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‭Part 1‬
‭Linear Equations and Systems‬
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‭1.1 Solving Linear Equations‬

‭Loosely speaking, a‬‭linear equation‬‭is an equality‬‭statement‬
‭containing only addition, subtraction, multiplication, and division. It‬
‭does not need to include all of these operations, but it cannot‬
‭include operations beyond them, such as exponentiation.‬

‭For example, these are linear equations:‬

‭On the other hand, these are not linear equations:‬

‭Solutions to Linear Equations‬

‭The‬‭solution‬‭of a linear equation is the value that‬‭we can substitute‬
‭for the variable to make the equation true.‬
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‭Most linear equations have a single solution. We can find the‬
‭solution by performing operations on both sides of the equation, to‬
‭isolate the variable.‬

‭Given equation‬

‭Add‬ ‭to both sides‬

‭Subtract‬ ‭from both sides‬

‭Divide both sides by‬

‭To check our solution, we can substitute it in both sides of the‬
‭equation and check that they evaluate to the same result:‬

‭Case of No Solutions‬

‭However, some linear equations have no solutions. When we try to‬
‭solve these equations, the variable vanishes and we are left with an‬
‭untrue statement.‬

‭Given equation‬

‭Subtract‬ ‭from both sides‬

https://www.codecogs.com/eqnedit.php?latex=2x%0
https://www.codecogs.com/eqnedit.php?latex=8%0
https://www.codecogs.com/eqnedit.php?latex=7%0
https://www.codecogs.com/eqnedit.php?latex=3x%0
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‭This means that there is no number we can substitute for‬ ‭to make‬
‭the given equation true.‬

‭In fact, the right-hand side will always be‬ ‭more‬‭than the left-hand‬
‭side: the left-hand side says to multiply the input by‬ ‭and add‬ ‭,‬
‭while the left-hand side says to multiply the input by‬ ‭and add‬ ‭.‬

‭Both sides multiply the input by‬ ‭, but then add different‬‭amounts!‬
‭We can never hope to get the results to be the same.‬

‭Case of Infinitely Many Solutions‬

‭Even more interesting, some linear equations have infinitely many‬
‭solutions. When we try to solve these equations, the variable still‬
‭vanishes, but this time we are left with a true statement.‬

‭Given equation‬

‭Add‬ ‭to both sides‬

‭In other words, any number we substitute for‬ ‭will‬‭make the given‬
‭equation true.‬

‭The left-hand side and the right-hand side will always come out to‬
‭the same result: the left-hand side tells us to multiply the input by‬

‭and add‬ ‭, and the right-hand side tells us to multiply‬‭the input‬
‭by‬ ‭and then subtract it from‬ ‭. These are really‬‭just two ways of‬
‭saying the same thing.‬

https://www.codecogs.com/eqnedit.php?latex=2x%0
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‭Exercises‬

‭Solve the following:‬
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‭1.2 Slope-Intercept Form‬

‭Before, we were solving linear equations in one variable. Now, let’s‬
‭consider linear equations in two variables. A few examples are‬
‭shown below:‬

‭Solutions to Two-Variable Equations‬

‭The solution to a two-variable linear equation is no longer just the‬
‭number(s) that we can substitute for‬ ‭to make the‬‭equation true,‬
‭but rather the pair(s)‬ ‭that we can substitute for‬ ‭and‬ ‭to‬
‭make the equation true.‬

‭Two-variable linear equations usually have infinitely many solutions,‬
‭because we are usually able to solve for one variable in terms of the‬
‭other.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
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‭Given equation‬

‭Subtract‬ ‭from both sides‬

‭Subtract‬ ‭from both sides‬

‭Divide both sides by‬

‭If we choose‬ ‭, then we can make the given equation‬‭true by‬
‭choosing‬ ‭. If we choose‬ ‭, then we can‬
‭make the given equation true by choosing‬ ‭.‬
‭Whatever value we choose for‬ ‭, we can make the equation‬‭true by‬
‭choosing‬ ‭as twice that value, minus‬ ‭.‬

‭However, although there are infinitely many solutions to the‬
‭equation, that doesn’t mean that any random pair we pick will be a‬
‭solution. For example, if we try the pair‬ ‭, then‬‭the‬
‭left-hand side comes out to‬ ‭, not‬ ‭.‬

‭Graphing‬

‭To really see what’s going on, it helps to plot the solutions on a‬
‭graph.  In fact, linear equations are called linear because when we‬
‭plot them on a graph, they form a straight line‬

‭To plot all the solutions of‬ ‭on the graph below,‬‭we plot‬
‭two solutions and draw a line through them. We already saw that‬
‭one solution was‬ ‭, and when we substitute‬ ‭we get‬

‭, so another solution is‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=35%0
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‭Any point that is on the line is a solution of the original equation. For‬
‭example, we see that the line passes through the point‬ ‭-- and‬
‭indeed, substituting‬ ‭and‬ ‭makes the original equation‬
‭true.‬

‭Slope-Intercept Form‬

‭In general, when we solve for‬ ‭in a linear equation‬‭of two‬
‭variables, we end up with a result in the form‬ ‭where‬

‭and‬ ‭are constants (provided‬ ‭doesn’t vanish).‬‭This is called‬
‭slope-intercept‬‭form, and the constants‬ ‭and‬ ‭are‬‭called the‬
‭slope‬‭and‬‭y-intercept‬‭of the line, respectively.‬
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‭The y-intercept takes its name from the fact that the line crosses the‬
‭y-axis at‬ ‭. For example, the graph of‬ ‭shown earlier‬
‭crossed the y-axis at‬ ‭. This pattern is true in general‬‭because the‬
‭pair‬ ‭is a solution of the equation‬ ‭: when we‬
‭substitute‬ ‭, we find‬ ‭.‬

‭The slope takes its name from the fact that‬ ‭controls‬‭how steep‬
‭the line is: for every unit the line travels right, it travels‬ ‭units up‬
‭(or down, if‬ ‭is negative). For example, in the graph‬‭of‬

‭, if we start at the point‬ ‭and travel‬ ‭unit right‬‭and‬
‭units up, we arrive at the point‬ ‭, which is also‬‭on the line.‬

