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‭Part 1‬
‭Limits and Derivatives‬
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‭1.1 Evaluating Limits‬

‭The‬‭limit‬‭of a function‬ ‭, as‬ ‭approaches some value‬ ‭, is the‬
‭value we would expect for‬ ‭if we saw only the portion‬‭of the‬
‭graph around (but not including)‬ ‭. If the resulting‬‭value is‬ ‭,‬
‭then we denote the limit as follows:‬

‭Limit vs Function Value‬

‭For example, for the function‬ ‭, the limit as‬ ‭is‬‭the‬
‭same as the actual value of the function, which is‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=a%0
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‭On the other hand, for the function‬

‭the limit as‬ ‭is not the same as the actual value‬‭of the‬
‭function: the limit is‬ ‭, while the actual value of‬‭the function is‬

‭.‬

‭Remember, the limit is the value we would expect if we only saw the‬
‭surrounding parts of the graph -- and in this graph, the surrounding‬
‭y-values get closer and closer to‬ ‭as the x-value‬‭gets closer and‬
‭closer to‬ ‭.‬

‭Based on this, we expect that the y-value is‬ ‭, so‬‭we say the limit is‬
‭, even though our expectation here is incorrect.‬‭The limit is still‬ ‭,‬

‭and it is different from the actual function value‬ ‭.‬
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‭Continuity‬

‭Most of the functions we’re familiar with from algebra are‬
‭continuous‬‭, meaning that the actual output value‬ ‭is the same‬
‭as the limit as‬ ‭.‬

‭However, for‬‭discontinuous‬‭functions such as some‬‭piecewise‬
‭functions and rational functions, the limit as‬ ‭might‬‭be‬
‭different from the actual output value‬ ‭.‬

‭If a function can be drawn in a single stroke, then it is continuous,‬
‭and the limits are the same as the function values. However, if you‬
‭need to pick up your pen at some point while drawing the function,‬
‭then the function is discontinuous, and some limits might be‬
‭different from the actual function values.‬

‭Existence of Limits‬

‭Sometimes, limits don’t even exist. For example, for the function‬

‭the limit comes out to different values, depending on whether we‬
‭approach‬ ‭from the‬‭left‬‭(denoted‬ ‭) or the‬‭right‬
‭(denoted‬ ‭).‬
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‭●‬ ‭Coming from the left, we are on the piece‬ ‭, so‬
‭the limit is‬ ‭.‬

‭●‬ ‭Coming from the right, we are on the piece‬ ‭, so‬
‭the limit is‬ ‭.‬

‭In general, a limit exists when its left and right limits are equal, and‬
‭does not exist if its left and right limits are not equal.‬

‭For example, for the function‬ ‭, we have‬

‭because‬ ‭and‬ ‭.‬

‭On the other hand, for the function‬ ‭, we have that‬

‭does not exist because‬ ‭while‬

‭.‬
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‭Limits at Infinity‬

‭One exception to the rule that left and right limits must be equal is‬
‭limits at infinity‬‭, i.e. limits with‬ ‭or‬ ‭. In this‬‭case, it‬
‭doesn’t make sense to talk about a limit in more than one direction,‬
‭because we can’t choose numbers greater than‬ ‭, and‬‭we can’t‬
‭choose numbers more negative than‬ ‭. As a consequence,‬‭limits‬
‭with‬ ‭are just taken as left limits (‬ ‭), and limits‬‭with‬

‭are just taken as right limits (‬ ‭).‬

‭Limits at infinity can be thought of in terms of end behavior and‬
‭horizontal asymptotes. For example, the polynomial‬

‭has end behavior‬ ‭as‬ ‭,‬
‭and‬ ‭as‬ ‭. Its limits at infinity are then‬

‭, and‬ ‭.‬
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‭On the other hand, the end behavior of the rational function‬

‭consists of a horizontal asymptote‬ ‭. As a result,‬

‭its limits at infinity are‬ ‭, and‬ ‭.‬

‭The exponential function‬ ‭has mixed end behavior:‬‭it‬
‭blows up to infinity as‬ ‭, and settles down towards‬‭an‬
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‭asymptote‬ ‭as‬ ‭. Consequently, its limits at infinity‬

‭are‬ ‭, and‬ ‭.‬

‭Indeterminate Form‬

‭Some limits like the one below can be difficult to think about‬
‭graphically, because the function itself is difficult to graph.‬

‭At first sight, it’s not clear how the function behaves as‬
‭approaches‬ ‭. We can’t evaluate the function at‬ ‭because it is‬
‭undefined there, and it’s not easy to see what happens as‬
‭or‬ ‭, since both the numerator and denominator go‬‭to‬ ‭.‬
‭(Therefore, we say that the limit is‬‭indeterminate‬‭in its current‬
‭form.)‬
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‭Thankfully, algebraic tricks can often be used to simplify difficult‬
‭limits into easier limits. In this case, if we multiply the numerator‬
‭and denominator by the‬‭conjugate‬‭of the numerator,‬‭then we can‬
‭simplify the limit to a point where we are able to evaluate the‬
‭function at‬ ‭.‬

‭Similarly, to solve indeterminate limits where the numerator and‬
‭denominator are both polynomials, we can often simplify the limit‬
‭by factoring and canceling common factors:‬
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‭Estimating Limits Numerically‬

‭Another trick for evaluating limits is thinking about them‬
‭numerically. We can try substituting a number for‬ ‭that is close to‬
‭the intended limit in each direction, and doesn’t make computations‬
‭too hard.‬

‭For example, to evaluate the limit‬

‭numerically, we can approximate the left and right limits by‬
‭substituting‬ ‭and‬ ‭, respectively.‬

‭Both the left and right limits are approximately‬ ‭, so we would‬
‭estimate the limit to be‬ ‭. Indeed, this matches the‬‭result we‬
‭found earlier.‬

‭Likewise, to evaluate the limit‬

https://www.codecogs.com/eqnedit.php?latex=x%0
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‭numerically, we can approximate the left and right limits numerically‬
‭by substituting‬ ‭and‬ ‭, respectively.‬

‭Both the left and right limits are approximately‬ ‭, so we would‬
‭estimate the limit to be‬ ‭. Indeed, this matches the‬‭result we‬
‭found earlier.‬

‭Caveat to Numerical Evaluation‬

‭One caveat to numerical evaluation is that it always results in‬
‭decimal approximations, and if the actual limit value is irrational, it‬
‭can be difficult to find the exact value of the limit.‬

‭In a simple case, we might be able to recognize that an‬
‭approximation of‬ ‭actually corresponds to the value‬ ‭.‬
‭However, in a trickier case, we might not be able to recognize that‬

‭an approximation of‬ ‭actually corresponds to the‬‭value‬ ‭.‬
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‭Exercises‬

‭Evaluate the indicated limits. If the limit does not exist, list the left‬
‭and right limits separately (if applicable).‬



‭22‬ ‭Justin Math |‬‭Calculus‬



‭Justin Math |‬‭Calculus‬ ‭23‬



‭24‬ ‭Justin Math |‬‭Calculus‬



‭Justin Math |‬‭Calculus‬ ‭25‬

‭1.2 Limits by Logarithms, Squeeze Theorem,‬
‭and Euler’s Constant‬

‭A useful property of limits is that they can be brought inside‬
‭continuous functions, i.e. the limit of a continuous function is the‬
‭function of the limit.‬

‭For example,‬ ‭is a continuous function, so to take‬‭the limit of the‬
‭square root of some expression, we can first find the limit of the‬
‭expression and then take the square root.‬

‭We can do the same thing with other continuous functions, such as‬
‭.‬
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‭Exponential Limits‬

‭Logarithms in particular are useful for evaluating exponential limits,‬
‭which have variables in both the limit and the base.‬

‭For example, to evaluate the limit‬

‭it is easiest to start by evaluating the logarithm of the limit.‬

‭Since we know the logarithm of the limit is‬ ‭, the‬‭limit is just‬
‭raised to the power of‬ ‭.‬
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‭Using the same process, we can show that‬

‭because this time, the logarithm of the limit evaluates to‬ ‭.‬

‭Squeeze Theorem‬

‭Another useful trick for evaluating difficult limits is squeezing them‬
‭between limits that are easier to evaluate.‬

‭For example, to evaluate the limit‬



‭28‬ ‭Justin Math |‬‭Calculus‬

‭we can make use of the fact that‬ ‭is bounded between‬ ‭and‬
‭. Then as‬ ‭we have the following:‬

‭The inequality states that the limit must be between‬ ‭and‬ ‭, and‬
‭the only number that is between‬ ‭and‬ ‭is‬ ‭itself,‬‭so by the‬
‭squeeze theorem‬‭, the limit must evaluate to‬ ‭.‬

‭In other words, the limit must be‬ ‭because we squeezed‬‭it between‬
‭two other limits, both of which evaluate to‬ ‭.‬
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‭As another example, we can show that‬

‭by performing a squeeze between the bounds of‬ ‭:‬

‭Euler’s Constant‬

‭Lastly,‬‭Euler’s constant‬ ‭can be expressed as the‬‭following limit:‬

‭It also holds as‬ ‭:‬

‭Substituting‬ ‭, we can also express the limit as‬

‭.‬
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‭Knowing the above limit forms of Euler’s constant allows us to‬
‭compute limits that are in a similar form. For example, to compute‬
‭the limit‬

‭we can make a substitution that results in‬ ‭. Then‬ ‭, and‬
‭translates to‬ ‭, and the limit becomes computable‬

‭in terms of Euler’s constant:‬

‭Similarly, to compute the limit‬
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‭we can make a substitution that results in‬ ‭. Then‬

‭, and‬ ‭translates to‬ ‭, and the limit becomes‬
‭computable in terms of Euler’s constant:‬

‭Exercises‬

‭Evaluate the following limits using logarithms.‬
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‭Evaluate the following limits using the squeeze theorem.‬

‭Evaluate the following limits using Euler’s constant.‬
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‭1.3 Derivatives and the Difference Quotient‬

‭The‬‭derivative‬‭of a function is the function’s slope‬‭at a particular‬
‭point. We can approximate the derivative at a point‬ ‭by‬
‭choosing another nearby point on the function, and computing the‬
‭slope. If we increase the input‬ ‭by a small amount‬ ‭, then we‬
‭reach an x-coordinate of‬ ‭, and the corresponding‬‭point on‬
‭the function is‬ ‭.‬

‭We compute the slope between the points‬ ‭and‬
‭, and simplify.‬
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‭The above expression is called the‬‭difference quotient‬‭of the‬
‭function‬ ‭. As the point‬ ‭gets closer and‬
‭closer to the point‬ ‭, the difference quotient becomes‬‭a‬
‭better and better approximation for the exact slope at‬ ‭.‬

‭Thus, we can compute derivative, which is the exact slope at‬
‭, by taking the limit as the second point approaches‬‭the‬

‭first point. In other words, the derivative is the limit of the‬
‭difference quotient as the difference‬ ‭between the‬‭two input‬
‭x-values approaches‬ ‭.‬

‭The derivative of the function‬ ‭at the point‬ ‭is‬‭indicated‬

‭by the notation‬ ‭. However, to simplify notation,‬‭we often‬

‭write the derivative as‬ ‭instead of‬ ‭.‬
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‭Demonstration‬

‭As an example, we’ll use the difference quotient show that the‬

‭derivative of‬ ‭is‬ ‭.‬

‭This means that the slope of‬ ‭at any point‬ ‭is‬
‭given by‬ ‭.‬

‭In particular, the slope at‬ ‭is given by‬ ‭, the‬
‭slope at‬ ‭is given by‬ ‭, and the slope at‬ ‭is given‬
‭by‬ ‭.‬

‭Looking at the graph, these values make sense:‬

‭●‬ ‭At‬ ‭, the graph is falling down at a steep angle,‬‭which‬
‭matches the negative derivative‬ ‭.‬
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‭●‬ ‭At‬ ‭, the graph is flat at the bottom of a valley, which‬
‭matches the derivative‬ ‭.‬

‭●‬ ‭At‬ ‭, the graph is climbing up at a steep angle, which‬
‭matches the positive derivative‬ ‭.‬

