called the root test, says that if
the n™ root of the n™ term of the series has a limit 7, then it is (once
again) almost like a geometric series with ratio 7 -- it converges if
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7| <1 and diverges if "l > 1. The only catch (once again) is that if
r = 1, then we can’t tell whether the series converges or diverges.

For example, consider the following series:

2\*  /3\%  /4\®
1 — — =
HONORON
n 2n
The n'" term of this series is given by (2”—1> , and the n* root of

1
the n™ term has a limit of 1, so the root test tells us that the series

converges.
1
2n | n 2
. n . n
lim = lim
n—00 on—1 n—oo \ 2n — 1

lim

2
n—oo 2n — 1)

_>2

Il
i a N SN
DN =

On the other hand, the n™ term of the series

122 33 4t
5_3+5_6+5_9+5ﬁ+"'

n

n
is given by 537, and the n'" root of the n'" term has a limit that
diverges to infinity, so the root test tells us that the series diverges.
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Limit Comparison Test

Lastly, the limit comparison test tells us that for any series
a1 + a2 +asz + ... if we create another series b1 + b2 + b3 + ...
o a

lim $ =¢ . .
such that n=co bn for some positive constant c, then either

both series converge or both series diverge.

The limit comparison test can simplify the process of finding

convergence for complicated series -- for example, given a series

. n+sinn . . 1
with terms n? , We canh construct a new series with terms n

whose ratio with the original series has a limit of 1.

n4+sinn

n+sinn
I n?
L
. sinn
= lim [1 + ]
n—oo
=140
=1

1
Since the series with terms » diverges, the original series with terms

n+sinn .
nZ  must diverge as well.
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3n+2
Likewise, the series with terms vn5+1 can be compared to the

1
series with terms n?.

3n-+2 5 )
. vnb+1 RT 3n + 2n

T T
n2 n + 1

31 9n2)2
= lim —(3n+n)

n—00 nb +1
. Inb 4 12n5 + 4nt
= lim =
n—00 nb +1
\/ _ 9nS 4+ 12n5 4 4nd
= lim 5
n—00 nd +1
=9
=3

1
We know the series with terms »2 converges, so the original series
3n+2
with terms vn®+1 must converge as well.

Exercises

Tell whether each series converges or diverges.
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n=1 n
5) Z(n!)e_”
n=1
7 ; 2n)!
0 3!
“— (Inn)"
= /1-9n\"
1) 712::1 (1 — 2n>
Zn?-n
13) Zl T

15) Zw

10)

12)

14)

16)

209
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4.3 Taylor Series

The sum formula for a geometric series is an example representing a
non-polynomial function as an infinite polynomial within a particular
range of inputs.

T

T —z+a2?+23+---  (provided |z| < 1)
-z

Many other non-polynomial functions can be represented by infinite
polynomials called Taylor series. The general formula for the Taylor

series of a function f(l’), centered about a point x = ¢, is

n!

0 £(n)(
f@) =3 L9 o
n=0 .

Just like for the geometric series sum formula, the Taylor series can
only be used when it converges. The ratio test is particularly useful
for finding the x-values for which the series converges.

For the sake of example, we will compute the Taylor series of several
familiar functions: €%, sin -, and In x. To introduce some variety,
we will center each series at a different x-value.
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Taylor Series of the Exponential Function

For f(z) = ex, we have ['(z) = em, f(z) = em, and in general
f™ () = €” for all values of n. The Taylor series of /(%) = €

centered at = = 0 is then given by

Applying the ratio test, we see that the series converges when

l.n+1
lim (n;;l)! <1
n—o00 e
n.
. x
lim <1
n—oo [N + 1
0<1

Thus, the series converges for all values of x.
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Taylor Series of Sine

For f(z) =sinx , we have [z ):(30533 [z ):—sinx,
(@) = — cosT, fW(z) =sinz ,and in general

f@)(z) = (=1)"sinz and f(2"+1)(x) = (=1)"cosz

The Taylor series of f(x) =sinz centered at x = 7 is then given
by

n!
n=0
o f(zn)(ﬁ) . f(2n+1)(7r) .
=2 T @ gy

_ Z (—12” sin(m) (z —m)2 + (_(;3:_(;015)(?) (x — m)2n+l
)

= (=1)™(0 L (=Dn(=1 "
-3 (2n)(! o ((2n)+(1)!)($_”)2 "
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Applying the ratio test, we see that the series converges when

(—1)(ntD+1 9 1
. CICES ES (& — m)2(n+DF
hH(}o (=Dt 2n+1 <1
" @n iy (@ — ™)t
(x_w)2n+3
. (2n+3)!
A | Gt | <1
(2n+1)!
)2
im (z —m) <1
n—oo | (2n + 2)(2n + 3)
0<1.