‭To graph a line‬ ‭in slope-intercept form, it is easiest‬‭to‬
‭start by plotting the intercept‬ ‭. Then, we can pick‬‭another‬
‭point by going right 1 unit and up‬ ‭units. For example,‬‭to plot the‬
‭line‬ ‭, we can start at the intercept‬ ‭, and since‬‭the‬
‭slope is‬ ‭, we will go right‬ ‭unit and down‬ ‭units‬‭to arrive at a‬
‭second point‬ ‭. Then, we can connect these two points‬‭with a‬
‭line.‬

https://www.codecogs.com/eqnedit.php?latex=b%0
https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=1%0
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‭When we have a fractional slope, such as in the line‬ ‭, it‬
‭is easier to go right‬ ‭units and up‬ ‭units, instead‬‭of going right‬

‭unit and up‬ ‭of a unit. We’re just repeating the‬‭process‬ ‭times, for‬
‭a total distance right of‬ ‭and a total distance up‬‭of‬

‭. The resulting line is shown in the graph below.‬

‭Horizontal and Vertical Lines‬

‭If the‬ ‭term vanishes when we solve for‬ ‭, such as‬‭in the line‬
‭which simplifies to‬ ‭, then we can interpret the‬

‭slope as being‬ ‭because the line can be written‬ ‭. The‬
‭resulting line has a y-intercept‬ ‭and is horizontal‬‭because for‬
‭every unit it goes to the right, it goes‬ ‭units up.‬
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‭Perhaps an easier way to think about it, though, is that the solution‬
‭is just all the points that have a y-coordinate of‬ ‭, regardless of their‬
‭x-coordinates.‬

‭On the other hand, if‬ ‭vanishes when we solve, such‬‭as in the line‬
‭which simplifies to‬ ‭, then we have a vertical‬

‭line that passes through all the points having an x-coordinate of‬ ‭,‬
‭regardless of their y-coordinate.‬
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‭Finding the Equation from a Graph‬

‭Now, let’s think in reverse: if we draw a particular line, how can we‬
‭come up with its equation?‬

‭If we know the y-intercept and slope of the line, then it’s easy -- we‬
‭just substitute the slope for‬ ‭and the y-intercept‬‭for‬ ‭in the‬
‭equation‬ ‭.‬

‭For example, in the line below, we see that the y-intercept is‬ ‭,‬

‭and when we go right‬ ‭, we go up‬ ‭, so the slope is‬ ‭. The equation‬

‭of the line, then, is‬ ‭.‬

‭But what if we aren’t given the slope and y-intercept, or even a‬
‭picture of the line, and we want to write the equation of the line‬
‭based on only two points it passes through?‬
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‭It’s straightforward to compute the slope based on the two points --‬
‭we just need to find the‬‭rise‬‭, or the change in‬ ‭, and divide it by the‬
‭run‬‭, or the change in‬ ‭.‬

‭For example, if the points are‬ ‭and‬ ‭, then we can‬
‭compute the rise as‬ ‭and the run as‬ ‭,‬

‭resulting in a slope of‬ ‭.‬

‭Or, we can compute the rise as‬ ‭and the run as‬

‭, still resulting in a slope of‬ ‭.‬

‭Either way, we get the same slope.‬

‭Substituting for‬ ‭in the equation‬ ‭, we reach‬

‭.‬

‭It remains to find the y-intercept,‬ ‭. We can do this‬‭by substituting‬
‭for‬ ‭and‬ ‭using the coordinates of one of the points‬‭that we‬
‭know needs to be on the line, say,‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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‭It really doesn’t matter which point we use -- even if we used the‬
‭other point,‬ ‭, we would get the same result for‬ ‭.‬

‭Now that we know the y-intercept is‬ ‭, we can write‬‭the final‬
‭equation of the line:‬
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‭Exercises‬

‭Graph the following linear equations.‬

‭Write the equation of the line in slope-intercept form.‬



‭Justin Math |‬‭Algebra‬ ‭27‬

‭Write the slope-intercept equation of the line that goes through‬
‭the given point, with the given slope.‬

‭Write the slope-intercept equation of the line that goes through‬
‭the given points.‬
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‭1.3 Point-Slope Form‬

‭Suppose we want to write the equation of a line with a given slope‬
‭, through a particular point‬ ‭. In the previous chapter,‬‭we‬

‭substituted the given information into a slope-intercept equation‬
‭form‬ ‭, solved for‬ ‭, and rewrote the slope-intercept‬
‭form with‬ ‭and‬ ‭substituted so that‬ ‭and‬ ‭were‬‭the only‬
‭variables.‬

‭Slope-intercept equation form‬

‭Substitute the given slope‬

‭Substitute the given point‬

‭Solve for‬

‭Final equation‬

‭However, there is an alternative form,‬‭point-slope‬‭form‬‭, that makes‬
‭it even easier to write the equation of a line if we know the slope‬
‭and a point‬ ‭on the line. It is given by‬

‭.‬
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‭If we know that our desired line has slope‬ ‭and passes‬
‭through the point‬ ‭, then we can substitute directly‬
‭into point-slope form without performing any additional‬
‭computations:‬

‭This is an accepted form of the equation for a line, so we don’t need‬
‭to simplify it at all unless we’re asked to do so.‬

‭But even if we actually need to find the line in slope-intercept form,‬
‭it’s still advantageous to begin with point-slope form, because all we‬
‭have to do is distribute the‬ ‭and add‬ ‭to get to‬‭slope-intercept‬
‭form.‬

‭Point-slope form‬

‭Distribute the‬

‭Add‬ ‭to both sides to reach‬
‭slope-intercept form‬

‭Derivation‬

‭The point-slope formula is easy to remember, too, because it just‬
‭says that the slope between any point‬ ‭and the reference‬
‭point‬ ‭needs to be equal to the given slope‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=2%0
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‭Moving from‬ ‭to‬ ‭, the amount we go up is‬ ‭, and‬
‭the amount we go over horizontally is‬ ‭, so the slope is just‬

‭. Equating this to‬ ‭and multiplying to get rid of‬‭the fraction,‬
‭we reach point-slope form!‬

‭Slope must equal‬

‭Multiply both sides by‬
‭to reach point-slope form‬

‭Graphing‬

‭To graph a line whose equation is given in point-slope form, we‬
‭perform the same process as we do to graph a line that is in‬
‭slope-intercept form, except we start at the reference point rather‬
‭than at the y-intercept.‬