‭The values for the derivative also make sense numerically:‬

‭●‬ ‭If we start at the point‬ ‭and pick another point‬

‭on the function‬ ‭, the slope‬

‭between the two points is‬ ‭, which‬
‭approximates our derivative value‬ ‭.‬

‭●‬ ‭If we start at the point‬ ‭and pick another point‬

‭on the function‬ ‭, the slope‬

‭between the two points is‬ ‭, which‬
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‭approximates our derivative value‬ ‭.‬

‭●‬ ‭If we start at the point‬ ‭and pick another point‬

‭on the function‬ ‭, the slope‬

‭between the two points is‬ ‭, which‬
‭approximates our derivative value‬ ‭.‬

‭Exercises‬

‭Use the difference quotient to differentiate the following‬
‭functions.‬



‭38‬ ‭Justin Math |‬‭Calculus‬



‭Justin Math |‬‭Calculus‬ ‭39‬

‭1.4 Power Rule‬

‭It can be a pain to evaluate the difference quotient every time we‬
‭want to take the derivative of a function. Luckily, there are some‬
‭patterns in derivatives that allow us to compute derivatives without‬
‭having to go through all the steps of computing the limit of the‬
‭difference quotient.‬

‭One such pattern is the‬‭power rule‬‭, which tells us‬‭that the derivative‬
‭of a function‬ ‭, where‬ ‭is some constant number,‬‭is‬

‭given by‬ ‭. Several examples are shown below.‬

‭Further Applications‬

‭We can also use the power rule to differentiate constants and radical‬
‭expressions.‬
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‭When a term is multiplied by some constant number, we can move‬
‭the number outside of the derivative, i.e. we can take the derivative‬
‭of the term and multiply it by that number.‬

‭In general, for any number‬ ‭, we have‬

‭.‬

‭When we have a sum or difference of terms, we can apply the‬
‭power rule to each term individually.‬
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‭Derivation‬

‭To see why the power rule works, we can compute the derivative for‬
‭using the difference quotient.‬

‭Exercises‬

‭Use the power rule to differentiate the following functions.‬
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‭1.5 Chain Rule‬

‭The‬‭chain rule‬‭tells us how to take derivatives of‬‭compositions of‬
‭functions. Informally, it says that we can “forget” about the inside of‬
‭a function when we take the derivative, as long as we multiply by‬
‭the derivative of the inside afterwards.‬

‭For example, to differentiate‬ ‭, we can use the power‬

‭rule, as long as we multiply by the derivative of the inside‬
‭afterwards.‬

‭Substitution‬

‭More precisely, the chain rule states that we can make a substitution‬
‭for an expression of‬ ‭, as long as we multiply by‬‭the derivative of‬

‭the substitution afterwards.‬

‭To differentiate the function‬ ‭, we substituted‬

‭to simplify the function to‬ ‭.‬
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‭Intuitively, the chain rule says that we can cancel derivatives just like‬
‭we cancel fractions.‬

‭We can extend this to an unlimited number of substitutions,‬
‭building a “chain” of cancellations.‬

‭For example, to differentiate the function‬

‭we can proceed one layer at a‬
‭time.‬
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‭Exercises‬

‭Use the chain rule to find the derivatives of the following‬
‭functions.‬
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‭1.6 Properties of Derivatives‬

‭We know that when differentiating polynomials, we can‬
‭differentiate each term individually. But why are we able to do this?‬
‭Does multiplication work the same way? What about division? We‬
‭answer these questions in this chapter.‬

‭Sum Rule‬

‭First of all, we are able to differentiate each term in a polynomial‬
‭individually, because in general, derivatives can be separated over‬
‭addition. The derivative of a sum, is the sum of derivatives of‬
‭individual terms.‬

‭To see why this is true, we can look at what happens in the‬
‭difference quotient when we take the derivative of the sum of two‬
‭functions. We are able to rearrange the difference quotient into the‬
‭sum of difference quotients of the two functions, which shows that‬
‭the derivative of the sum is just the sum of the derivatives.‬
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‭Constant Multiple Rule‬

‭Another useful property of derivatives is that constants can be‬
‭moved outside the derivative.‬

‭Combining this with the power rule, we can differentiate entire‬
‭polynomial expressions.‬

‭To see why we can move constants outside the derivative, we can‬
‭inspect what happens in the difference quotient when we take the‬
‭derivative of a function multiplied by a constant. The constant‬
‭factors out, and we can write the result as the product of the‬
‭constant and the derivative.‬
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‭Product Rule‬

‭Taking the derivative of a product, perhaps surprisingly, results in a‬
‭sum. For each term that is multiplied in the product, a copy of the‬
‭product is added in the sum, with the particular term replaced by its‬
‭derivative.‬

‭To see why this works, we can look at what happens in the‬
‭difference quotient when we take the derivative of the product of‬
‭two functions. We are able to rearrange the difference quotient into‬
‭the sum of the difference quotients of the two functions, with each‬
‭difference quotient multiplied by the other function. This shows that‬
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‭the derivative of the product is a sum of copies of the product, each‬
‭with one particular term replaced by its derivative.‬

‭Quotient Rule‬

‭To take the derivative of a quotient, we can use the product rule in‬
‭conjunction with the power rule and chain rule.‬
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‭Applying this formula can save us the work of combining fractions‬
‭after differentiating.‬

‭Exercises‬

‭Use the properties of derivatives to differentiate the following‬
‭functions.‬
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‭1.7 Derivatives of Non-Polynomial Functions‬

‭In this chapter, we introduce rules for the derivatives of exponential,‬
‭logarithmic, trigonometric, and inverse trigonometric functions.‬
‭Although it’s possible to compute each derivative using the‬
‭difference quotient, it will take a long time to compute derivatives‬
‭during calculus problems if we have to start from scratch with the‬
‭difference quotient process every time -- so it’s advantageous to‬
‭remember the derivative rules. The derivative rules are to calculus,‬
‭what the multiplication table is to arithmetic.‬

‭Natural Logarithm‬

‭We start with the‬‭natural logarithm‬‭, which has the‬‭derivative‬

‭. To see where this formula comes from, we can start‬‭by‬
‭writing and simplifying the difference quotient for‬ ‭.‬
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‭Does the limit inside the natural log look familiar? Remember that‬
‭the constant‬ ‭can be written as the following limit:‬

‭If we substitute‬ ‭and simplify/rearrange, then we‬‭can come‬
‭up with an expression for the limit inside the natural log. (The limit‬

‭as‬ ‭can be thought of as‬ ‭, which is the same as‬
‭.)‬
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‭Substituting this expression into the natural log, we find that‬

‭.‬
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‭Knowing this, we can use the chain rule to find the derivative of any‬
‭natural log function.‬

‭General Logarithms‬

‭To differentiate a logarithmic function other than the natural‬
‭logarithm, we can use the change-of-base formula to rewrite the‬
‭logarithmic function in terms of natural logarithms.‬

‭For example, to find the derivative of‬ ‭, we can convert‬‭it into‬

‭and then take the derivative.‬

‭In general, performing this procedure on any function of the form‬

‭where‬ ‭is a constant, we find that‬ ‭.‬
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‭Exponential Functions‬

‭Next, we cover‬‭exponential functions‬‭. The exponential‬‭function‬
‭is very elegant in calculus, because its derivative is simply itself,‬

‭.‬

‭To see why this is, we can start with the equation‬ ‭, then‬
‭take the logarithm and derivative of both sides, and finally solve for‬

‭.‬

‭Now that we know the derivative of‬ ‭, we can use the‬‭chain rule to‬
‭find the derivative of any exponential function.‬

‭If we want to take the derivative of an exponential function whose‬
‭base is not‬ ‭, we can rewrite the exponential function‬‭so that its‬
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‭base is‬ ‭, and then differentiate using the chain rule. For example,‬
‭since‬ ‭, we see that‬

‭.‬

‭Now that we have a function which has base‬ ‭, we can‬‭use the‬
‭chain rule to find the derivative.‬

‭Using the fact that‬ ‭, we can simplify the result‬‭a bit to‬
‭look like the original function.‬

‭In general, performing this procedure on any function of the form‬
‭where‬ ‭is a constant, we find that‬ ‭.‬

‭Trigonometric Functions‬

‭Now, let’s talk about‬‭trig functions‬‭. Their derivatives‬‭are shown‬
‭below.‬
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‭To see why the derivative of sine is cosine, consider a section of the‬
‭unit circle, where‬ ‭. If we increase‬ ‭by an infinitesimally‬
‭small amount‬ ‭, the additional arc length‬ ‭matches‬‭the‬
‭hypotenuse of a triangle that has a leg‬ ‭adjacent‬‭to an angle‬ ‭. In‬

‭this triangle, we have‬ ‭.‬

‭Furthermore, we can use the derivative of sine in conjunction with‬

‭the identities‬ ‭and‬ ‭to‬
‭compute the derivative of cosine.‬
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‭The fundamental trig derivatives are‬ ‭and‬
‭; all the other trig derivatives come from using‬

‭them.‬

‭For example, to see that‬ ‭, we express‬ ‭as‬

‭, take the derivative using the chain rule, and simplify.‬

‭Mnemonics‬

‭However, it will take a long time to compute derivatives if we have‬
‭to start from scratch with the above process every time, so it’s‬
‭advantageous to remember the table of trig derivatives.‬

‭To make it easier to remember the table, think about three key‬
‭trends in the table: functions have buddies, “co” functions turn‬
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‭negative, and derivatives of functions other than‬ ‭and‬ ‭have‬
‭two terms.‬

‭More precisely, the functions‬ ‭and‬ ‭are buddies‬‭because the‬
‭derivative of‬ ‭contains‬ ‭and the derivative of‬ ‭contains‬

‭. Likewise,‬ ‭and‬ ‭are buddies because the derivative‬‭of‬
‭contains‬ ‭and the derivative of‬ ‭contains‬ ‭, and‬

‭and‬ ‭are buddies because the derivative of‬ ‭contains‬ ‭and‬
‭the derivative of‬ ‭contains‬ ‭.‬

‭“Co” functions include‬ ‭,‬ ‭, and‬ ‭, and each of their‬
‭derivatives has a negative sign, whereas the other functions do not‬
‭have a negative sign in their derivatives.‬

‭Lastly, if we think of squared terms as two terms being multiplied‬
‭together, then‬ ‭and‬ ‭are the only functions whose‬‭derivatives‬
‭consist of a single term. For example, the derivative of‬ ‭is the‬
‭product of two terms‬ ‭and‬ ‭, and the derivative of‬ ‭is‬
‭which can be interpreted as the product of two terms‬ ‭and‬ ‭.‬
‭On the other hand, the derivative of‬ ‭is just a single‬‭term,‬ ‭.‬

‭Just as we did for exponential and logarithmic derivatives, we can‬
‭use the chain rule to take the derivative of any trig function.‬
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‭Inverse Trigonometric Functions‬

‭Now that we know the derivatives of trig functions, we can use‬
‭them to find the derivatives of inverse trig functions, which are‬
‭shown below.‬

‭To see where these derivatives come from, we can proceed in the‬
‭same way as earlier when we used the logarithmic function to find‬
‭the derivative of the exponential function. We start with the‬
‭equation‬ ‭, then take the‬ ‭and derivative of both‬
‭sides, and finally solve for‬ ‭.‬
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‭To simplify the denominator, we solve for‬ ‭in the identity‬
‭with‬ ‭.‬

‭We only need to consider the positive root because‬ ‭is always‬

‭nonnegative on the range of‬ ‭, which is‬ ‭. Substituting‬
‭, our expression simplifies.‬

‭Substituting the above identity in the denominator of our derivative‬
‭expression, we obtain the final result.‬
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‭The rest of the inverse trig derivatives can be computed by the same‬
‭process. Now, we can use the chain rule to take the derivative of any‬
‭inverse trig function.‬

‭Exercises‬

‭Compute the derivative of each function.‬
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‭1.8 Finding Local Extrema‬

‭Derivatives can be used to find a function’s‬‭local‬‭extreme values‬‭, its‬
‭peaks and valleys. At its peaks and valleys, a function’s derivative is‬
‭either‬ ‭(a smooth, rounded peak/valley) or undefined‬‭(a sharp,‬
‭pointy peak/valley).‬

‭Critical Points‬

‭The points at which a function’s derivative is‬ ‭or‬‭undefined, and the‬
‭function itself exists, are called‬‭critical points‬‭of the function. We‬
‭can find the critical points by taking the derivative, noting any‬
‭singularities, setting the derivative to‬ ‭, and solving.‬
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‭For example, to find the critical points of the function‬