Thus, the series converges for all values of .

Taylor Series of Natural Log

For f(z) =Inz we have f'() = %, f'(x) = _m%, [ () = m%,

—1 (n—=1)!
and in general F (@) = (1)t xnl) forn>1,

The Taylor series of f(z) =Inz centered at = = 1 is then given by
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(z —1)"
= n!
< pln)
S OR DEAC PR
n=1 :
0o 1yp—1(n=1)!
_4m+§:(”n'” (z —1)"
n=1 '
o -1 n—1
_ Z ( . (l‘ o 1)n
n=1

Applying the ratio test, we see that the series converges when

(G +1
lim (@ D" <1
n—s00 (—12:1_1 (z —1)"
e [n D!
|z — 1| lim " <1
n—oo [n + 1
|l —1] <1

Thus, the series converges for 0 < z < 2.

Derivation

To see where the formula for the Taylor series comes from, we start

by performing repeated integration on the function f(n+1)($).
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] = / 1 (@) (do)
Y

n+1 integrals

- / - / 7 @) = 1 e) (do)"
L

n integrals
= [ [ @) = 1) - S - ) (o)
c c
n-1 integrals
i i _ _ - () 2 -2
= [ [ @ - 100 - 1O - 9 - E5 D - o o
(& c

n-2 integrals

1 c . (n) c
= f(a) — f(e) — f1(e)(z —c) — %Q(w T B I?Q(L e
Solving for f(x)' we find
1! (n)
F@) = 1)+ 7@~ + L@ 24 LD oy

n!

2
4 /I/f” f(”H)(z:) (dz)" T
—_—

n—+1 integrals

Taking the limit as n — 0o, we can express [ as the sum of its
Taylor series and some remainder term.


https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20f(x)%20%3D%20f(c)%20%2B%20f%27(c)(x-c)%20%2B%20%5Cfrac%7Bf%27%27(c)%7D%7B2%7D(x-c)%5E2%20%2B%20%5Ccdots%20%2B%20%5Cfrac%7Bf%5E%7B(n)%7D(c)%7D%7Bn!%7D%20(x-c)%5En%20%2B%20%5Cunderbrace%7B%5Cint%5Climits_c%5Ex%20%5Ccdots%20%20%5Cint%5Climits_c%5Ex%7D_%7B%5Ctext%7Bn%2B1%20integrals%7D%20%7D%20f%5E%7B(n%2B1)%7D(x)%20%5C%2C%20(dx)%5E%7Bn%2B1%7D%20%5Cend%7Balign*%7D%0
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% 1(n)(,
f(CU) = Z f ( )(CU - C "+ lim / / f ”""1 dx)n—l—l

n! n—o0o
n=0

n+1 mtegrals

For many familiar functions, with @ sufficiently close to c, it is often
the case that the remainder decays to zero:

lim / / f n+1 dl,)n+1 0
n—o00

n+1 1ntegrals

For example, the remainder decays to zero if ./ is any polynomial,
because differentiating an n" degree polynomial 7 + 1 times always
yields a result of 0, and the integral of 0 is always 0. (But this is
rather trivial since the Taylor series of a polynomial is the
polynomial itself.)

More generally, we can place an upper bound on the size of the n*"
remainder:

/ / FO () (da)" T < (Hﬁ‘?{ f<n+1)‘> C/TC/T 1 (da)™+!
——

n+1 1ntegrals n+1 integrals
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Then, since
xT X n+1
// 1 (dz)"+! _ (="
(n+1)!
C C
N—_——

n+1 integrals

we must have that

x

lim // £ () (dz)™ | < lim (max

n+1

n |‘L 7C|
S H)D (n+1)!

n—00 n—00 \ [c,x]
N
n+1 integrals
Provided that the (n+1)* derivative doesn’t grow large enough to
overpower the (n + 1)! term in the denominator as n — oo, the

remainder will decay to zero. Then the function will be equal to its
Taylor series, provided that the series converges.

n.