‭For example, consider the line‬ ‭, for which the‬

‭reference point is‬ ‭and the slope is‬ ‭. To graph‬‭this line, we‬
‭start at‬ ‭, go up‬ ‭and over‬ ‭to the point‬ ‭, and‬‭draw a line‬
‭through the two points.‬
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‭Final Remark‬

‭One thing to watch out for in point-slope form: be careful about‬
‭negatives.‬

‭For example, the point-slope form of a line with slope‬ ‭that goes‬
‭through the point‬ ‭is NOT given by‬ ‭. This‬
‭is the line that goes through the point‬ ‭, not‬ ‭.‬

‭The line that goes through‬ ‭actually involves addition‬
‭rather than subtraction, because the negatives cancel the‬
‭subtraction in the original formula for point-slope form.‬
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‭Point-slope formula‬

‭Substitute slope‬ ‭and‬
‭point‬

‭Negatives cancel‬

‭Exercises‬

‭Write the point-slope equation of the line that goes through the‬
‭given point, with the given slope.‬

‭Write the point-slope equation of the line that goes through the‬
‭given points.‬
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‭Graph the following lines.‬
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‭1.4 Standard Form‬

‭The‬‭standard form‬‭of a linear equation is‬ ‭, where‬ ‭,‬ ‭,‬
‭and‬ ‭are all integers and‬ ‭is nonnegative.‬

‭For example, we can convert the equation‬ ‭to standard‬
‭form by moving‬ ‭and‬ ‭to the same side and multiplying‬‭to cancel‬
‭out any fractions.‬

‭Given equation‬

‭Subtract‬ ‭from both sides‬

‭Multiply both sides by‬ ‭, the least‬
‭common multiple of‬ ‭and‬

‭Multiply both sides by‬ ‭to make‬
‭the‬ ‭coefficient positive‬

‭Finding the Intercepts‬

‭Standard form makes it easy to see the intercepts of the line: to get‬
‭the x-intercept in‬ ‭, we divide the constant‬ ‭by‬‭the‬
‭x-coefficient‬ ‭, and to get the y-intercept, we divide‬‭the constant‬
‭by the y-coefficient‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
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‭For example, the x-coefficient of‬ ‭is‬ ‭, and the‬

‭y-coefficient is‬ ‭which simplifies to‬ ‭.‬

‭This trick for finding the intercepts works because finding the‬
‭intercept of a particular variable involves substituting‬ ‭for the other‬
‭variable. The x-intercept occurs at some point‬ ‭where‬ ‭is‬ ‭,‬
‭so to solve for the x-intercept, we can substitute‬ ‭for‬ ‭and solve‬
‭for‬ ‭.‬

‭Given equation‬

‭Substitute‬ ‭for‬

‭Simplify‬

‭Divide by‬

‭Likewise, the y-intercept occurs at some point‬ ‭where‬ ‭is‬ ‭,‬
‭so to solve for the y-intercept, we can substitute‬ ‭for‬ ‭and solve‬
‭for‬ ‭.‬

‭Given equation‬

‭Substitute‬ ‭for‬

‭Simplify‬

‭Divide by‬

https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=a(0)%2Bby%3Dc%0
https://www.codecogs.com/eqnedit.php?latex=by%3Dc%0
https://www.codecogs.com/eqnedit.php?latex=b%0
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‭Graphing‬

‭To plot the line, then, all we have to do is mark the intercepts and‬
‭then draw a line through them.‬

‭For example, in the line‬ ‭, we computed the‬

‭x-intercept as‬ ‭, or‬ ‭, and the y-intercept as‬ ‭,‬‭or‬ ‭.‬

‭To graph the line, we just need to plot the intercepts‬ ‭and‬

‭and draw a line through them.‬
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‭Exercises‬

‭Write the equation in standard form. (It may already be in‬
‭standard form.)‬

‭Graph the following by drawing a line through the intercepts.‬



‭Justin Math |‬‭Algebra‬ ‭39‬

‭1.5 Linear Systems‬

‭A‬‭linear system‬‭consists of multiple linear equations,‬‭and the‬
‭solution of a linear system consists of the pairs that satisfy all of the‬
‭equations.‬

‭For example, the solution to the linear system‬

‭is‬ ‭because substituting‬ ‭for‬ ‭and‬ ‭for‬ ‭makes‬‭both‬
‭equations true.‬

‭Graphical Interpretation‬

‭Graphically, we can think of a linear system as being a set of two‬
‭lines, and their solution as the point where they intersect.‬

‭The intersection point is the solution because it is on both lines,‬
‭meaning it makes both equations true.‬
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‭Usually, two lines will intersect in exactly one point, and thus the‬
‭system will have a single solution. However, when the two lines are‬
‭parallel‬‭, meaning that they have the same slope, the‬‭lines will never‬
‭intersect, unless they are actually the same line.‬

‭If the system consists of two different parallel lines, then it will have‬
‭no solution because there are no intersection points. But if the‬
‭system consists of two lines that are actually the same, then the‬
‭system will have infinitely many solutions because every point on‬
‭the line is a solution.‬
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‭We can sometimes tell the solution of a system by graphing the‬
‭equations and looking for the point where they intersect. However,‬
‭when the lines intersect at a point that doesn’t coincide with grid‬
‭lines on the graph, it can be difficult to identify the exact‬
‭coordinates of the intersection point.‬

‭For example, can you identify the point of intersection below? If you‬
‭think you can, would you bet your life on it?‬
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‭Substitution‬

‭There is another method for solving a system of linear equations,‬
‭called the method of‬‭substitution‬‭, which makes it‬‭possible to solve a‬
‭linear system without graphing it.‬

‭To perform substitution, we create a third equation by solving for a‬
‭particular variable in the first and second equations and setting the‬
‭results equal to each other.‬

‭Since the third equation has a single variable, we can solve for the‬
‭numeric value of that variable, and then use it to find the numeric‬
‭value of the other variable.‬

‭Given system‬

‭Solve for‬

‭Set the results equal‬
‭to each other‬

‭Solve for‬

https://www.codecogs.com/eqnedit.php?latex=y%0
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‭Substitute‬ ‭in‬
‭equation for‬