‭, we start by taking the derivative and‬
‭simplifying.‬

‭The derivative has a singularity when the denominator‬ ‭is‬
‭, which happens at‬ ‭. The derivative itself is zero‬‭when the‬

‭numerator‬ ‭is‬ ‭, which happens at‬ ‭. The function‬
‭is defined at all of these x-values, so they all correspond to critical‬

‭points:‬ ‭.‬

‭Classifying Critical Points‬

‭Now, how do we tell which critical points correspond to maxima‬
‭(peaks), and which correspond to minima (valleys)?‬

‭It may be tempting to decide whether a critical point is a maximum‬
‭or minimum by observing whether the resulting function value is‬
‭large or small. However, it is entirely possible that some local‬
‭minima may be greater than some local maxima. Think of a‬
‭mountain range -- some valleys may be higher than some peaks.‬

https://www.codecogs.com/eqnedit.php?latex=0%0
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‭It may also be possible that some critical points are neither peaks‬
‭nor valleys, but‬‭saddle points‬‭on the side of a mountain‬‭where the‬
‭terrain is flat. At saddle points like the one indicated below, the‬
‭derivative is‬ ‭but the point is neither a maximum‬‭nor a minimum.‬

https://www.codecogs.com/eqnedit.php?latex=0%0
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‭First Derivative Test‬

‭There are two main methods for determining whether a critical‬
‭point is a local minimum, local maximum, or neither. One way is to‬
‭inspect the sign of the derivative on either side of the critical point,‬
‭which tells whether we are ascending or descending on either side‬
‭of the critical point.‬

‭●‬ ‭If the derivative is positive to the left of the critical point and‬
‭negative to the right of the critical point, then we are ascending‬
‭to a peak and then descending down the peak, which tells us‬
‭that the critical point is a local maximum.‬

‭●‬ ‭On the other hand, if the derivative is negative to the left of the‬
‭critical point and positive to the right of the critical point, then‬
‭we are descending down a valley and then climbing up the‬
‭valley, which tells us that the critical point is a local minimum.‬

‭●‬ ‭Lastly, if the derivative does not switch sign from the left of the‬
‭critical point to the right of the critical point, then we are either‬
‭ascending up the whole way or descending down the whole‬
‭way, which indicates that the critical point is a saddle point.‬

‭This method is called the‬‭first derivative test‬‭, because‬‭it makes use‬
‭of the first derivative of the function.‬
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‭Demonstration of First Derivative Test‬

‭To use the first derivative test on the critical points‬

‭that we found for the function‬ ‭, we first split up‬
‭the number line over the critical points.‬

‭The number line splits into‬ ‭intervals:‬

‭However, on the intervals‬ ‭and‬ ‭our function‬

‭is not defined because the argument of the‬
‭square root becomes negative. We remove these intervals from‬
‭consideration.‬

‭We want to know whether our function is increasing or decreasing‬
‭on each of these intervals. To find out this information, we choose a‬
‭test value in each of the remaining intervals. The actual values of the‬
‭test values don’t matter, because the derivative maintains the same‬
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‭sign within any given interval. For the sake of example, we choose‬
‭our test values as, say,‬ ‭,‬ ‭, and‬ ‭.‬

‭Lastly, we evaluate the sign of the derivative at each of these test‬
‭values.‬

‭The sign of the derivative at each particular test value tells us the‬
‭sign of the derivative throughout the interval containing the‬
‭particular test value. As a result, we know whether the function is‬
‭increasing or decreasing on each interval, and we can sketch a rough‬
‭graph of the peaks and valleys of the function.‬
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‭We see that the function‬ ‭has maxima at‬

‭and minima at‬ ‭.‬

‭Second Derivative Test‬

‭The other method for classifying a critical point of a function as a‬
‭maximum or minimum is called the‬‭second derivative‬‭test‬‭, because‬
‭it makes use of the second derivative of the function.‬

‭●‬ ‭If the second derivative is positive at the critical point, then the‬
‭function is concave up in the shape of a smile, which means the‬
‭critical point is a local minimum.‬

‭●‬ ‭If the second derivative is negative at the critical point, then‬
‭the function is concave down in the shape of a frown, which‬
‭means the critical point is a local maximum.‬

‭●‬ ‭If the second derivative is‬ ‭or undefined at the‬‭critical point,‬
‭then we cannot conclude whether the critical point is a local‬
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‭maximum or minimum, and we need to fall back to the first‬
‭derivative test.‬

‭The second derivative test is sometimes inconclusive, but it is‬
‭mentioned because it is often faster than the first derivative test.‬

‭Demonstration of Second Derivative Test‬

‭To use the second derivative test on the critical points‬

‭which we found for the function‬

‭, we first take the second derivative of the‬
‭function. We computed the first derivative earlier, so we just have to‬
‭differentiate once more.‬

‭We evaluate the sign of the second derivative at each of the critical‬
‭points.‬
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‭Based on the results of the second derivative test, we see that‬

‭is a minimum, and‬ ‭is a maximum. The test is‬
‭inconclusive for‬ ‭and‬ ‭, so we would need to fall‬‭back‬
‭to the first derivative test for these cases.‬

‭When to Use Each Test‬

‭In general, it’s a good idea to use the first derivative test when the‬
‭second derivative is more complex than the first derivative, and the‬
‭second derivative test when the second derivative is less complex‬
‭than the first derivative.‬
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‭For example, for polynomial functions, it is usually easiest to use the‬
‭second derivative test because the second derivative is less complex‬
‭than the first derivative.‬

‭We find the critical points by solving for where the first derivative is‬
‭zero.‬

‭Then, we find the sign of the second derivative at these points.‬

‭The critical point‬ ‭has a negative second derivative,‬
‭which means the function is concave down and thus the critical‬

‭point is a maximum. Likewise, the critical point‬ ‭has a‬
‭positive second derivative, which means the function is concave up‬
‭and thus the critical point is a minimum.‬
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‭On the other hand, for the function below, it is easiest to use the‬
‭first derivative test because the computations for the second‬
‭derivative will get a bit messy when we use the product rule.‬

‭We find the critical points by solving for where the first derivative is‬
‭zero.‬

‭We choose test points‬ ‭and‬ ‭on each side of our‬
‭critical point, and evaluate the sign of the first derivative at these‬
‭points.‬

‭The function has a negative derivative to the left of the critical point‬
‭and a positive derivative to the right of the critical point, which‬
‭means it is descending to the critical point and then ascending from‬
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‭the critical point. Therefore, the critical point‬ ‭is a‬
‭minimum of the function.‬

‭Functions Defined on Closed Intervals‬

‭Lastly, when a function is defined on a closed interval, we need to‬
‭use the endpoints as critical points as well, because the derivative‬
‭isn’t defined there but the function is.‬

‭For example, to find the extrema of the function‬
‭with‬ ‭, we should also consider‬ ‭and‬ ‭as‬
‭critical points, in addition to the point‬ ‭which‬‭makes the‬
‭derivative‬ ‭equal to zero.‬

‭To apply the first derivative test, we choose a test point‬ ‭for‬
‭the interval‬ ‭and‬ ‭for the interval‬ ‭.‬

‭The function is decreasing from‬ ‭to‬ ‭, and then‬
‭increasing from‬ ‭to‬ ‭. Therefore, the function has‬‭a‬
‭minimum at‬ ‭and maxima at‬ ‭and‬ ‭.‬
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‭Exercises‬

‭For each function, find the critical points and label each critical‬
‭point as a local maximum, local minimum, or saddle point.‬
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‭1.9 Differentials and Approximation‬

‭The chain rule tells us that we can treat the derivative‬ ‭like a‬
‭fraction when multiplying by other derivatives. In this chapter, we‬
‭continue the idea of interpreting the derivative as a fraction,‬
‭extending it to an even more literal sense.‬

‭The main idea of‬‭differentials‬‭is that we can interpret‬‭the derivative‬

‭as an approximation for how the function output‬‭changes, when‬
‭the function input is changed by a small amount. The terms‬ ‭and‬

‭are called‬‭differentials‬‭, and we can interpret them‬‭as small‬
‭changes in the function’s output and input.‬

‭Demonstration‬

‭For example, if we know that‬ ‭and‬ ‭for some‬
‭function‬ ‭, then we can estimate the value of‬ ‭by‬‭treating‬
‭the differentials as small changes in‬ ‭and‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=dx%0
https://www.codecogs.com/eqnedit.php?latex=x%0


‭82‬ ‭Justin Math |‬‭Calculus‬

‭Estimating Trig Functions and Roots‬

‭We can use this method to estimate values of functions that are‬
‭difficult to compute, like trig functions and roots.‬

‭For example, we know that‬ ‭and that‬

‭, so we can estimate the value of‬
‭using differentials.‬

https://www.codecogs.com/eqnedit.php?latex=%5Csin%200.1%0
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‭Our estimation is pretty good -- the actual value of‬ ‭is‬

‭Similarly, we know that‬ ‭and that‬

‭, so we can estimate the value of‬
‭using differentials.‬

‭Again, our estimation is pretty good -- the actual value of‬ ‭is‬

‭Intuition‬

‭To understand why we can interpret the differentials as small‬
‭changes, remember that the difference quotient is a good‬
‭approximation for the derivative, when the difference‬ ‭is small.‬
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‭The numerator is really just the change in the values of the function‬
‭, so we can represent it by‬ ‭.‬

‭Graphically, approximating via differentials amounts to‬
‭approximating with a tangent line. We start at the point‬ ‭,‬
‭travel‬ ‭units horizontally, and find the y-value‬‭that allows us to‬
‭maintain a slope of‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=f%0
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‭Since the tangent line goes through the point‬ ‭with‬‭slope‬
‭, the points‬ ‭on the tangent line are given by the‬

‭following linear equation in point-slope form:‬

‭Interpreting‬ ‭and‬ ‭, we see that this‬
‭equation is equivalent to the one we’ve been working with.‬
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‭Exercises‬

‭Approximate each value by using differentials and the given‬
‭equality. In your computations, use‬ ‭,‬ ‭, and‬

‭, and round to 2 decimal places.‬
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‭1.10 L’H‬‭ô‬‭pital’s Rule‬

‭L’H‬‭ô‬‭pital’s rule provides a way to evaluate limits‬‭that take the‬

‭indeterminate forms of‬ ‭or‬ ‭. It says that, for such‬‭limits, we can‬
‭differentiate the numerator and denominator separately, without‬
‭changing the actual value of the limit.‬

‭For example, the following limit has indeterminate form.‬

‭Therefore, we can apply L’H‬‭ô‬‭pital’s rule to solve‬‭it.‬

‭Products in Indeterminate Form‬

‭Limits of the form‬ ‭are also indeterminate, but we‬‭need to‬
‭convert them to an equivalent fraction before applying L’H‬‭ô‬‭pital’s‬
‭rule.‬
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‭For example, the following limit has indeterminate form of‬ ‭, so‬
‭we convert it to an equivalent fraction which has indeterminate‬

‭form‬ ‭.‬

‭We could use other equivalent fractions, too, as long as they are‬

‭equivalent to the original limit and have indeterminate form of‬ ‭or‬

‭.‬

‭However, even though L’H‬‭ô‬‭pital’s rule applies to any‬‭fraction having‬
‭indeterminate form, some fractions are better than others. For‬
‭example, if we wrote the previous limit as‬

‭we would still have indeterminate form and thus be able to apply‬
‭L’H‬‭ô‬‭pital’s rule, but we wouldn’t get anywhere with‬‭it because the‬

‭derivative of‬ ‭gets more complex. The point of using‬‭L’H‬‭ô‬‭pital’s‬
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‭rule is to use differentiation to reduce the complexity of the limit,‬
‭not increase it.‬

‭Combining L’Hôpital’s Rule with Other‬
‭Methods‬

‭Sometimes, we may have to use other methods in conjunction with‬
‭L’H‬‭ô‬‭pital’s rule. For example, to solve the limit‬

‭we can first compute the logarithm of the limit, using L’H‬‭ô‬‭pital’s‬
‭rule.‬
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‭So, we have:‬