%0 r(n)(,
fa) =S LD g
n=0



Justin Math | Calculus

Exercises

219

Compute the Taylor series for the following functions, centered at
the given points. Also compute the interval of convergence.

3) f(z)=cosx

at x =0

5) f(z) = arctanz

at x =0

1

N f@) =
at x = 2

atx=1m
f(x) =27
at r = —1

1
f(iU):E
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4.4 Manipulating Taylor Series

To find the Taylor series of complicated functions, it’s often easiest
to manipulate the Taylor series of simpler functions, such as those
given below.

1 oo
_ n
1_;6_255 (-1<z<1)
n=0
o xn
e’ = — (o0 <z <00)
— nl
0 (_1)n+1
ln(1+x)zzia:" (-l<x<1)
n
n=1

o~ (="
cosT = 7;) @) 2 (—00 < x < )

— (—1)"
arctan z = 1;) mx%ﬂ (-1<x<1)
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Multiplying by a Constant

For example, to compute the Taylor series of ze® centered at x =0,

T __ oo "
we can take the elementary Taylor series € — ano n! and
multiply it by x.

o n
T xr
re =2 E —‘
n.

n=0
+1
n!

o0
Y&
n=0

Though not strictly necessary, we can make the exponent on the x
match the index of summation by changing the index of summation
tok=n-+1.

e :; k—1)!

In this case, since we are multiplying the series by a constant, the
interval of convergence of the series will stay the same:
—00 < xr < 0.

This is because a convergent series has a finite sum, and multiplying
by a constant cannot cause a finite number to become infinite;
whereas a divergent series has an infinite sum, and multiplying by a
constant cannot cause an infinite number to become finite.


https://www.codecogs.com/eqnedit.php?latex=x%0
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Multiplying Two Series

xr

€
Similarly, to compute the Taylor series of T—z around = = 0, we can

. Loet =30 2l
multiply the two elementary Taylor series © — Z.n=0 %! and

1 k
=5 = Xhe0 2",

i mn—l—k
N n!
n,k=0

Defining a new index of summation m = n + k, we can write the
series in order of increasing powers of .

ev 0 xn—l—k
1—=x - Z n!

n,k=0
>

- Y
m,k=0 (m k)
o0 m

-3 (X )
m=0 \k=0 (m — k)!

The interval of convergence of a product of series is at least the
intersection of the series’ individual intervals of convergence.

Here, recalling that the interval of convergence of the Taylor series

of e is (—00,00) and the interval of convergence of the Taylor
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1
series of 7=z is (-1, 1), we determine that the interval of

X

€
convergence for the Taylor series of T—= must be at least the
intersection (—00,00) N (=1,1) = (=1,1),

If we go through the trouble of performing a test of convergence,
it’s possible that we might find a larger interval of convergence --
but just based on the intervals of convergence of the two series
being multiplied, we can say with certainty that the product
converges for at least —1 < x < 1, without needing to perform any
tests of convergence.

Adding Two Series

Sometimes, we can take advantage of the fact that it’s easier to add
or subtract series than to multiply series.

For example, to find the Taylor series of e®(1 —€”) around z = 0,
one option is to multiply the Taylor series of e* and 1 — e*.

However, an easier route is to simplify the expression to e — 2%,
and then subtract the Taylor series of ¢2* from the Taylor series of
e* . To compute the Taylor series of ¢2*, we can substitute 2z for x
in the Taylor series of e*.



Justin Math | Calculus 225

em(l _ em) — % — 621

I
]
| "
|
NE
3|3
&3

n=0 n=0
g 9n n
=D e
=0 n.
oo
B 12\
ICEE
=0 n. n
oo
1-2"
= ' $’I’L
=0 n.

Again, the interval of convergence of a sum or difference of series is
at least the intersection of the series’ individual intervals of
convergence.

The series for e* converges for —oco < x < o0, so the series for
€2 converges for —oo < 2z < 00, which simplifies to
—o0 < x < oo. The intersection is given by
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(—00,00) N (=00, 00) = (—o0, OO), so the interval of convergence

of the series for e — €27 is at least —oco < & < o0.

Note that this interval contains all real numbers, so the interval can’t
get any bigger. Thus, the interval of convergence of the series for
et — e2%js —o0o < x < 00.

Using Differentiation and Integration

We can also use differentiation and integration to simplify the
process of finding Taylor series.