‭Final solution‬

‭To perform substitution even more quickly, instead of solving for a‬
‭particular variable in both equations, we can solve for a particular‬
‭variable in just one of the equations and then substitute the‬
‭resulting expression where the particular variable occurs in the‬
‭other equation.‬

‭Given system‬

‭Solve for‬ ‭in bottom‬
‭equation‬

‭Substitute into top equation‬

‭Solve for‬

‭Substitute‬ ‭in‬
‭equation for‬

https://www.codecogs.com/eqnedit.php?latex=y%0
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‭Final solution‬

‭Remember that some systems have no solutions, and other‬
‭solutions have infinite solutions -- so it shouldn’t throw us off if the‬
‭third equation created by substitution has no solutions or infinite‬
‭solutions.‬

‭Elimination‬

‭An‬‭even faster‬‭way to solve some linear equations‬‭is the method of‬
‭elimination‬‭. The method of elimination also creates‬‭a third equation‬
‭in a single variable, but it does so by adding multiples of the two‬
‭original equations to cancel out one of the variables.‬

‭Given system‬

‭Add the two equations‬

‭cancels‬

‭Solve for‬

‭Substitute‬ ‭in‬
‭top equation‬

https://www.codecogs.com/eqnedit.php?latex=x%0
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‭Solve for‬

‭Final solution‬

‭In the previous example, one of the variables cancelled when we‬
‭added the two equations. Other times, though, no variable will‬
‭cancel right away, and we will first need to multiply one of the‬
‭equations by a number so that a variable will cancel when we add‬
‭the equations.‬

‭Given system‬

‭Multiply top equation‬
‭by‬

‭Add the two equations‬
‭to cancel‬

‭Other times still, we may need to multiply both equations by a‬
‭different number to cancel a variable. (We can just take the least‬
‭common multiple -- the same trick we use to add fractions with‬
‭different denominators.)‬
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‭Given system‬

‭Multiply top equation by‬
‭Multiply bottom equation by‬

‭(Least common multiple is‬ ‭)‬

‭Add the two equations‬
‭to cancel‬

‭Again, since some systems have no solutions, and other solutions‬
‭have infinite solutions, we should not be worried if the third‬
‭equation created by elimination simplifies to a never-true statement‬
‭like‬ ‭(no solutions) or an always-true statement‬‭like‬
‭(infinite solutions).‬

‭Exercises‬

‭Solve by substitution or elimination.‬
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‭Part 2‬
‭Quadratic Equations‬
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‭2.1 Standard Form‬

‭Quadratic equations‬‭are similar to linear equations,‬‭except that they‬
‭contain squares of a single variable.‬

‭For example, the equations below are quadratic equations:‬

‭On the other hand, the equations below are not quadratic‬
‭equations. (A quadratic equation must contain the square of one‬
‭variable, but cannot contain squares of multiple different variables,‬
‭and cannot contain other operations not found in linear equations,‬
‭such as square roots.)‬

‭Graphing‬

‭As a consequence of the squared variable, the shape of the graph of‬
‭a two-variable quadratic equation is a parabola.‬
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‭To tell whether the graph of a quadratic equation is an upward or‬
‭downward parabola, it is helpful to arrange the quadratic equation‬
‭into‬‭standard form‬‭, which is given by‬

‭where‬ ‭,‬ ‭, and‬ ‭are constants and called‬‭coefficients‬‭.‬‭The‬
‭coefficient on the‬ ‭term, which is given by‬ ‭, is‬‭often called the‬
‭leading coefficient because it is the leftmost coefficient when terms‬
‭in the standard equation are ordered properly.‬

‭Keep in mind that some coefficients may be zero -- for example, the‬

‭quadratic equation‬ ‭has‬ ‭because it can be‬

‭written as‬ ‭.‬

‭If the leading coefficient,‬ ‭, is positive, then the‬‭parabola opens‬
‭upward. Otherwise, if the leading coefficient is negative, then the‬
‭parabola opens downward.‬
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‭To remember this, you might think of a‬‭positive‬‭leading coefficient‬
‭causing the parabola to‬‭smile‬‭, and a‬‭negative‬‭leading‬‭coefficient‬
‭causing the parabola to‬‭frown‬‭.‬

‭Opens upward because leading‬
‭coefficient‬ ‭is positive‬

‭Opens downward because leading‬
‭coefficient‬ ‭is negative‬

‭Sometimes, we may have to rearrange a quadratic equation into‬
‭standard form.‬

‭Given Equation‬

‭Standard Form‬

‭Leading Coefficient‬

‭Opening Direction‬

‭Vertex of a Parabola‬

‭The standard form of a quadratic equation can also tell us about the‬
‭parabola’s‬‭vertex‬‭, or turning point.‬

‭For a quadratic equation in the form‬ ‭, the‬

‭x-coordinate of the vertex is given by‬ ‭.‬
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‭To find the y-coordinate of the vertex, we can substitute the‬
‭x-coordinate of the vertex into the quadratic equation and evaluate.‬

‭Standard Form‬

‭X-Coord‬
‭of Vertex‬

‭Y-Coord‬
‭of Vertex‬

‭Vertex‬

‭With a parabola’s vertex and direction of opening, we can draw a‬
‭decent sketch of the graph.‬

‭To make our graph a little more accurate, we can also make sure it‬
‭has the correct y-intercept. Since we set‬ ‭to find‬‭the‬

‭y-intercept, the y-intercept of‬ ‭is always given‬‭by‬

‭, which evaluates simply to‬ ‭.‬
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‭Exercises‬

‭For the following quadratic equations:‬
‭a.‬ ‭Write the quadratic equation in standard form.‬
‭b.‬ ‭Using the standard form, tell whether the parabola opens‬

‭upward or downward, and find the vertex and y-intercept.‬
‭c.‬ ‭Finally, using the parabola’s vertex, opening direction, and‬

‭y-intercept, draw a rough sketch of the graph of the‬
‭equation. (If the vertex and the y-intercept are the same,‬
‭choose some other point.)‬
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‭2.2 Factoring‬

‭Factoring‬‭is a method for solving quadratic equations.‬‭It involves‬
‭converting the quadratic equation to standard form, then‬‭factoring‬
‭it into a product of two linear terms (called‬‭factors‬‭),‬‭and finally‬
‭solving for the variable values that make either factor equal to‬ ‭.‬