‭Limits that are Not in Indeterminate Form‬

‭One BIG word of caution:‬‭L’H‬‭ô‬‭pital’s rule does NOT‬‭apply when a‬
‭limit does not have indeterminate form. If you try to use L’H‬‭ô‬‭pital’s‬
‭rule on a limit that does not have indeterminate form, then it may‬
‭lead you to an erroneous result.‬



‭Justin Math |‬‭Calculus‬ ‭91‬

‭For example, the limit‬ ‭, does not take indeterminate‬
‭form since the numerator does not go to zero nor infinity, and we‬
‭know using the squeeze theorem that the limit evaluates to‬ ‭. But if‬
‭we apply L’H‬‭ô‬‭pital’s rule on this limit, we conclude‬‭that the limit‬
‭does not exist, which is incorrect since it actually does exist and‬
‭evaluates to‬ ‭.‬

‭Derivation and Mean Value Theorem‬

‭To see why L’H‬‭ô‬‭pital’s rule works, we can start off‬‭noticing that the‬
‭limit‬

‭implies that‬ ‭and‬ ‭. This is obvious, but it’s very‬
‭important to notice, because it lets us express the above limit as the‬
‭ratio of difference quotients.‬

https://www.codecogs.com/eqnedit.php?latex=0%0
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‭This is pretty close to the full statement of L’H‬‭ô‬‭pital’s‬‭rule, but it is a‬
‭bit more limited because it assumes that‬ ‭is nonzero‬‭-- it‬

‭assumes that the limit‬ ‭can be evaluated through‬‭direct‬

‭substitution, to yield‬ ‭. But we have broken these‬‭assumptions‬
‭in some examples, where we applied L’H‬‭ô‬‭pital’s rule‬‭multiple times‬
‭in a row -- in these examples, the limit still couldn’t be evaluated by‬
‭direct substitution after a single iteration of L’H‬‭ô‬‭pital’s‬‭rule.‬

‭To overcome these assumptions and prove the full statement of‬
‭L’H‬‭ô‬‭pital’s rule we need to understand the‬‭mean value‬‭theorem‬‭,‬
‭which says that for any function‬ ‭that is continuous‬‭on an‬
‭interval‬ ‭and differentiable on the interval‬ ‭, there‬‭is some‬
‭point‬ ‭at which the derivative of‬ ‭is equal to its‬‭average rate‬
‭of change:‬
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‭In other words, the mean value theorem says that if we draw a line‬
‭between the endpoints of‬ ‭, it will be parallel to‬‭the tangent line of‬

‭somewhere in the interval.‬

‭When fiddling with the mean value theorem, you might notice that‬
‭the mean value theorem is a particular case of a more general and‬
‭elegant equation, with‬ ‭.‬

‭To check whether this extended result is true for any function‬ ‭,‬
‭we can ask whether the derivative of the following function‬ ‭is‬

‭at some point‬ ‭.‬
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‭Interestingly, this function has the property‬ ‭, so‬‭the‬
‭mean value theorem tells us that, indeed, as long as‬ ‭is‬
‭continuous on an interval‬ ‭and differentiable on‬‭the interval‬

‭, then it is true that‬ ‭for some point‬ ‭. And‬
‭the assumptions of continuity and differentiability are true for‬
‭whenever they are true for‬ ‭and‬ ‭, so the mean value‬
‭theorem does in fact extend to the result‬

‭.‬

‭This result is known, rather intuitively, as the extended mean value‬
‭theorem.‬

‭L’H‬‭ô‬‭pital’s rule comes from applying the extended‬‭mean value‬
‭theorem to the limit in question. If we have the indeterminate limit‬

‭then we consider the interval‬ ‭. Here, both‬ ‭and‬
‭, and the extended mean value theorem tells us that‬‭for‬

‭some‬ ‭we have the following:‬
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‭Taking the limit as‬ ‭, we have‬ ‭and thus‬

‭.‬

‭The indeterminate limit‬

‭can be understood the same way using the interval‬ ‭, and the‬
‭indeterminate limits‬

‭can be understood similarly, using the intervals‬ ‭and‬
‭. Likewise, in the case of‬
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‭we can rewrite the limit as‬

‭and apply L’H‬‭ô‬‭pital’s rule, which ends up simplifying‬‭to its original‬
‭form.‬
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‭Exercises‬

‭Evaluate the indicated limits by applying L’Hôpital’s rule.‬

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%205)%20%5Chspace%7B.5cm%7D%20%5Clim%5Climits_%7Bx%5Cto%201%7D%20%5Cfrac%7Bx%20%5Cln%20x%7D%7Bx%5E2-1%7D%20%5Cend%7Balign*%7D%0
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‭Part 2‬
‭Integrals‬
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‭2.1 Antiderivatives‬

‭An‬‭antiderivative‬‭of a function‬ ‭is a function‬ ‭whose‬
‭derivative is‬ ‭, i.e.‬ ‭.‬

‭For example, an antiderivative of‬ ‭is‬ ‭, because‬ ‭.‬

‭Another antiderivative of‬ ‭is‬ ‭, because‬ ‭. To‬
‭encapsulate all possibilities, we say that the antiderivative of‬ ‭is‬

‭where‬ ‭is a constant.‬

‭The antiderivative of a function‬ ‭is written symbolically‬‭as‬

‭. For example, to say that the antiderivative of‬ ‭is‬

‭, we can write‬ ‭.‬

‭The symbol‬ ‭is called an‬‭integral‬‭, and the differential‬ ‭tells us‬
‭that‬ ‭is the variable of integration. (The variable‬‭of integration may‬
‭seem unnecessary right now, but it will become more relevant in‬
‭later chapters when we talk about techniques to solve integrals.)‬

‭Power Rule‬

‭The power rule for differentiation tells us that‬ ‭.‬
‭Through a bit of clever intuition, we find a function whose derivative‬
‭is‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=dx%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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‭Consequently, we have a power rule for integration:‬

‭A few examples are shown below.‬
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‭Integral of the Reciprocal Function‬

‭You might notice that if we try to use this power rule to integrate‬ ‭,‬
‭which simplifies to‬ ‭, we come up with a nonsense‬‭result.‬

‭The case of‬ ‭is an exception to the power rule, and‬‭if we try‬
‭to perform the power rule anyway, we obtain an invalid result. We‬

‭will see in a later chapter that, surprisingly, the antiderivative of‬ ‭is‬
‭.‬

‭Sum and Constant Multiple Rules‬

‭Integrals exhibit some of the same properties as derivatives. For‬
‭example, the integral of a sum can be computed as the sum of‬
‭integrals of the integral terms. Also, constants can be moved outside‬
‭of integrals.‬
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‭Note that although each individual integral in the sum is associated‬
‭with a‬ ‭constant term, they are redundant, because‬‭when we‬
‭combine all the terms together we still get a constant. Thus, we are‬
‭able to write a single‬ ‭at the very end to account‬‭for all‬
‭constants that arise from the multiple individual integrals.‬

‭Integrating Products and Quotients‬

‭Unfortunately, there is no simple rule for integrating a product or‬
‭quotient. We will learn techniques later to make such integrals‬
‭easier, but for now, the best strategy is to expand out the function as‬
‭much as possible before trying to take the integral.‬

‭For example, to integrate the product‬ ‭, we‬
‭can multiply out the product and then integrate each term‬
‭individually.‬
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‭Similarly, to integrate the quotient‬ ‭, we can split‬‭up each‬
‭term in the numerator and then simplify.‬

‭Integrating Non-Polynomial Functions‬

‭Below are some useful rules for finding antiderivatives of‬
‭non-polynomial functions. (For the sake of readability, the‬ ‭and‬

‭have been removed.)‬



‭106‬ ‭Justin Math |‬‭Calculus‬

‭Non-polynomial functions can be integrated similarly: we simplify‬
‭the integral as much as we can, and then find the antiderivative of‬
‭each term separately. A few examples are shown below.‬
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‭Exercises‬

‭Evaluate the following integrals.‬
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‭2.2 Finding Area‬

‭In the last chapter, we learned how to evaluate integrals of the form‬

‭, which are also known as‬‭indefinite integrals‬‭. In‬‭this‬
‭chapter, we shall be concerned with‬‭definite integrals‬‭,‬‭which have‬
‭bounds of integration.‬

‭The definite integral‬ ‭is evaluated by first finding‬‭the‬

‭antiderivative‬ ‭, and then computing the‬
‭difference between the values of the antiderivative at the indicated‬
‭bounds.‬

‭Derivation‬

‭Subtracting at the bounds yields the area between the x-axis and the‬
‭function‬ ‭, between the bounds‬ ‭and‬ ‭. To see why,‬
‭first consider that‬ ‭is the sum of infinitely many,‬
‭infinitely small changes in‬ ‭, one for each value‬‭of‬ ‭. At each value‬

‭, the function has slope‬ ‭, so if it travels an infinitesimal‬
‭units to the right, then it also travels an infinitesimal‬ ‭units‬
‭up.‬
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‭This is true even if the function doubles back on itself, because the‬
‭upward and downward displacements cancel each other out.‬
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‭Because‬ ‭, we have‬ ‭, so we can‬
‭write the sum in terms of‬ ‭.‬

‭Each term in the sum then corresponds to the area of a rectangle of‬
‭width‬ ‭and height‬ ‭, and all the rectangles together‬‭make up‬
‭the area between the x-axis and the graph of‬ ‭.‬
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‭Sanity Check‬

‭Below is an example of evaluating a simple definite integral.‬

‭We can verify that this result represents the area between the x-axis‬
‭and the function‬ ‭between the bounds‬ ‭and‬

‭, because this region is just a triangle. The results‬‭match up!‬
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‭Demonstration‬

‭Now, let’s compute the area between the x-axis and the parabola‬

‭, between the same bounds‬ ‭and‬ ‭. The‬
‭parabola dips a little lower than the triangle which we found has‬
‭area‬ ‭, so we should expect a result a little smaller‬‭than‬ ‭.‬

‭The area is‬ ‭, which is indeed slightly smaller than‬ ‭, so it matches‬
‭up with our expectations.‬
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‭Negative Area‬

‭When a function dips below the x-axis, the area below the x-axis is‬
‭counted as negative area.‬

‭For example, if we integrate the function‬ ‭between‬‭the‬
‭bounds‬ ‭and‬ ‭, we get a result of‬ ‭. This is the‬‭same‬
‭triangle as before, but flipped over the x-axis.‬

‭As a consequence of negative area, for a region that has the same‬
‭amount of area above the x-axis as below the x-axis, the integral will‬
‭evaluate to‬ ‭.‬
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‭For example, the function‬ ‭integrates to zero on the‬
‭interval from‬ ‭to‬ ‭because its two triangles above‬‭and‬
‭below the x-axis cancel each other out.‬

‭Area Between Two Functions‬

‭In addition to finding the area under a single function, integrals can‬
‭also be used to find the area between two functions.‬
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‭If we have two functions‬ ‭and‬ ‭with‬ ‭on the‬
‭interval‬ ‭, then the area between the functions on the interval‬

‭is given by the integral of the difference:‬

‭One way to interpret the integral above is to see it as the difference‬
‭of two separate integrals, the integral of‬ ‭minus‬‭the integral of‬ ‭.‬
‭Then the area between‬ ‭and‬ ‭is the area under‬ ‭minus the‬
‭overlapping area under‬ ‭, which leaves only the area‬‭between‬
‭and‬ ‭.‬

‭Another way to interpret the integral is to see it as integrating the‬
‭height from‬ ‭to‬ ‭. In this case, we are defining‬‭a height function‬

‭and breaking the region between the functions‬
‭into infinitesimally small rectangles, each rectangle having height‬

‭and infinitesimal width‬ ‭.‬
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‭For example, to find the area between‬ ‭and‬

‭on the interval‬ ‭, we first need to identify which‬
‭function is the higher one on this interval. We can do this by‬
‭sketching graphs of the functions.‬
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‭We see that‬ ‭is the higher function and‬ ‭is‬
‭the lower function. The integral is the higher function‬ ‭minus‬
‭the lower function‬ ‭, over the interval‬ ‭.‬

‭So, the area between the functions‬ ‭and‬

‭on the interval‬ ‭is‬ ‭.‬
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‭Area Between Two Functions that Intersect‬

‭Sometimes, two functions will cross on an interval, and each will‬
‭take its turn being the higher function. For example, the functions‬