For example, to find the Taylor series of sin® 2, one option is to
multiply the series of sin x by itself -- but an easier option is to
differentiate to yield a simpler result, then find the Taylor series of
the simpler result, and then integrate the Taylor series to get back to
the original function.
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(sin? z)’ = 2sinz cos x

(sin? )’ = sin 2z
o (=D"

(sin2 :U)l _ Z —'(Qx)2n+1
ot (2n+1)!

(—pmaztt o
(2n + 1)!

hE

(sin? z) =
n=0
0 2n+

_ 2n+1
/sm x) = /nz% 2n+ 1 dx

(=D)"2)* s
=C n-+
sin = +Z 2n+1)!(2n—|—2)x

2n+

sin :C—C+Z 2n—|—2 ~ L g2

To solve for the constant of integration, we can substitute =z = 0.

2n+
sin? 0 = C' + Z 2n + 2 o (0)2 2

0:C+ZO
n=0
0=C

Thus, we have

0 2n+1
N (=1)"(2) 242
sin®x = E o x
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Though not strictly necessary, we can clean up the series a bit by
changing the index of summationto k = n + 1.

> _1k—122k—1
= 0 CD P,

x
|
£ (2h)!

Neither differentiating nor integrating a Taylor series changes its
interval of convergence, so the interval of convergence of the series
for sin? z is the same as the interval of convergence of the series for
sin 2z, which is —oco < = < oo,

Substitution

In the previous examples, we computed the series for sin 2z and
e?® by substituting 2z for x in the series for sin 2 and e*. We can
extend this idea to more clever substitutions.

_1
For example, to compute the series of the function 2+z°, we can

5

substitute — 2 for x in the elementary series 7=z = 2Z.n=0"".

1 1 1

2425 2

I
N = [\
8
—
| /l\
8
o | &, w8,
\_/z ~—_
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After substitution, the interval of convergence becomes

—1<-%5< 1, which simplifies to V2 <z < V2.

Exercises

Compute the Taylor series for the following functions, centered at
r=0.

1) f(z)=zIn(l +2?) 2)  f(x) = % arctan(2z?)

3 f) = 9 J@) = cos (v7a)
5 J() =In(e +2)
6) f(x)=(cosz+sinz)(cosz —sinx)

7)  f(z) = sin*(3x) 8)  f(x) = cos?(mx)
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4.5 Solving Differential Equations
with Taylor Series

Many differential equations don’t have solutions that can be
expressed in terms of finite combinations of familiar functions.
However, we can often solve for the Taylor series of the solution.

Demonstration

For example, to solve the differential equation ¥ + 7y’ + zy = €*

. . _ o0 n
we can substitute the Taylor series ¥ = > n=0nT" and
et — ZOO ™ -
— Z.n=0 7l and solve for the coefficients a@n.

n—1

Differentiating, we have Y =3l nanT and

y' =3 on(n— 1)%575"_2. Substituting the derivatives in the
differential equation, re-indexing so that all exponents are n,
expressing all sums with the same starting index, and combining
terms under a single sum, we condense the expression into a single

polynomial.


https://www.codecogs.com/eqnedit.php?latex=a_n%0
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e =y" +ay +ay

—:wnnflanm”Q—F:z: na,z" '+ z anx”
S or=d nn-1) > >
n=2 n=1 n=0
n(n — 1)apz™™ 2+Znanx +Zanx
o0
Zx— Zn+2 (n+ 1)apyoz” +Znanx +Zan 1"
’ = n=1 n=1

it
HMSB

n=0
> n 00 00

1+ Z =2+ Z(n +2)(n + aptoz™ + Znanxn + Z an—12"
n=1"" n=1 n=1 n=1

oo
1
0=2a9 —1+ Z [(n +2)(n + Dant2 + nay + an—1 — 4'] "

n=1 n

For the expression to evaluate to 0, we must have 2a2 —1 =0 and
(n+2)(n+ 1ant2 +nan+ an—1 — 77 =0 for n > 1,50, we can
choose @0 and a1 to be our constants @0 = C1 and a1 = C2, set

_1 - .
@2 = 3, and express all other coefficients a» for 7 > 3 in terms of
the constants a0 = C1 and a1 = C2 through a recurrence:

0=(n+2)(n+1)ante2 +nay + an—1 — o (n>1)

ap+2 = W (l — Nap — an—l) (n>1)
1

+1) \ n!
ap = oy p— ((n i T (n—2)ap—9 — an_3> (n>3)



https://www.codecogs.com/eqnedit.php?latex=a_0%0
https://www.codecogs.com/eqnedit.php?latex=a_1%0
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Thus, our solution is given by ¥ = 2_n=0 %" where ao = C1,

1
a; = Cs, 2= 35 and

an = n(nl_ 3 <(n i 7 —(n—2)ap_2 — an3> (n>3)

As another example, we will solve the differential equation

y" =y'y using the same process. We write the solution as the

Taylor series ¥ = > ne0 OnT , substitute its derivatives into the
equation, and simplify.

y =vy
Z n(n —1)(n — 2)a,z" 3 = <Z nanx”1> (Z anx”>
n=3 n=1 n=0
Z n(n —1)(n — 2)a,z™ 3 = (Z(k + 1)ak+1xk> (Z ammm>
n=3 k=0 m=0
Z n(n —1)(n — 2)a,z" 3 = Z (k 4+ Dajp1amat™™

n=3 k,m=0

Z(n +3)(n+2)(n+ Dapyza” = Z Z(k + 1)ak+1ank] x"

n=0 n=0 Lk=0
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We can choose @0 = C1, a1 = C3, and a2 = C3 as our constants
and express all other coefficients an for 7 = 3 in terms of these
constants through a recurrence:

(n+3)(n+2)(n+ Dansz = > _(k+1)ars1an¢ (n>0)
k=0
e — > h—olk + Dag1an
T 4 3)n+2)(n+1)
_ ok + 1)agt1an—s—k
nin—1)(n—2)

> 0)

(n

(n=3)

n

Thus, our solution is given by ¥ = 2_n=0 4T where ao = C1,
a1 = C2, az = C3, and

o (k+ 1)ag 10,3k
n(n—1)(n —2)

(n=3)

Exercises
Use Taylor series to solve the following differential equations.

1) y//l +$2y — 1 2) y// +xy — eLC

3) ¢ =2 4) " =ay' (1 +x)
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Solutions
to Exercises
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Part 1
Chapter 1.1

) -1 2) 10
3) 6 4)  does not exist

left: 5, right: 3
5) -3 6 1
7)) 0 8) does not exist

left: 0, right: tanl
9) o 10) —o0
11) oo 12)  does not exist

left: — oo, right: oo

13) o 14) —o0
15) 1 16) 0
17)  does not exist 18) -2
) ) b2
21) 1 22) 7
23) 1 24) o0
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25) 2 26) does not exist
left: oo, right: — oo
27) 5 28) 3
2
Chapter 1.2
1) oo 2) 0
3) e 4) 1
5 0 6) 0
7 V3 8) 0
9) 2 10) 0
1) ¢ 12)  e3
13) e % 14)  ex
Chapter 1.3
) flx)=5 2) flx)=-3

3) fl(z)=2x 4)  fl(x) =14z



Justin Math | Calculus

5)

7)

9)

flz)=2z-1 6) f'(z) = 32

1@ =T 8 f@)=52

f@) = -2 10)  f'(2) = — iy
Chapter 1.4

f'(z) = 35 2) fla)=—%

f'(z) =6y 4 flz)= 2273

fl(z)=—%a73 6) fllz)=ha % -2

R
Fl(x) = V2zV2 1 4 32V3-1 4 ﬁ

fl(x) = =5 +mext! — exw !

Chapter 1.5

f(z) = 122(22% + 1)?

f(z) = 8(4a3 — 2z) (2t — 22)7

442

') = 75 4)

F'@) = Jaemms

239

f(z) = 6.22%1 + 512101
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9)

10)
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f,(.’li) = (33;__32)2 6) f’(.’E) = %
fl@) = =2 8) f(@)= =g
= (1—a5)3 4y +1

Chapter 1.6

5x2+12x+4
HORE

()= (x—=3)(xz+1)%*(5Bx—17)
f(z) = x(x+ 1)%(5x + 2)

fl(z) = %(2:1: +3)3(z — 5)?(1423 + 1322 — 302 — 5)

R 6) J'(2)= gy
f(z) = _ 4224222410 8) fl(z) = — 284604 —3224-2
- (222—-5)2 = (@-DZ