‭Original quadratic equation‬

‭Convert to standard form‬

‭Factor‬

‭Set each factor to‬

‭Solve‬

‭When we factor, we are rearranging the equation to say that the‬
‭product of two numbers is‬ ‭. The equation is solved‬‭when either‬
‭number is‬ ‭, because any number multiplied by‬ ‭is‬ ‭.‬
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‭How to Factor‬

‭Factoring is easiest in hindsight. Multiplying through, we see that‬
‭the factored form is equivalent to the standard form:‬

‭But how can we know this to begin with? In other words, if we want‬
‭to factor an expression‬ ‭into the form‬ ‭,‬
‭how do we know what‬ ‭and‬ ‭are?‬

‭Here’s the trick:‬ ‭and‬ ‭need to multiply to‬ ‭and‬‭add to‬ ‭.‬

‭To factor the expression‬ ‭, we need to find two numbers‬
‭that multiply to‬ ‭and add to‬ ‭. Although‬ ‭and‬ ‭multiply to‬ ‭,‬
‭they don’t add to‬ ‭. But‬ ‭and‬ ‭multiply to‬ ‭AND‬‭add to‬ ‭, so‬
‭they work! The factored form is then‬ ‭.‬

‭Even with negatives, the method is still the same: to factor the‬
‭expression‬ ‭, we need to find two numbers that multiply‬
‭to‬ ‭and add to‬ ‭. Although‬ ‭and‬ ‭multiply to‬ ‭,‬‭they‬
‭don’t add to‬ ‭. But‬ ‭and‬ ‭multiply to‬ ‭AND add‬‭to‬ ‭, so‬
‭they work! The factored form is then‬ ‭.‬
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‭Case of Many Potential Factors‬

‭Factoring can become a little tricky when‬ ‭has a‬‭lot of factors. In‬
‭such cases, it can be helpful to make a factor table.‬

‭For example, to factor‬ ‭, we can list out the factors‬
‭of‬ ‭and find which pair adds to‬ ‭. Since this pair‬‭is‬ ‭and‬ ‭,‬
‭the expression factors to‬ ‭.‬

‭Factor Pair‬ ‭Sum‬

‭To speed up the process, notice that the sums are automatically‬
‭ordered from biggest to smallest -- so we don’t necessarily have to‬
‭create the whole table.‬
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‭We could have started with some intermediate pair, say‬ ‭and‬ ‭,‬
‭and realized that since the sum is too big, we need the first factor to‬
‭be bigger than‬ ‭.‬

‭Or, we could have noticed that sum of‬ ‭and‬ ‭is in‬‭the ballpark of‬
‭, and worked our way up from the bottom of the table.‬

‭Case of Negative Terms‬

‭To deal with a negative value for‬ ‭, we could use‬‭the same method‬
‭as before, except that we would have to make both factors negative.‬

‭For example, since we know that‬ ‭and‬ ‭are factors‬‭of‬ ‭that‬
‭add to‬ ‭, we also know that‬ ‭and‬ ‭are factors of‬ ‭that‬
‭add to‬ ‭, so the expression‬ ‭factors to‬

‭.‬

‭To deal with a negative value for‬ ‭, we can think‬‭about the‬
‭difference instead of the sum.‬

‭For example, to factor‬ ‭, we can find which factor‬
‭pair of‬ ‭has a difference of‬ ‭, and put a negative‬‭on the smaller‬
‭factor to make the sum. Since this pair is‬ ‭and‬ ‭, the expression‬
‭factors to‬ ‭.‬
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‭Factor Pair‬ ‭Difference‬

‭If‬ ‭were negative as well -- say, if we wanted to‬‭factor‬
‭-- then we could use the same process but put the‬

‭negative on the bigger factor to make the sum negative. That is, we‬
‭would put the negative on the‬ ‭instead of the‬ ‭,‬‭and the resulting‬
‭factored form would then be‬ ‭.‬
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‭Case of a Common Factor‬

‭Sometimes, we can simplify quadratic expressions by factoring out‬
‭something that ALL the terms have in common.‬

‭Original quadratic equation‬

‭Factor a‬ ‭out of all terms‬

‭Factor the quadratic expression‬

‭Set each factor to‬

‭Solve‬

‭This makes it easy to factor quadratic expressions where‬ ‭is‬ ‭--‬
‭just factor out the variable!‬

‭Original quadratic equation‬

‭Factor an‬ ‭out of all terms‬

‭Set each factor to‬

‭Solve‬
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‭Case when the Leading Coefficient is Not One‬

‭Factoring out the variable works even when‬ ‭is something‬‭other‬
‭than‬ ‭.‬

‭Original quadratic equation‬

‭Factor an‬ ‭out of all terms‬

‭Set each factor to‬

‭Solve‬

‭But what about when‬ ‭is something other than‬ ‭, and‬ ‭is not‬
‭zero?‬

‭There’s a little trick that lets us reduce this to a factoring problem‬
‭with‬ ‭equal to‬ ‭. We multiply‬ ‭by‬ ‭, replace‬ ‭with‬ ‭, factor the‬
‭result, divide each constant in each factor by the original‬ ‭, and‬
‭move denominators onto our variables.‬

‭Original quadratic equation‬

‭Multiply‬ ‭by‬ ‭, and‬
‭replace‬ ‭with‬

‭Factor normally‬

‭Divide each constant in‬
‭each factor by‬
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‭Simplify‬

‭Move denominators onto‬
‭variables‬

‭Set each factor to‬

‭Solve‬

‭We’ll talk about why this trick works in the next chapter, when we‬
‭cover the quadratic formula.‬

‭Case of No Middle Term‬

‭Lastly, what about when‬ ‭is‬ ‭? Since the factors‬‭have to add to‬ ‭,‬
‭they must be negatives of each other. Since the factors have to‬
‭multiply to‬ ‭, and they are the same number (except‬‭one is‬
‭negative), they must be the positive and negative square roots of‬ ‭!‬

‭For example,‬ ‭factors to‬ ‭, and‬ ‭factors‬
‭to‬ ‭.‬

‭This trick also works if‬ ‭is not equal to‬ ‭-- we‬‭just have to factor‬
‭out first.‬

‭Original quadratic equation‬

‭Factor‬ ‭out of all terms‬
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‭Factor the quadratic‬