‭and‬ ‭cross twice on the interval‬ ‭. The points‬‭of‬
‭intersection are obtained by setting the functions equal to each‬
‭other and solving:‬

‭On‬ ‭the higher function is‬ ‭, on‬ ‭the higher‬

‭function is‬ ‭, and on‬ ‭the higher function is‬ ‭.‬‭To‬
‭find the total area bounded between the functions, we integrate the‬
‭higher function minus the lower function on each interval and add‬
‭the results together.‬
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‭To perform the computation faster, we can ignore which function is‬
‭higher vs lower provided we take the absolute value of each integral‬
‭before adding them together. Even if we end up “incorrectly”‬
‭computing the lower function minus the higher function in some‬
‭integral, the result will still represent area -- it will just be negative‬
‭area, so we can correct it by making it positive.‬

‭If we treat‬ ‭as the higher function on all intervals‬‭but take‬
‭the absolute value of the integrals before adding them, we reach the‬
‭same result as before.‬
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‭Likewise, if we treat‬ ‭as the higher function on‬‭all intervals‬
‭but take the absolute value of the integrals before adding them, we‬
‭reach the same result as before.‬

‭Exercises‬

‭Find the net (signed) area below each function on the given‬
‭interval.‬
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‭Find the area between the two functions on the given interval.‬
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‭2.3 Substitution‬

‭Complicated integrals can sometimes be made simpler through the‬
‭method of‬‭substitution‬‭. Substitution involves condensing‬‭an‬
‭expression of‬ ‭into a single variable, say‬ ‭, and‬‭then expressing‬
‭the integral in terms of‬ ‭instead of‬ ‭.‬

‭Demonstration‬

‭To make the idea of substitution more concrete, consider the‬

‭integral‬ ‭. We may be tempted to use the power rule,‬

‭and say that the integral evaluates to‬ ‭. But if we‬
‭differentiate to check our result, we see that, because of the chain‬
‭rule, the derivative of this expression is not equal to the function‬
‭inside the integral.‬
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‭To turn the integral into one that can be solved with the power rule,‬
‭we condense the‬ ‭expression into a single variable‬ ‭,‬
‭through the substitution‬ ‭.‬

‭Before we apply the power rule, we need to take care of one issue:‬
‭the differential is still‬ ‭, and we need it to be‬ ‭. In general, we‬
‭can’t just replace the‬ ‭differential with a‬ ‭differential.‬
‭However, by interpreting the derivative as a fraction, we can solve‬
‭for the‬ ‭differential in terms of the‬ ‭differential.‬

‭Once our integral is fully expressed in terms of‬ ‭, we can solve it via‬
‭the power rule, and then substitute‬ ‭again to write‬‭our‬
‭answer in terms of‬ ‭.‬
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‭We verify that the derivative of the result is indeed the original‬
‭function within the integral.‬

‭Choosing the Right Substitution‬

‭The key to substitution is choosing the right substitution. But how‬
‭can we tell what is the right substitution? For example, in the‬
‭integral below, should we substitute‬ ‭or‬ ‭?‬
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‭Whenever we are torn between multiple substitution choices, we‬
‭should choose the substitution whose derivative will cancel out‬
‭other terms in the integral.‬

‭In this case, we should choose‬ ‭, because the derivative‬
‭will cancel out the existing‬ ‭inside the integral.‬‭On‬

‭the other hand,‬ ‭would not work, because the derivative‬
‭would not fully cancel the existing‬ ‭inside the‬

‭integral.‬

‭Choosing‬ ‭, we have‬ ‭, so‬ ‭.‬
‭Substituting into the integral, we are able to evaluate.‬

‭Exercises‬

‭Evaluate each integral using substitution.‬
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‭2.4 Integration by Parts‬

‭Integration by parts‬‭is another technique for simplifying‬‭integrals.‬
‭We can apply integration by parts whenever an integral would be‬
‭made simpler by differentiating some expression within the integral,‬
‭at the cost of anti-differentiating another expression within the‬
‭integral. The formula for integration by parts is given below:‬

‭The formula is really just a direct consequence of the product rule --‬
‭we can obtain it by applying the product rule to a product‬ ‭,‬
‭integrating with respect to‬ ‭, and rearranging a bit.‬
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‭Demonstration‬

‭To see why integration by parts is useful, consider the integral‬

‭. If we differentiate the‬ ‭term, then the term goes‬‭away,‬
‭and if we integrate the‬ ‭term, the term stays the‬‭same. Therefore,‬
‭by applying integration by parts, we can simplify the integral.‬

‭We choose‬ ‭and‬ ‭. Since‬ ‭, we have‬ ‭,‬

‭so‬ ‭. Since‬ ‭, we have‬ ‭. (We‬
‭ignore the constant of integration now because we’re saving it for‬
‭the very end.) Substituting this information into the integration by‬
‭parts formula, we are able to evaluate the integral.‬

‭Repeated Application‬

‭Sometimes, we may have to perform integration by parts more than‬
‭once.‬

‭For example, in the following integral, the first integration by parts‬
‭reduces the‬ ‭to‬ ‭, and the second integration by‬‭parts reduces‬
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‭the‬ ‭to‬ ‭, which finally simplifies the integral to a point where we‬
‭can solve it.‬

‭To start off, we choose‬ ‭and‬ ‭. Then‬
‭and‬ ‭, and the integral simplifies a bit.‬

‭For the final round of integration by parts, we choose‬ ‭and‬
‭. Then‬ ‭and‬ ‭, and the integral‬

‭simplifies a bit more, to a point where we can solve it.‬

‭Cyclic Cases‬

‭Other times, integration by parts will never simplify an integral to a‬
‭point where it can be directly computed.‬



‭134‬ ‭Justin Math |‬‭Calculus‬

‭For example, in the integral‬

‭differentiating the‬ ‭term will not reduce its complexity‬‭because it‬
‭just stays‬ ‭, and differentiating the‬ ‭term will‬‭not reduce its‬
‭complexity because it just flips back and forth between‬ ‭and‬

‭.‬

‭However, we can use integration by parts to set up a recurrence‬
‭equation, which can be used to solve algebraically for the integral.‬
‭Choosing‬ ‭and‬ ‭we have‬ ‭and‬

‭.‬

‭We perform one more round of integration by parts with‬
‭and‬ ‭, so that we have‬ ‭and‬ ‭.‬
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‭Now that the original integral has reappeared in our expression, we‬
‭can solve for it algebraically.‬

‭Then, since the integral is an indefinite integral, we just need to add‬
‭a constant at the end.‬

‭Exercises‬

‭Use integration by parts to compute the following integrals.‬
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‭2.5 Improper Integrals‬

‭Improper integrals‬‭have bounds or function values‬‭that extend to‬
‭positive or negative infinity.‬

‭For example,‬ ‭is an improper integral because its‬‭upper‬

‭bound is at infinity. Likewise,‬ ‭is an improper integral‬

‭because‬ ‭approaches infinity as‬ ‭approaches the‬‭lower bound‬
‭of integration,‬ ‭.‬

‭Convergence‬

‭It seems intuitive that improper integrals should always come out to‬
‭infinity, since an infinitely long or infinitely high function would‬
‭seemingly have infinite area.‬
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‭However, although this can sometimes happen, it is not always the‬
‭case. In fact, both of the two improper integrals given as examples in‬
‭the previous paragraph evaluate to normal, non-infinite results. As‬
‭such, we say that these integrals‬‭converge‬‭.‬

‭If the function decreases quickly enough as it extends out to infinity,‬
‭then the area underneath it can come out to a finite number.‬
‭Likewise, if a function blows up to infinity slowly enough as it‬
‭approaches an asymptote, then the area underneath it can come‬
‭out to a finite number.‬

‭Divergence‬

‭Below, we integrate the function‬ ‭, which decreases‬‭more‬
‭slowly as it extends out to infinity and blows up to infinity more‬
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‭quickly as it approaches its vertical asymptote‬ ‭. The integrals‬
‭of this function do indeed integrate to infinity. As such, we say that‬
‭these integrals‬‭diverge‬‭.‬

‭Discontinuities within the Interval of‬
‭Integration‬

‭Sometimes, a function may blow up to infinity somewhere within‬
‭the interval of integration, rather than at the bounds of integration.‬
‭In such a case, we have to separate the integral across its‬
‭discontinuities.‬

‭For example, to compute the integral‬ ‭, we may be‬
‭tempted to ignore the singularity at‬ ‭and simply‬‭evaluate the‬
‭antiderivative at the bounds. This leads us to an invalid result.‬
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‭This result of negative area doesn’t make any sense, because the‬

‭function‬ ‭is always positive!‬

‭In order to properly evaluate the integral‬ ‭, we have‬‭to‬
‭split it up across the singularity, into two separate integrals.‬

‭The first integral spans from‬ ‭to‬ ‭and consequently‬
‭approaches‬ ‭from the negative side, so its computations‬‭involve‬

‭.‬

‭The second integral spans from‬ ‭to‬ ‭and consequently‬
‭approaches‬ ‭from the positive side, so its computations‬‭involve‬

‭.‬
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‭Now, we see that the integral actually diverges to infinity. This‬
‭makes much more sense, since we know that it represents a region‬
‭that contains a portion of infinite area.‬

‭Lastly, below is an example of a more complicated integral that‬
‭converges.‬
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‭Exercises‬

‭Evaluate the improper integrals below.‬
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‭Part 3‬
‭Differential Equations‬
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‭3.1 Separation of Variables‬

‭In differential equations, we are given an equation in terms of the‬
‭derivative(s) of some function, and we need to solve for the function‬
‭that makes the equation true.‬

‭For example, a simple differential equation is‬ ‭,‬‭and its‬

‭solution is just the antiderivative‬ ‭.‬

‭The simplest differential equations can be solved by‬‭separation of‬
‭variables‬‭, in which we move the derivative to one‬‭side of the‬
‭equation and take the antiderivative.‬
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‭Equations with a Higher-Order Derivative‬

‭This method can be used to solve simple equations with‬
‭higher-order derivatives, as well.‬

‭Note that, although the antiderivative of‬ ‭is‬ ‭,‬‭the term‬

‭is itself just a constant:‬ ‭just means any constant‬‭multiplied by‬
‭. But‬ ‭also means any constant multiplied by‬ ‭,‬‭so writing‬

‭the fraction in‬ ‭is redundant. To keep the notation‬‭simple and‬
‭free of redundancy, we just write‬ ‭.‬
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‭Equations with Both Function and Derivative‬

‭When differential equations contain‬ ‭terms as well‬‭as‬ ‭terms, we‬
‭can still separate variables by using the differential notation for the‬
‭derivative and treating it as a fraction.‬

‭Even differential equations that contain two different variables‬
‭multiplied together can sometimes be solved by separation of‬
‭variables.‬
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‭But other times, there is no way to separate the variables from each‬
‭other completely. We will learn more advanced methods to solve‬
‭such non-separable differential equations in the coming chapters.‬
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‭Exercises‬

‭Solve the following differential equations using separation of‬
‭variables.‬
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‭3.2 Slope Fields and Euler Approximation‬

‭When faced with a differential equation that we don’t know how to‬
‭solve, we can sometimes still approximate the solution by simpler‬
‭methods. If we just want to get an idea of what the solutions of the‬
‭differential equation look like on a graph, we can construct a‬‭slope‬
‭field‬‭.‬

‭Slope Fields‬

‭A slope field consists of an array of line segments, each line segment‬
‭angled so that it represents the slope at the corresponding point.‬
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‭For example, to construct the slope field for the differential equation‬

‭, we start with an array of points.‬
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‭Then, we evaluate‬ ‭at each point‬ ‭.‬
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‭Lastly, we replace each value of‬ ‭with a short arrow‬‭having that‬
‭slope.‬
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‭Now, we have an idea of what the solutions of the differential‬
‭equation look like. For example, if we start at the point‬ ‭and‬
‭follow the slopes as we go left and right, then we end up with the‬
‭following curve.‬
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‭We can also choose a different point, say‬ ‭to see‬‭the solution‬
‭curve which contains that point.‬

‭You can think of the coordinate plane as a river rapid, and the slope‬
‭fields as the individual currents within the river rapid. If you launch a‬
‭raft at a particular point, then the solution curve shows you where‬
‭the river will take the raft.‬