() — 2(a+1)?(4a?—Tz—3) Py _ 3203412421
f (.’L’) (z—1)% 10) f (l’) - (\/54‘2)2\/5
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Chapter 1.7
Do pp— 2 f(2) = sec(z)elHena
— in 1
3) fl(z)=(In2)2%"%cosz 4) f(x)= —
5  f'(z) = —2ztanz? 6) fl(z)= % cot 2z
/! _ 1
7) f (x) T 2y/(In5)2—(Inx)?
8) f'(z) = (sinzcos?z) (2cos?x — 3sin® )
) 1) = O

1) f@) = gt

12) f/ (x) _ arcsin(z)(2 arccos z—arcsin x)

V1-z2
13) f,($) _ ezim(lll?xm)gm 14) f’(x) _ cotm—ixxl(sinm)
Chapter 1.8
2 15
1) x=-— 3 (max) 2) x= DY (min)
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3) o= é (min) 0 = g (max)
5 xz=-1-v2 (max) 6) x=-1 (min)
r=-1++2 (min) z=1 (min)
7) x=-1 (max) 8) x=-3 (min)
=0 (saddle) x = (max)

x =2 (min)

9) x=-5 (min)
= -2 (max)
=0 (min) i

r=25 (max)

Chapter 1.9
1) 23.00 2) 3.88
3) —1.92 4) 0.77
5) 0.92 6) 1.39
7)) 1.09 8) 2.99

9)  0.49 10)  1.00
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Chapter 1.10

1) 1 2) 0
3) oo 4) oo
5 3 6) 0
7)1 8) 1
9) % 10) e
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12)
13)

14)

15)

Part 2
Chapter 2.1

%:z:4—:z:3—:%3+0 2) 22 —2+C
1254+ 323 4+ 42+ C 4) 2z+2mz-14C
%tan3x—2cso§+0 6) %sec3a¢+0
—12cos———tan5x—|—C’

37rcsc7mc+3 cosmx + C
%e4z+e_3”—e_$+0

e 4 %e3x + %6_573 -2z +C
2e” + 2z + e % + %6_21 +C

_3 _
2z_§e 3x+C

I
wino
®

}1 arctanx — 5arcsinx + C

2arctanx + % arcsinx + C

% arctan 3z — i arcsindx + C
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16)

1)

3)
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—L_ arctan 2z + % arcsin %m +C

5v/2
Chapter 2.2
9 2) 1-V3
1) N
e—1- 6 2
L(2e 32 —2e3) 8 dr—2- %
3 10)  2V2
319 12) 8
Chapter 2.3
23 4+2)3 +C 2) gz +3)°+C
—V1i—22+C 1) —gmmp +C
%tan?’x—i-C' 6) 2Vsinz+C

- m +C 8) —sin(cosz) + C
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9)
11)
13)

15)

10)

%e$3+1 +C 10) e—cotx +C
2eVat-1 4 ¢ 12) e +C
arctan(e”) + C 14)  arcsin(lnz) + C
2arcsin /x + C 16) Larctanz?+C

Chapter 2.4
(22 — 2z + 2)e* + C 2) 1z’2lnz—1)+C

(x4 1)sinz +cosz +C 4) (222 -Tz+7)e* +C
%($3 — 1)6»”33 +C 6) i(sinz —cosx)e® +C
%x?’ [9(ln$)2 —6lnz + 2] +C

sin () — e” cos (e*) + C

sIn(z? + 1) + zarctan () + C

1 1
5COST — 1—Ocos5m+C

Chapter 2.5

2) o

e
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3) & 4) &
5 —o© 6) oo — oo (indeterminate)
7 17 8) L
) 2 V7
9) 1 10) 2
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10)

Part 3

Chapter 3.1
y=4dx+C 2)
y=—iln@?-1)+C 4)
y = +vC —2cosz 6)
y = 2l _ 1 8)

y = e + 2 + C1x + Oy

y=ga3+C
y=—3

y=—1x+vC+2Inz

cosx? +C

- 1.2
y = sin 1(6230 +C)

y = 572t +sinz + C12? + Coz + Cs
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Chapter 3.2
1) 2)
Yy Yy
Pt L s - l f
PR SN l ,
AN LS
— l N—N\—\—=z _\7\f\.—| —f—t—ux
\‘. \ N ‘\ -
l \ Vool ‘x Vo=t
l \ Loy ‘x Vo
| |
y(0.25) ~ y(0.25) ~
y(0.5) ~ —0.06 y(0.5) ~ 0.01
y(0.75) ~ —0.20 y(0.75) ~ 0.04
y(1) =~ —0.44 y(1) = 0.15
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3) 4)