‭Solve‬

‭Exercises‬

‭Factor the following quadratic equations. Then, use the factored‬
‭form to find the solutions.‬
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‭2.3 Quadratic Formula‬

‭Some quadratic equations cannot be factored easily. For example, in‬
‭the equation‬ ‭, we need to find two factors of‬
‭that add to‬ ‭. But the only integer factors of‬ ‭are‬ ‭and‬ ‭, and they‬
‭definitely don’t add to‬ ‭!‬

‭To solve these hard-to-factor quadratic equations, it’s easiest to use‬
‭the‬‭quadratic formula‬‭given below, which tells us‬‭explicitly how to‬
‭compute the solutions of a quadratic equation‬ ‭.‬

‭Worked Example‬

‭Using the quadratic formula, we can compute the solutions to the‬
‭equation‬ ‭.‬

‭Substitute‬ ‭,‬ ‭, and‬
‭in quadratic formula‬

‭Simplify‬

‭Separate the‬ ‭into two‬
‭solutions (optional)‬
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‭These solutions look weird, but they’re correct.‬

‭Reverse Derivation‬

‭To gain some faith in the quadratic formula, we can also rearrange it‬
‭back into the original equation to see that it must have the same‬
‭solutions as the original equation:‬
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‭The Discriminant‬

‭Using the quadratic equation, we can see that some quadratic‬
‭equations have 2 solutions (as usual), but other quadratic equations‬
‭can have just 1 solution, or no solutions at all.‬

‭For example, using the quadratic equation to solve‬ ‭, we‬
‭find a single solution because the‬ ‭part comes out‬‭to‬

‭.‬

‭Similarly, using the quadratic equation to solve‬ ‭, we‬
‭find no solutions because the‬ ‭part comes out to‬

‭, and we can’t take the square root of a‬
‭negative number. (We’ll ignore imaginary solutions and consider‬
‭only real solutions for now.)‬

‭To see how many solutions a quadratic equation has, we need only‬
‭consider the‬ ‭part of the quadratic formula, which‬‭is called‬
‭the‬‭discriminant‬‭. If the discriminant is positive,‬‭then we have two‬
‭solutions. If it is‬ ‭, then we have one solution.‬‭If it is negative, then‬
‭we have no solution.‬

‭We can also use the quadratic formula to understand the trick for‬
‭factoring when‬ ‭is not equal to‬ ‭-- which was to‬‭multiply‬ ‭by‬ ‭,‬
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‭replace‬ ‭with‬ ‭, factor the result, divide each constant in each‬
‭factor by the original‬ ‭, and move denominators onto‬‭our variables.‬

‭From the quadratic formula, we know that the solutions of‬

‭are given by‬ ‭. When we‬
‭multiply‬ ‭by‬ ‭and replace‬ ‭with‬ ‭, we have the‬‭equation‬

‭, which has solutions‬ ‭.‬

‭This means that if‬ ‭is a solution of‬ ‭, then‬ ‭is‬‭a‬
‭solution of‬ ‭.‬

‭Thus, if‬ ‭factors into‬ ‭, then‬

‭factors into‬ ‭.‬

‭Exercises‬

‭Use the quadratic formula to solve the following quadratic‬
‭equations.‬
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‭2.4 Completing the Square‬

‭Completing the square‬‭is another method for solving‬‭quadratic‬
‭equations. Although we can use the quadratic formula to solve any‬
‭quadratic equation, completing the square helps us gain a better‬
‭intuition for quadratic equations and understand where the‬
‭quadratic formula comes from.‬

‭As we will see in the next chapter, completing the square will also‬
‭help us rearrange quadratic equations into forms that are easy to‬
‭graph.‬

‭Demonstration‬

‭The main idea behind completing the square is that every quadratic‬
‭expression has a squared factor hidden inside of it.‬

‭Original equation‬

‭Add‬ ‭to both sides‬

‭Add‬ ‭to both sides‬

‭Factor‬

‭Take positive/negative root‬

‭Solve‬
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‭General Procedure‬

‭To find the squared factor, we just need to move the constant to the‬

‭other side of the equation and add‬ ‭to both sides.‬‭Then, the‬

‭quadratic expression will factor into‬ ‭.‬

‭Original equation‬

‭Move the constant to the‬
‭other side‬

‭Add‬ ‭to both sides‬

‭Factor‬

‭Take positive/negative root‬

‭Solve‬
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‭Hey, the solution is the same as the quadratic equation with‬ ‭!‬

‭Case when the Leading Coefficient is Not One‬

‭To complete the square with‬ ‭not equal to‬ ‭, we can‬‭simply divide‬
‭by‬ ‭to create an equivalent equation where‬ ‭IS equal‬‭to‬ ‭.‬

‭Original equation‬

‭Divide by‬

‭Add‬ ‭to both sides‬

‭Add‬ ‭to both sides‬

‭Factor‬

‭Take positive/negative root‬
‭and solve‬
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‭By completing the square on the general form‬ ‭,‬
‭we arrive at the quadratic equation:‬

‭Original equation‬

‭Divide by‬

‭Move the constant to the‬
‭other side‬

‭Add‬ ‭to‬
‭both sides‬

‭Factor‬

‭Take positive/negative root‬

‭Solve‬

‭Simplify‬
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‭Exercises‬

‭Solve the following quadratic equations by completing the square.‬
‭If there are two solutions, leave your answer in the form‬

‭.‬
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‭2.5 Vertex Form‬

‭To easily graph a quadratic equation, we can convert it to‬‭vertex‬
‭form‬‭:‬

‭In vertex form, we can tell the coordinates of the vertex of the‬
‭parabola just by looking at the equation: the vertex is at‬ ‭. We‬
‭can also tell which way the parabola opens, by checking whether‬
‭is positive (opens up) or negative (opens down).‬

‭Equation‬ ‭Vertex‬ ‭Opens‬

‭Converting to Vertex Form‬

‭To convert a quadratic equation into vertex form, we can complete‬
‭the square.‬
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‭Original equation‬

‭Divide by‬

‭Move the constant to‬
‭the other side‬

‭Add‬ ‭to both sides‬

‭Factor‬

‭Multiply by‬

‭Subtract‬

‭Exercises‬

‭Write the equation in vertex form‬ ‭. Then, find‬
‭the coordinates of the vertex and tell which way the parabola‬
‭opens.‬
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‭2.6 Quadratic Systems‬