‭Imprecision of Slope Fields‬

‭Although a slope field can show us the shapes of solutions to a‬
‭differential equation, it isn’t very precise.‬
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‭For example, if a particular solution starts at the point‬ ‭,‬
‭then the slope field tells us that it travels up and right -- but exactly‬
‭how far? If we travel right one units until the x-coordinate is‬ ‭,‬
‭then what will the y-coordinate be?‬

‭Based on the sketch of the slope field, it’s hard to tell whether the‬
‭y-coordinate will be closer to‬ ‭or‬ ‭. We need a more‬‭precise‬
‭method.‬

‭Euler Estimation‬

‭We can estimate particular solutions more precisely using‬‭Euler‬
‭approximation‬‭. In Euler approximation, we travel horizontally‬‭in‬
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‭small steps and use the derivative to compute how far we travel up‬
‭or down at each step. The idea is that, since the solution curve is‬
‭generated by this process with infinitesimally tiny step sizes, we can‬
‭compute a good approximation to the solution curve if we use a‬
‭small enough step size.‬

‭As an example, we will use Euler approximation to estimate the‬
‭value of‬ ‭when‬ ‭, starting from the point‬ ‭. We will‬
‭use a step size of‬ ‭.‬

‭We start by computing‬ ‭at the point‬ ‭, using the‬

‭differential equation‬ ‭, and obtaining a result of‬

‭.‬

‭Then, using‬ ‭, we estimate‬ ‭as‬ ‭, which is‬
‭. We arrive at the point‬ ‭, which‬

‭simplifies to‬ ‭.‬

‭At this point, we compute the derivative again, use it and‬ ‭to‬
‭estimate‬ ‭, arrive at a new point, and continue the‬‭process until‬
‭the x-coordinate is‬ ‭.‬

‭As shown in the table below, our resulting estimate of the‬
‭y-coordinate is‬ ‭.‬
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‭Euler approximation tends to yield decent approximations for‬
‭differential equations whose slope fields aren’t too turbulent, and‬
‭the approximations can be made more accurate by decreasing the‬
‭step size.‬

‭However, for differential equations that have singularities, one must‬
‭be careful applying Euler approximation because it can “step over”‬
‭asymptotes.‬

‭Exercises‬

‭Draw slope fields for the following differential equations on the‬
‭grid‬ ‭.‬

‭Then, sketch a rough graph of the solution that passes through‬
‭the point‬ ‭.‬

‭Finally, starting at the point‬ ‭, use Euler estimation‬‭with‬
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‭steps to approximate the value of‬ ‭when‬ ‭. (Round to two‬
‭decimal places throughout your calculations.)‬
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‭3.3 Substitution‬

‭Sometimes, non-separable differential equations can be converted‬
‭into separable differential equations by way of‬‭substitution‬‭.‬

‭For example,‬ ‭is a non-separable differential equation‬
‭as-is. However, we can make a variable substitution‬ ‭to‬
‭turn it into a separable differential equation. Differentiating both‬
‭sides of‬ ‭with respect to‬ ‭, and interpreting‬ ‭as‬‭a‬
‭function of‬ ‭, we have‬ ‭, so‬ ‭. Substituting,‬
‭the equation becomes separable and thus solvable in terms of‬ ‭.‬
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‭Lastly, to find what‬ ‭is, we can solve for‬ ‭in our original‬
‭substitution‬ ‭.‬

‭Choosing the Right Substitution‬

‭In general, to determine what substitution we need to perform, it is‬
‭helpful to rearrange the equation until we see a group of terms‬
‭whose derivative also appears in the equation.‬

‭After rearranging the above equation, we see that‬ ‭is a‬
‭good substitution. We rewrite the equation in terms of‬ ‭, solve it,‬
‭and then solve for‬ ‭in terms of‬ ‭.‬
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‭We don’t always have to use addition in our substitutions. In the‬
‭equation below, for example, we require the substitution‬ ‭.‬

‭=‬

‭Exercises‬

‭Use substitution to solve the following differential equations.‬



‭164‬ ‭Justin Math |‬‭Calculus‬



‭Justin Math |‬‭Calculus‬ ‭165‬

‭3.4 Characteristic Polynomial‬

‭In this chapter, we learn a technique for solving differential‬
‭equations of the form‬

‭where‬ ‭are constant coefficients, and‬
‭denotes the n‬‭th‬ ‭derivative of‬ ‭.‬

‭The‬‭characteristic polynomial‬‭of the differential‬‭equation above is‬
‭given by‬

‭.‬

‭Each root‬ ‭of the characteristic polynomial corresponds‬‭to a‬

‭solution‬ ‭of the‬
‭original equation, where‬ ‭is the multiplicity of‬‭the root and‬

‭are unknown constants of integration.‬

‭The constants of integration are labeled intricately, each with two‬
‭subscripts, so that we can stay organized, in case we have to deal‬
‭with multiple roots.‬

https://www.codecogs.com/eqnedit.php?latex=r%0
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‭Demonstration‬

‭For example, the differential equation‬ ‭has the‬
‭characteristic polynomial‬ ‭, which factors to‬

‭and has roots‬ ‭.‬

‭The root‬ ‭has multiplicity‬ ‭, which corresponds to‬‭a solution‬

‭or more simply‬ ‭.‬

‭The root‬ ‭also has multiplicity‬ ‭, which corresponds‬‭to a‬

‭solution of‬ ‭.‬

‭The full solution of the equation, then, is‬ ‭.‬

‭Another Demonstration‬

‭Next, consider the differential equation‬ ‭.‬

‭This differential equation has the characteristic polynomial‬

‭, which factors to‬ ‭and has a single root‬
‭with multiplicity‬ ‭.‬

‭The solution of the equation, then, is‬ ‭.‬
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‭Case of Imaginary Roots‬

‭Sometimes, the characteristic polynomial of a differential equation‬
‭may have imaginary roots.‬

‭For example, the differential equation‬ ‭has the‬
‭characteristic polynomial‬ ‭, which has roots‬ ‭. In‬
‭these cases, we apply the same procedure as before, but we take it‬
‭a step further. We use‬‭Euler’s formula‬

‭to evaluate any exponentials with imaginary powers, and then we‬
‭remove any‬ ‭’s from the solution. We can remove the‬ ‭’s because in‬
‭general, if‬ ‭is a solution, then so is‬ ‭. This is‬‭true because‬
‭the‬ ‭can be factored out:‬

‭Continuing the example, the root‬ ‭corresponds to‬‭a solution‬

‭, which simplifies to‬ ‭. Removing‬

‭the‬ ‭from this solution yields‬ ‭.‬

‭By the same reasoning, the root‬ ‭corresponds to a‬‭solution‬

‭. Since‬ ‭and‬
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‭for all inputs‬ ‭, this solution simplifies further‬

‭to‬ ‭.‬

‭The full solution, then, is‬

‭which simplifies to‬

‭.‬

‭It is redundant to use four constants in this solution, though, since‬
‭represents a single constant and‬

‭represents another single constant.‬

‭For example, if‬ ‭and‬ ‭, then the solution is just‬
‭. We can make‬ ‭and‬

‭come out to anything we want, by choosing‬ ‭and‬
‭accordingly.‬

‭Therefore, to avoid redundancy in the full solution, we replace the‬
‭expression‬ ‭with a single constant‬ ‭, and the‬
‭expression‬ ‭with a single constant‬ ‭.‬
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‭Case of Complex Roots‬

‭When the characteristic polynomial has complex roots, the solutions‬
‭will contain exponentials and trig functions.‬

‭For example, the differential equation‬ ‭has‬
‭characteristic polynomial‬ ‭, whose roots are given‬‭by‬
‭the quadratic equation.‬

‭The root‬ ‭corresponds to the following solution:‬

‭Likewise, the root‬ ‭corresponds to the following‬‭solution:‬
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‭Assigning new constants‬ ‭and‬
‭, the full solution becomes the following:‬

‭Repeated Imaginary Roots‬

‭Repeated imaginary and complex roots are treated just like we‬
‭treated repeated real roots.‬

‭For example, the equation‬ ‭has‬
‭characteristic polynomial‬ ‭, which factors to‬

‭, and thus has roots‬ ‭, each with multiplicity‬ ‭.‬‭The‬
‭solution to this differential equation is then‬

‭.‬

‭After removing the‬ ‭and grouping the constants, the‬‭solution‬
‭simplifies to‬

‭.‬
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‭Derivation of the Characteristic Polynomial‬

‭Lastly, let’s gain a better understanding of why the characteristic‬
‭polynomial method works. The characteristic polynomial really just‬
‭comes from guessing a solution‬ ‭. The derivatives‬‭for this‬
‭guess are listed below.‬

‭We substitute the derivatives in the differential equation, and‬
‭simplify.‬

‭We see that‬ ‭is a solution whenever‬ ‭is a root of‬‭the‬
‭characteristic polynomial.‬
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‭Exercises‬

‭Use the characteristic polynomial to solve the following‬
‭differential equations.‬
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‭3.5 Undetermined Coefficients‬

‭In the previous chapter, we learned how to solve differential‬
‭equations of the form‬

‭.‬

‭Now, we consider differential equations of the form‬

‭where the right hand side is no longer strictly‬ ‭,‬‭but rather some‬
‭function‬ ‭. The solution to such a differential equation‬‭is given‬
‭by‬

‭where‬ ‭is the general solution to the “homogeneous”‬‭equation‬

‭and‬ ‭is a particular solution that satisfies the‬‭“inhomogeneous”‬
‭equation‬

‭.‬
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‭We already know how to use the characteristic polynomial to find‬
‭, and now we will learn how to use the method of‬‭undetermined‬

‭coefficients‬‭to find‬ ‭.‬

‭The method of undetermined coefficients involves guessing a‬

‭solution‬ ‭having the same form as‬ ‭, except possibly‬
‭multiplied by some other coefficients. We then substitute this guess‬
‭into the differential equation, and solve for the value of the‬
‭coefficient that will make the guess correct.‬

‭Case of Exponential Function‬

‭For example, to find a particular solution to the differential equation‬

‭, we can guess that‬
‭for some values of‬ ‭and‬ ‭. Substituting our guess‬‭into the‬
‭equation, we can solve for the correct values of‬ ‭and‬ ‭.‬

‭Our particular solution is then given by‬ ‭. Then,‬
‭using the characteristic polynomial method, we solve‬

‭to find‬ ‭. The full‬
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‭solution to the differential equation‬ ‭is‬
‭then given by‬

‭.‬

‭Case of Trig Functions with Same Angle‬

‭In cases where‬ ‭contains‬ ‭or‬ ‭, we include both‬
‭and‬ ‭in our guess for‬ ‭.‬

‭For example, to find a particular solution to the differential equation‬
‭, we need to construct a guess that‬

‭contains both‬ ‭and‬ ‭. Our guess, then, is‬

‭.‬

‭We substitute this guess into the differential equation and simplify.‬

‭Equating coefficients on the left and right sides of the equation‬
‭yields a system of equations for‬ ‭and‬ ‭.‬



‭176‬ ‭Justin Math |‬‭Calculus‬

‭Solving this system, we find‬ ‭and‬ ‭. The particular‬

‭solution is then‬ ‭.‬

‭Using the characteristic polynomial to solve‬

‭yields‬ ‭, and the full solution of the‬
‭differential equation‬ ‭is then given by‬

‭.‬

‭Case of Trig Functions with Different Angles‬

‭When we have multiple values of‬ ‭, we end up with‬‭even more‬
‭unknown coefficients in our guess.‬

‭For example, to find a particular solution to the differential equation‬
‭, we need to construct a guess that‬

‭contains both‬ ‭and‬ ‭, for both‬ ‭and‬ ‭. Our‬
‭guess, then, is‬

‭.‬
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‭We substitute this guess into the differential equation and simplify.‬

‭Equating coefficients on the left and right sides of the equation‬

‭yields‬ ‭,‬ ‭,‬ ‭, and‬ ‭. The particular‬

‭solution is then‬ ‭.‬

‭Using the characteristic polynomial to solve‬ ‭yields‬

‭, and the full solution of the‬
‭differential equation‬ ‭is then given by‬

‭.‬

‭Case of Polynomial Functions‬

‭Lastly, the differential equation‬ ‭has a‬
‭polynomial and an exponential term, so our guess for the particular‬
‭solution needs to contain a polynomial and an exponential term.‬
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‭The polynomial in the differential equation is of degree‬ ‭, and the‬
‭differential equation itself is of degree‬ ‭, so our‬‭guess needs to‬
‭contain a polynomial of degree‬ ‭.‬