R Sl e

y(0.25) ~ 4(0.25) ~ 0.25
y(0.5) ~ 0.06 y(0.5) =~ 0.42
y(0.75) ~ 0.19 y(0.75) ~ 0.55
y(1) ~ 0.38 y(1) ~ 0.66
Chapter 3.3
1) u=z+y 2) u=x-—2
Y= C—=x z y=~Ce 23:
3) u=a’—y’ 4) u=z*+¢*

y==+\22+VC+ 2z y=—Va’+m(C - 2)
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10)
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u =y 6) u=axy’
c 2
= — —_ _ 4
Y 22 + x y== 2 =+ z
Chapter 3.4
y = Cre 4" 4 Che” 2) y=Cre P 4 Che

y = C1 cosdx + Co sindx

y = C1e* 4 Cy cos (\/§a:> + C3sin (\@9@)

y = (Cycosx + Cysinx) 2

y = (Cycosdx + Cysindx) e *

y = (C1 + Cyx) e*®

y = C1 + Cox + C32? + Cya® + Cse® + Cge @
y = C1 + Cox + C32? + Cy cosz + Cs sinx

y = C1 + Cox + C322 + Cye” + Cye™ 2"
Chapter 3.5

y=Cicosx+ Cysinx + %65”5
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5)
6)

7)

2)

—3x + 3sin 2x—2 cos 2z

y = Cie =

sin(wz)+7 cos(mx)
m+m3

y=Cre” +Co —
Yy = Cle\/i”” + C’ze_ﬁx +C5 — %a;?’ -

sinz+2cosx cos(2z)—4sin(2z)

1
y20162$_ 5 + 17

_1 P
yzcle 21_’_%6x+351nz560051

3 3
_ s —szx 2,4 23,2 1 184
y = Cre2” 4 Cae™ 2 srt — 52x° — gz cos(x + 1) — 533

y=Cre ™ + 581n(5x)2gcos(5x) + sin(2x+1)f52 cos(2z+1) 11
Chapter 3.6

y=CFm cosz  2) y= G -2 —ae

y=Cicscx —cotx 1) y= Cuttans

yzw 6) y=Cisinz —cosx
Chapter 3.7

y=¢e"(C1+ Cox —Inx)

y = 1e” (C1 + Cox — 32% + 222 Inx)
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3)

5)

6)
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y = %GZ”C [Cl + In (e_zx + 1)] — %6_2" [C’l +1n (62“c + 1)} — %
y = %e"” [Cl + Cox — In(1 + x2) + 2x arctan x]
y = Crcosz + Cosinz + 5e® [(10z — 14) sinz + (52 — 2) cos ]

y=C1+ 3e" [Co + (—2? + 4z + 1)sinz + (—2% — 22 + 5) cos z]
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Part 4

Chapter 4.1
1y i 2) o
3) 3 4) 2
5) oo 6) oo
71 8) 17

Chapter 4.2
1) diverges 2)  converges
3) converges 4)  converges
5)  diverges 6) diverges
7)  converges 8)  converges
9) converges 10)  converges
11)  diverges 12)  converges

13)  diverges 14)  converges
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15)

diverges 16)
Chapter 4.3
oo -1 n+1
n
n=1
-1<z<1
- (_1)n 2n
S C, y
n=0 (Qn)'

Chapter 4.4

Justin Math | Calculus

converges

i (_21)71—’2_2:-1-1 1,6n+1
n

1 1
_3_< <3_
021

n=0
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o0
> (-2 4)
n=0
1 < 1
— m— x —
2
o0
(_1)n+1
1 n 6
+ nz::l nemr v )
—e<zxz<e
i (_1)n+132n22n—1x2n 8)
— (2n)!
—o<r<oo
Chapter 4.5
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1

a02017a12027(12:037&3:65014:0

an—5
n(n—1)(n—2)

Ay — —

1
a02017a1202,a2=§

Qp =

ag = Ch, a1 = Ca, ap = C3

no(k + Dagg
n(n—1)(n—2)

ap =

1 { 1 4
nin—1) [ (n—2)! ns

(n

(n=5)

} (n>3)

> 3)
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4) ay=C1,a1 =02 a2 =0C3,a3=0,a4 =0

n—4 (=1)"*
k=1 n—k—3 %k

n(n —1)(n — 2)

Up =

(n=>5)