‭Systems of quadratic equations can be solved via substitution. After‬
‭substituting, the resulting equation can itself be reduced down to a‬
‭quadratic equation and solved by techniques covered in this chapter.‬

‭Original system‬

‭Substitute for‬

‭Convert to standard form‬

‭Solve for‬

‭Evaluate‬

‭Solution‬

https://www.codecogs.com/eqnedit.php?latex=y%0
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‭Note that when evaluating‬ ‭, it doesn’t matter which‬‭equation we‬
‭use from the original equation. In the example above, we used the‬
‭first equation because it was easier to compute, but using the‬
‭second equation leads us to the same solutions.‬

‭Number of Solutions‬

‭There can be‬ ‭,‬ ‭, or‬ ‭points of intersection, depending‬‭on the‬
‭arrangement of the parabolas.‬
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‭Just like in linear equations, if the result reduces down to a true‬
‭statement, then there are infinitely many solutions because both‬
‭equations in the system actually represent the same parabola.‬

‭Original system‬

‭Substitute for‬

‭Simplify‬

‭Solution‬

‭On the other hand, if the result reduces down to a false statement,‬
‭then there are no solutions because the parabolas never intersect.‬

‭Original system‬

‭Substitute for‬

‭Simplify‬

‭Solution‬

https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=y%0
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‭Exercises‬

‭Solve the following systems of quadratic equations.‬
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‭Chapter 3‬
‭Inequalities‬
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‭3.1 Linear Inequalities in the Number Line‬

‭An‬‭inequality‬‭is similar to an equation, but instead‬‭of saying two‬
‭quantities are equal, it says that one quantity is greater than or less‬
‭than another.‬

‭For example, since‬ ‭is greater than‬ ‭, we write‬ ‭. Likewise,‬
‭since‬ ‭is less than‬ ‭, we write‬ ‭.‬

‭If we write‬ ‭, then we mean that‬ ‭can be‬ ‭,‬ ‭,‬ ‭,‬ ‭,‬
‭or any other positive number. If we write‬ ‭, then‬‭we mean that‬

‭can be‬ ‭,‬ ‭,‬ ‭,‬ ‭, or any other negative number.‬

‭“Or Equal To” Inequalities‬

‭We can also write‬ ‭to mean that‬ ‭is greater than‬‭or equal‬
‭to‬ ‭.‬

‭In‬ ‭, the number‬ ‭is not a valid solution for‬ ‭because‬ ‭is‬
‭not greater than‬ ‭, but in‬ ‭, the number‬ ‭is a valid‬‭solution‬
‭because‬ ‭is greater than‬‭or equal to‬ ‭.‬

‭Likewise, we can write‬ ‭to mean that‬ ‭is less than‬‭or equal‬
‭to‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
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‭Solving Inequalities‬

‭Inequalities can be solved much like equations: we can perform‬
‭algebraic manipulations to both sides of the equation until we‬
‭isolate the variable.‬

‭Original inequality‬

‭Add‬ ‭to both sides‬

‭Subtract‬ ‭from both sides‬

‭Divide both sides by‬

‭If we substitute any number that is greater than‬ ‭, it will satisfy the‬
‭original inequality.‬

‭For example, if we substitute‬ ‭, then the original‬‭inequality‬
‭becomes‬ ‭, which is true. Likewise, if we substitute‬

‭, then the original inequality becomes‬ ‭,‬
‭which is true.‬

‭On the other hand, if we substitute any number that is‬ ‭or less, it‬
‭will not satisfy the original inequality.‬

‭For example, if we substitute‬ ‭, then the original‬‭inequality‬
‭becomes‬ ‭, which is not true. Likewise, if we substitute‬

‭, then the original inequality becomes‬ ‭, which is‬‭not‬
‭true.‬
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‭Flipping the Inequality‬

‭In manipulating inequalities, there is just one catch:‬‭whenever we‬
‭multiply or divide by a negative number, we have to flip the‬
‭inequality.‬

‭Original inequality‬

‭Subtract‬ ‭from both sides‬

‭Subtract‬ ‭from both sides‬

‭Divide both sides by‬ ‭and‬
‭flip the inequality‬

‭To understand why we need to flip the inequality whenever we‬
‭multiply or divide by a negative sign, consider the example‬ ‭. If‬
‭we multiply or divide by‬ ‭, we reach‬ ‭, which is not‬‭true.‬
‭In order to keep the inequality true, we have to flip the inequality‬
‭sign:‬ ‭.‬

‭Plotting Inequalities‬

‭To visualize inequalities, we can plot them on a number line. An‬
‭open (unfilled) circle around a point means that the point itself is‬
‭NOT a solution, while a closed (filled) circle around a point means‬
‭that the point itself is a solution.‬
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‭The number line can help us understand why we have to flip the‬
‭inequality sign whenever we multiply or divide by a negative‬
‭number.‬

‭Starting with‬ ‭, we know that‬ ‭is the bigger number‬‭that is‬
‭further from‬ ‭. When we multiply or divide,‬ ‭is still‬‭going to be‬
‭further from‬ ‭than‬ ‭is -- but if we multiply or‬‭divide by a negative‬
‭number, then‬ ‭will be further from‬ ‭in the negative‬‭direction,‬
‭which means it will actually be the lesser number.‬
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‭Interval Notation‬

‭The number line is a great intuitive aid, but it takes a while to draw.‬
‭To simultaneously leverage the benefit of number line intuition and‬
‭avoid the headache of drawing actual number lines, it is common to‬
‭use‬‭interval notation‬‭, which represents number line‬‭segments using‬
‭parentheses for open circles and brackets for closed circles.‬

http://www.texrendr.com/?eqn=-7%20%5Cleq%20x%20%5Cleq%203%0
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‭To indicate that a segment continues forever, we imagine it having‬
‭an open circle at positive or negative infinity.‬

‭Exercises‬

‭Solve the following inequalities, writing the solutions in interval‬
‭notation.‬
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‭3.2 Linear Inequalities in the Plane‬

‭When a linear equation has one variable, the solution covers a‬
‭section of the number line: if our solution is‬ ‭,‬
‭then the solution covers the section of the number line that lies‬
‭right of that number; if our solution is‬ ‭, then‬
‭the solution covers the section of the number line that lies left of‬
‭that number.‬