‭We substitute this guess into the differential equation and simplify.‬

‭Equating coefficients on the left and right sides of the equation‬

‭yields‬ ‭,‬ ‭,‬ ‭,‬ ‭,‬ ‭, and‬ ‭. The‬
‭coefficient‬ ‭can still be any number, so we leave‬‭it as-is. The‬
‭particular solution is then‬

‭.‬

‭Using the characteristic polynomial to solve‬ ‭yields‬
‭, and the full solution of the differential‬

‭equation‬ ‭is then given by‬

‭.‬

https://www.codecogs.com/eqnedit.php?latex=F%0
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‭To eliminate redundancy, we can lump the‬ ‭constant into the‬
‭constant, since‬ ‭is itself just another constant.‬

‭Exercises‬

‭Use the method of undetermined coefficients to solve the‬
‭following differential equations.‬



‭180‬ ‭Justin Math |‬‭Calculus‬



‭Justin Math |‬‭Calculus‬ ‭181‬

‭3.6 Integrating Factors‬

‭We know how to solve differential equations of the form‬

‭where each coefficient‬ ‭is a constant. In this chapter,‬‭we consider‬
‭differential equations of the form‬

‭where the coefficient‬ ‭is itself a function of‬ ‭.‬

‭To solve such equations using the method of‬‭integrating‬‭factors‬‭, we‬
‭start off multiplying both sides of the equation by the term‬

‭, which is known as the‬‭integrating factor‬‭. Then,‬‭we can‬

‭write the left hand side as the derivative of‬ ‭,‬
‭antidifferentiate, and solve for‬ ‭.‬
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‭Demonstration‬

‭For example, consider the differential equation‬ ‭.‬
‭The integrating factor for this equation is as follows:‬

‭To solve the equation, we multiply both sides of the equation, group‬
‭the derivative, take the antiderivative, and solve for‬ ‭.‬
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‭Case when Leading Coefficient is Not One‬

‭In equations where the coefficient on the‬ ‭is not‬‭already‬ ‭, we‬
‭need to start by dividing the equation by that coefficient.‬

‭For example, to solve the equation‬ ‭, we start by‬

‭dividing by‬ ‭, which yields‬ ‭. Then, we can proceed‬
‭as usual to calculate the integration factor.‬

‭Now, we can multiply our updated equation by the integration‬
‭factor, and solve for‬ ‭(using integration by parts‬‭along the way).‬
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‭Exercises‬

‭Use integrating factors to solve the following differential‬
‭equations.‬
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‭3.7 Variation of Parameters‬

‭When we know the zero solutions‬ ‭of a differential‬‭equation‬
‭, we can use a method called‬

‭variation of parameters‬‭to find the particular solution.‬‭This method‬
‭is especially useful in cases where we are unable to guess the‬
‭particular solution through undetermined coefficients.‬

‭Derivation‬

‭Variation of parameters is similar to undetermined coefficients in‬
‭that we guess a solution form that is relevant to the differential‬
‭equation, and adjust it as needed to solve the differential equation.‬

‭However, variation of parameters is more general: the guess is of‬

‭the form‬ ‭, where‬ ‭and‬ ‭are‬
‭the two zero solutions of the differential equation‬

‭, and‬ ‭and‬ ‭are some‬
‭unknown multiplier functions for which we need to solve.‬

‭If we also force‬ ‭, then we can set‬
‭up a system of equations to solve for‬ ‭and‬ ‭. (To‬‭be clear, the‬

‭formula for‬ ‭does not come from differentiating --‬‭rather, it is a‬
‭condition that we force, so that we obtain a solvable system of‬
‭equations.)‬
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‭The first equation comes from differentiating‬ ‭:‬

‭The second equation comes from substituting our guess for‬ ‭into‬
‭the differential equation and simplifying, using the fact that‬ ‭and‬

‭are the zero solutions.‬

‭Our resulting system‬

‭is solved by‬

‭.‬
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‭Integrating, we have‬

‭.‬

‭The particular solution is then‬

‭.‬

‭Demonstration‬

‭For example, to solve the differential equation‬ ‭,‬
‭we start by solving‬ ‭to find the zero solutions‬

‭and‬ ‭. After computing‬

‭we are able to compute‬ ‭and‬ ‭:‬
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‭We can then compute the particular solution:‬

‭Finally, we can write the full solution, and lump any constant terms‬
‭to eliminate redundancy.‬
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‭Another Demonstration‬

‭As another example, we solve the differential equation‬
‭in the same way. The zero solutions to‬

‭are‬ ‭and‬ ‭, and we have‬

‭.‬

‭Computing‬ ‭and‬ ‭, we have‬

‭.‬
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‭We can then compute the particular solution:‬

‭Finally, we can write the full solution, and lump any constant terms‬
‭to eliminate redundancy.‬

‭Exercises‬

‭Use variation of parameters to solve the following differential‬
‭equations.‬
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‭Part 4‬
‭Series‬
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‭4.1 Geometric Series‬

‭A‬‭geometric series‬‭is a sum of the form‬ ‭for some‬
‭number‬ ‭.‬

‭Convergence‬

‭For example, when‬ ‭, the corresponding geometric series‬‭is‬

‭. This series might look like it grows bigger and‬
‭bigger as you add more terms, but there is actually a limit to how‬
‭big it can get.‬

‭To understand the limit intuitively, think of each term as‬

‭representing a section of a pie. First, you eat half of the pie,‬ ‭. Next,‬

‭you eat half of the remaining half,‬ ‭. Then, you eat‬‭half of the‬

‭remaining quarter,‬ ‭, and so on, eating half of what’s‬‭left every‬
‭time.‬

‭You’ll never finish the pie, because there will always be something‬
‭left over -- but in the limit as the number of terms approaches‬
‭infinity, the leftover piece shrinks to‬ ‭, and the‬‭amount of pie that‬
‭you consume approaches‬ ‭. This means that the sum‬‭of the terms is‬

‭, and we say that the series‬‭converges‬‭to‬ ‭.‬
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‭Divergence‬

‭On the other hand, the series for‬ ‭legitimately blows‬‭up to‬
‭infinity -- the terms keep getting bigger and bigger, so the sum has‬
‭to keep getting bigger and bigger. We say that the series‬‭diverges‬‭to‬
‭infinity.‬
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‭Computing the Sum‬

‭But what about the series for, say,‬ ‭? It’s not so‬‭obvious‬
‭whether it converges or diverges. Even if we’re told that it‬
‭converges, what number does it converge to? We can compute this‬
‭algebraically.‬

‭We can check our formula by making sure it evaluates to‬ ‭when‬

‭given‬ ‭.‬
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‭We can also use our the formula to find what the series with‬
‭converges to.‬

‭.‬

‭Understanding Nonsensical Results‬

‭But there’s one issue -- the formula gives a finite result for‬ ‭,‬
‭which we know diverges to infinity since each additional term is‬
‭bigger than the previous term. According to the formula, the series‬
‭with‬ ‭should converge to‬ ‭, which doesn’t make any‬‭sense.‬

‭In general, the formula only gives the correct result if the series‬
‭converges, and the series only converges when‬ ‭. (We’ll‬‭see‬
‭why in a moment.)‬

‭When the series diverges, we can get nonsense results from the‬
‭formula because the method by which the formula was obtained is‬
‭no longer valid. Algebra doesn’t work on terms that diverge to‬
‭infinity -- for example, it’s true that‬ ‭, but subtracting‬
‭from both sides of the equation leads to the statement‬ ‭, which‬
‭isn’t true.‬
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‭Determining Convergence‬

‭To see why the geometric series only converges when‬ ‭, we‬
‭need to compute the sum formula again, but this time only for the‬
‭first‬ ‭terms of the series, so that we don’t run‬‭into any problems‬
‭with divergence.‬

‭Now, we can find the sum of the full series by taking the limit as‬
‭.‬

‭In order for‬ ‭to converge and the denominator‬ ‭not‬
‭to go to‬ ‭, we require that‬ ‭.‬
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‭Case when Manipulation is Required‬

‭Lastly, sometimes we may have to factor out and/or separate‬
‭numbers from a geometric series in order to find its sum.‬

‭For example, to find the sum of the geometric series‬

‭we can factor out a‬ ‭and separate the first term‬‭from the rest of‬
‭the series. Then, we can apply the sum formula to the rest of the‬
‭series and simplify the expression.‬
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‭Exercises‬

‭Compute the sum of each series.‬
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‭4.2 Tests for Convergence‬

‭Previously, we saw that sum formulas are only valid for series that‬
‭converge. But how can we tell whether a series converges or‬
‭diverges, in the first place?‬

‭Trivial Test‬

‭First of all, an easy way to tell that a series diverges is to look at the‬
‭terms of the series -- if the terms themselves do not converge to‬ ‭,‬
‭then their sum cannot possibly converge.‬

‭But if the terms do converge to‬ ‭, then we can’t tell‬‭whether the‬
‭series converges or diverges, and we have to use a more powerful‬
‭test.‬

‭Integral Test‬

‭The‬‭integral test‬‭is a powerful test for proving convergence.‬‭It says‬
‭that if the series can be written as‬ ‭for‬
‭some decreasing function‬ ‭, then the series converges‬‭if the‬

‭integral‬ ‭converges, and diverges if the integral‬

‭diverges.‬
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‭For example, to tell whether the series‬

‭conveges, we can perform the integral test with‬ ‭.‬‭This‬
‭integral diverges to infinity, so the series above diverges to infinity as‬
‭well.‬

‭On the other hand, applying the integral test to the series‬

‭shows that the series converges. (But the series does not converge‬
‭to the same value of the integral -- the integral test can tell us that a‬
‭series converges, but not the value to which it converges. In general,‬
‭the value to which a series converges may be difficult to compute.)‬
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‭More generally, considering all exponents in the denominator, we‬
‭can use the integral test to show that any series of the form‬

‭converges when‬ ‭(and diverges otherwise).‬

‭Derivation of the Integral Test‬

‭The integral test works because the value of the integral is bounded‬
‭above by the series, and below by the series excluding the first term.‬
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‭If the integral converges, then the series excluding the first term‬
‭must converge, and adding a single finite term to the series cannot‬
‭affect convergence, so the series in full must converge.‬

‭On the other hand, if the integral diverges, then since the series is‬
‭greater than the integral, the series must also diverge.‬

‭Ratio Test‬

‭Another powerful test for proving convergence is the‬‭ratio test‬‭,‬
‭which does not require any integration and thus can handle‬
‭hard-to-integrate series.‬

‭The ratio test says that if the ratio of terms in a series has a limit‬ ‭,‬
‭then the series is almost like a geometric series with ratio‬ ‭-- it‬
‭converges if‬ ‭, and diverges if‬ ‭. The only catch‬‭is that if‬

‭, then we can’t tell whether the series converges‬‭or diverges‬
‭(whereas a geometric series with‬ ‭must diverge).‬

‭For example, consider the following series:‬

‭The n‬‭th‬ ‭term of this series is given by‬ ‭, and the‬‭ratio of the terms‬
‭has a limit of‬ ‭, so the ratio test tells us that‬‭the series converges.‬
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‭On the other hand, the n‬‭th‬ ‭term of the series‬

‭is given by‬ ‭, and the ratio of the terms has a limit‬‭that‬
‭diverges to‬ ‭, so the ratio test tells us that the‬‭series diverges.‬

‭Root Test‬

‭Yet another test for convergence, called the‬‭root‬‭test‬‭, says that if‬
‭the n‬‭th‬ ‭root of the n‬‭th‬ ‭term of the series has a limit‬ ‭, then it is (once‬
‭again) almost like a geometric series with ratio‬ ‭-- it converges if‬
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‭, and diverges if‬ ‭. The only catch (once again) is that if‬
‭, then we can’t tell whether the series converges‬‭or diverges.‬

‭For example, consider the following series:‬

‭The n‬‭th‬ ‭term of this series is given by‬ ‭, and the‬‭n‬‭th‬ ‭root of‬

‭the n‬‭th‬ ‭term has a limit of‬ ‭, so the root test tells‬‭us that the series‬
‭converges.‬

‭On the other hand, the n‬‭th‬ ‭term of the series‬

‭is given by‬ ‭, and the n‬‭th‬ ‭root of the n‬‭th‬ ‭term has‬‭a limit that‬
‭diverges to infinity, so the root test tells us that the series diverges.‬
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‭Limit Comparison Test‬

‭Lastly, the‬‭limit comparison‬‭test tells us that for‬‭any series‬
‭, if we create another series‬

‭such that‬ ‭for some positive constant‬ ‭, then either‬
‭both series converge or both series diverge.‬

‭The limit comparison test can simplify the process of finding‬
‭convergence for complicated series -- for example, given a series‬

‭with terms‬ ‭, we can construct a new series with terms‬
‭whose ratio with the original series has a limit of‬ ‭.‬

‭Since the series with terms‬ ‭diverges, the original‬‭series with terms‬

‭must diverge as well.‬
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‭Likewise, the series with terms‬ ‭can be compared to the‬

‭series with terms‬ ‭.‬

‭We know the series with terms‬ ‭converges, so the‬‭original series‬

‭with terms‬ ‭must converge as well.‬

‭Exercises‬

‭Tell whether each series converges or diverges.‬
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‭4.3 Taylor Series‬

‭The sum formula for a geometric series is an example representing a‬
‭non-polynomial function as an infinite polynomial within a particular‬
‭range of inputs.‬

‭Many other non-polynomial functions can be represented by infinite‬
‭polynomials called‬‭Taylor series‬‭. The general formula‬‭for the Taylor‬
‭series of a function‬ ‭, centered about a point‬ ‭,‬‭is‬

‭.‬

‭Just like for the geometric series sum formula, the Taylor series can‬
‭only be used when it converges. The ratio test is particularly useful‬
‭for finding the x-values for which the series converges.‬

‭For the sake of example, we will compute the Taylor series of several‬
‭familiar functions:‬ ‭,‬ ‭, and‬ ‭. To introduce some‬‭variety,‬
‭we will center each series at a different x-value.‬
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‭Taylor Series of the Exponential Function‬

‭For‬ ‭, we have‬ ‭,‬ ‭, and in general‬

‭for all values of‬ ‭. The Taylor series of‬
‭centered at‬ ‭is then given by‬

‭.‬

‭Applying the ratio test, we see that the series converges when‬

‭.‬

‭Thus, the series converges for all values of‬ ‭.‬
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‭Taylor Series of Sine‬

‭For‬ ‭, we have‬ ‭,‬ ‭,‬

‭,‬ ‭, and in general‬

‭and‬ ‭.‬

‭The Taylor series of‬ ‭centered at‬ ‭is then given‬
‭by‬

‭.‬
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‭Applying the ratio test, we see that the series converges when‬

‭.‬

‭Thus, the series converges for all values of‬ ‭.‬

‭Taylor Series of Natural Log‬

‭For‬ ‭, we have‬ ‭,‬ ‭,‬ ‭,‬

‭and in general‬ ‭for‬ ‭.‬

‭The Taylor series of‬ ‭centered at‬ ‭is then given‬‭by‬
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‭.‬

‭Applying the ratio test, we see that the series converges when‬

‭.‬

‭Thus, the series converges for‬ ‭.‬

‭Derivation‬

‭To see where the formula for the Taylor series comes from, we start‬

‭by performing repeated integration on the function‬ ‭.‬
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‭Solving for‬ ‭, we find‬

‭.‬

‭Taking the limit as‬ ‭, we can express‬ ‭as the sum‬‭of its‬
‭Taylor series and some remainder term.‬

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20f(x)%20%3D%20f(c)%20%2B%20f%27(c)(x-c)%20%2B%20%5Cfrac%7Bf%27%27(c)%7D%7B2%7D(x-c)%5E2%20%2B%20%5Ccdots%20%2B%20%5Cfrac%7Bf%5E%7B(n)%7D(c)%7D%7Bn!%7D%20(x-c)%5En%20%2B%20%5Cunderbrace%7B%5Cint%5Climits_c%5Ex%20%5Ccdots%20%20%5Cint%5Climits_c%5Ex%7D_%7B%5Ctext%7Bn%2B1%20integrals%7D%20%7D%20f%5E%7B(n%2B1)%7D(x)%20%5C%2C%20(dx)%5E%7Bn%2B1%7D%20%5Cend%7Balign*%7D%0
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‭For many familiar functions, with‬ ‭sufficiently close‬‭to‬ ‭, it is often‬
‭the case that the remainder decays to zero:‬

‭For example, the remainder decays to zero if‬ ‭is‬‭any polynomial,‬
‭because differentiating an n‬‭th‬ ‭degree polynomial‬ ‭times always‬
‭yields a result of‬ ‭, and the integral of‬ ‭is always‬ ‭. (But this is‬
‭rather trivial since the Taylor series of a polynomial is the‬
‭polynomial itself.)‬

‭More generally, we can place an upper bound on the size of the n‬‭th‬

‭remainder:‬
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‭Then, since‬

‭we must have that‬

‭.‬

‭Provided that the (n+1)‬‭st‬ ‭derivative doesn’t grow‬‭large enough to‬
‭overpower the‬ ‭term in the denominator as‬ ‭, the‬
‭remainder will decay to zero. Then the function will be equal to its‬
‭Taylor series, provided that the series converges.‬
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‭Exercises‬

‭Compute the Taylor series for the following functions, centered at‬
‭the given points. Also compute the interval of convergence.‬
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‭4.4 Manipulating Taylor Series‬

‭To find the Taylor series of complicated functions, it’s often easiest‬
‭to manipulate the Taylor series of simpler functions, such as those‬
‭given below.‬
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‭Multiplying by a Constant‬

‭For example, to compute the Taylor series of‬ ‭centered‬‭at‬ ‭,‬

‭we can take the elementary Taylor series‬ ‭and‬
‭multiply it by‬ ‭.‬

‭Though not strictly necessary, we can make the exponent on the‬
‭match the index of summation by changing the index of summation‬
‭to‬ ‭.‬

‭In this case, since we are multiplying the series by a constant, the‬
‭interval of convergence of the series will stay the same:‬

‭.‬

‭This is because a convergent series has a finite sum, and multiplying‬
‭by a constant cannot cause a finite number to become infinite;‬
‭whereas a divergent series has an infinite sum, and multiplying by a‬
‭constant cannot cause an infinite number to become finite.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
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‭Multiplying Two Series‬

‭Similarly, to compute the Taylor series of‬ ‭around‬ ‭, we can‬

‭multiply the two elementary Taylor series‬ ‭and‬

‭.‬

‭Defining a new index of summation‬ ‭, we can write‬‭the‬
‭series in order of increasing powers of‬ ‭.‬

‭The interval of convergence of a product of series is‬‭at least‬‭the‬
‭intersection of the series’ individual intervals of convergence.‬

‭Here, recalling that the interval of convergence of the Taylor series‬
‭of‬ ‭is‬ ‭and the interval of convergence of the Taylor‬
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‭series of‬ ‭is‬ ‭, we determine that the interval of‬

‭convergence for the Taylor series of‬ ‭must be at‬‭least the‬
‭intersection‬ ‭.‬

‭If we go through the trouble of performing a test of convergence,‬
‭it’s possible that we might find a larger interval of convergence --‬
‭but just based on the intervals of convergence of the two series‬
‭being multiplied, we can say with certainty that the product‬
‭converges for‬‭at least‬ ‭, without needing to perform‬‭any‬
‭tests of convergence.‬

‭Adding Two Series‬

‭Sometimes, we can take advantage of the fact that it’s easier to add‬
‭or subtract series than to multiply series.‬

‭For example, to find the Taylor series of‬ ‭around‬ ‭,‬
‭one option is to multiply the Taylor series of‬ ‭and‬ ‭.‬

‭However, an easier route is to simplify the expression to‬ ‭,‬
‭and then subtract the Taylor series of‬ ‭from the‬‭Taylor series of‬

‭. To compute the Taylor series of‬ ‭, we can substitute‬ ‭for‬
‭in the Taylor series of‬ ‭.‬
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‭Then, we can proceed with subtracting the Taylor series.‬

‭Again, the interval of convergence of a sum or difference of series is‬
‭at least‬‭the intersection of the series’ individual‬‭intervals of‬
‭convergence.‬

‭The series for‬ ‭converges for‬ ‭, so the series for‬
‭converges for‬ ‭, which simplifies to‬

‭. The intersection is given by‬
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‭, so the interval of convergence‬
‭of the series for‬ ‭is‬‭at least‬ ‭.‬

‭Note that this interval contains all real numbers, so the interval can’t‬
‭get any bigger. Thus, the interval of convergence of the series for‬

‭is‬ ‭.‬

‭Using Differentiation and Integration‬

‭We can also use differentiation and integration to simplify the‬
‭process of finding Taylor series.‬

‭For example, to find the Taylor series of‬ ‭, one option‬‭is to‬
‭multiply the series of‬ ‭by itself -- but an easier‬‭option is to‬
‭differentiate to yield a simpler result, then find the Taylor series of‬
‭the simpler result, and then integrate the Taylor series to get back to‬
‭the original function.‬
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‭To solve for the constant of integration, we can substitute‬ ‭.‬

‭Thus, we have‬

‭.‬
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‭Though not strictly necessary, we can clean up the series a bit by‬
‭changing the index of summation to‬ ‭.‬

‭Neither differentiating nor integrating a Taylor series changes its‬
‭interval of convergence, so the interval of convergence of the series‬
‭for‬ ‭is the same as the interval of convergence of‬‭the series for‬

‭, which is‬ ‭.‬

‭Substitution‬

‭In the previous examples, we computed the series for‬ ‭and‬
‭by substituting‬ ‭for‬ ‭in the series for‬ ‭and‬ ‭. We can‬

‭extend this idea to more clever substitutions.‬

‭For example, to compute the series of the function‬ ‭, we can‬

‭substitute‬ ‭for‬ ‭in the elementary series‬ ‭.‬
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‭After substitution, the interval of convergence becomes‬

‭, which simplifies to‬ ‭.‬

‭Exercises‬

‭Compute the Taylor series for the following functions, centered at‬
‭.‬
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‭4.5 Solving Differential Equations‬
‭with Taylor Series‬

‭Many differential equations don’t have solutions that can be‬
‭expressed in terms of finite combinations of familiar functions.‬
‭However, we can often solve for the Taylor series of the solution.‬

‭Demonstration‬

‭For example, to solve the differential equation‬

‭we can substitute the Taylor series‬ ‭and‬

‭and solve for the coefficients‬ ‭.‬

‭Differentiating, we have‬ ‭and‬

‭. Substituting the derivatives in the‬
‭differential equation, re-indexing so that all exponents are‬ ‭,‬
‭expressing all sums with the same starting index, and combining‬
‭terms under a single sum, we condense the expression into a single‬
‭polynomial.‬

https://www.codecogs.com/eqnedit.php?latex=a_n%0
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‭For the expression to evaluate to‬ ‭, we must have‬ ‭and‬

‭for‬ ‭. So, we can‬
‭choose‬ ‭and‬ ‭to be our constants‬ ‭and‬ ‭, set‬

‭, and express all other coefficients‬ ‭for‬ ‭in terms‬‭of‬
‭the constants‬ ‭and‬ ‭through a recurrence:‬

https://www.codecogs.com/eqnedit.php?latex=a_0%0
https://www.codecogs.com/eqnedit.php?latex=a_1%0
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‭Thus, our solution is given by‬ ‭where‬ ‭,‬

‭,‬ ‭, and‬

‭.‬

‭As another example, we will solve the differential equation‬
‭using the same process. We write the solution as‬‭the‬

‭Taylor series‬ ‭, substitute its derivatives into the‬
‭equation, and simplify.‬
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‭We can choose‬ ‭,‬ ‭, and‬ ‭as our constants‬
‭and express all other coefficients‬ ‭for‬ ‭in terms‬‭of these‬
‭constants through a recurrence:‬

‭Thus, our solution is given by‬ ‭where‬ ‭,‬
‭,‬ ‭, and‬

‭.‬

‭Exercises‬

‭Use Taylor series to solve the following differential equations.‬
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‭Solutions‬
‭to Exercises‬
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