‭If equality is allowed (i.e.‬ ‭or‬ ‭), then we use‬‭a closed circle to‬
‭indicate that the circled number is itself a solution; otherwise, if‬
‭equality is not allowed (i.e.‬ ‭or‬ ‭), then we use‬‭an open circle.‬

‭Similarly, when a linear equation has two variables, the solution‬
‭covers a section of the coordinate plane. If our solution is‬

‭, then the solution covers the section of the coordinate‬
‭plane that lies above the line‬ ‭, whereas if our solution‬
‭is‬ ‭, then the solution covers the section of the‬
‭coordinate plane that lies below the line‬ ‭.‬

‭If equality is allowed (i.e.‬ ‭or‬ ‭), then we use‬‭a solid line to‬
‭indicate that points on the line itself are solutions. Otherwise, if‬
‭equality is not allowed (i.e.‬ ‭or‬ ‭), then we use‬‭a dotted line.‬
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‭Worked Example‬

‭To illustrate, let’s solve and graph a two-variable linear inequality.‬

‭Original inequality‬

‭Simplify‬

‭Subtract‬ ‭from both sides‬

‭Add‬ ‭from both sides‬

‭Divide by‬

‭Since equality is not allowed in the solution, we draw a dotted line.‬
‭Since the solution consists of values of‬ ‭LESS THAN‬‭those on the‬
‭line, we shade under the line.‬
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‭We can check that any point in the shaded region is a solution: for‬

‭example, substituting‬ ‭into the original inequality yields‬
‭, which simplifies to‬ ‭,‬

‭which is true.‬

‭Likewise, we can check that any point NOT in the shaded region is‬

‭NOT a solution: for example, substituting‬ ‭into the‬‭original‬
‭inequality yields‬ ‭, which simplifies to‬

‭, which is not true‬

‭Any point on the line itself will not be a solution, but would be a‬
‭solution if equality were allowed: for example, substituting the‬

‭y-intercept‬ ‭into the original inequality yields‬
‭, which simplifies to‬ ‭, which‬

‭is not a solution but would be a solution if equality were allowed‬
‭(i.e.‬ ‭).‬

‭Case when a Variable Vanishes‬

‭If‬ ‭vanishes while solving the equation, then the‬‭boundary line will‬
‭be vertical. In this case, we shade left or right of the line depending‬
‭on whether the solution tells us that‬ ‭is less than‬‭some number, or‬
‭greater than some number.‬
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‭Original inequality‬

‭Simplify‬

‭Add‬ ‭to both sides‬

‭Move‬ ‭to left side‬

‭Since equality is allowed in the solution, we draw a solid line. Since‬
‭the solution consists of values of‬ ‭GREATER THAN‬‭those on the‬
‭line, we shade on the right towards higher values of‬ ‭.‬

http://www.texrendr.com/?eqn=x%0
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‭Exercises‬

‭Graph the solutions to the inequalities below.‬
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‭3.3 Quadratic Inequalities‬

‭Quadratic inequalities are best visualized in the plane. For example,‬
‭to solve a quadratic inequality‬ ‭, we can find the‬

‭values of‬ ‭where the parabola‬ ‭is positive.‬

‭Since‬ ‭is a downward parabola, the solution‬
‭consists of the values of‬ ‭in its midsection which‬‭arches over the‬
‭x-axis. That is, the solution consists of all x-values between the‬
‭solutions to‬ ‭.‬

‭This quadratic equation factors to‬ ‭, so the‬
‭parabola’s midsection is given by‬ ‭, or‬ ‭in‬
‭interval notation.‬

‭Case when the Solution is a Union‬

‭On the other hand, if we want to solve‬ ‭, then we‬

‭need to find the values of‬ ‭where the parabola‬
‭is negative.‬
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‭This time, the solution consists of all the values of‬ ‭in the arms of‬
‭the parabola which extend under the x-axis. That is, the solution‬
‭consists of all x-values less than the leftmost solution or greater than‬
‭the rightmost solution to‬ ‭.‬

‭The solution of the inequality is then given by‬ ‭,‬
‭which is‬ ‭in interval notation. (The‬ ‭symbol is‬
‭called a‬‭union‬‭, and it allows us to include multiple‬‭segments in‬
‭interval notation.)‬

‭To solve‬ ‭, we just need to propagate the‬
‭allowance of equality to our final answer. Thus, the solution is‬

‭, which is‬ ‭in interval notation.‬
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‭Case when the Parabola is Never Zero‬

‭When a quadratic inequality involves a parabola that is never zero,‬
‭there is either no solution or the solution is all real numbers.‬

‭For example, the parabola‬ ‭has only positive y-values,‬‭so‬
‭has no solution and‬ ‭is solved by all real‬

‭numbers.‬

‭In interval notation, we express all real numbers as the full number‬
‭line‬ ‭, and we express no solution as‬ ‭. (The‬ ‭symbol‬‭is‬
‭called the‬‭empty set‬‭, and it represents an interval‬‭which doesn’t‬
‭contain any numbers.)‬

‭Exercises‬

‭Solve the following inequalities, writing the solutions in interval‬
‭notation.‬
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‭3.4 Systems of Inequalities‬

‭To solve a‬‭system‬‭of inequalities‬‭, we need to solve‬‭each individual‬
‭inequality and find where all their solutions overlap. For example, to‬
‭solve the system‬

‭we first graph each individual inequality and darken where the‬
‭shading overlaps.‬

‭The solution to the system consists of points that satisfy BOTH‬
‭individual inequalities, so the solution is just the overlap of the two‬
‭shadings, which appears as the most darkened part of the graph.‬
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‭To display the solution to the system, we erase any other shading‬
‭and shade only the overlap.‬

‭Including Another Inequality‬

‭If we include another inequality in the system, then the solution‬
‭region will either stay the same or shrink.‬

‭For example, if we include‬ ‭, then the solution region‬‭will‬
‭stay the same because it is fully contained in the shading of‬
‭.‬
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‭However, if we include‬ ‭, then the solution region‬‭will shrink‬
‭because only part of it is contained in the shading of‬ ‭.‬
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‭Quadratic Inequalities‬

‭Even with quadratic inequalities, the method is the same: the‬
‭solution is the overlap of the shading of the component inequalities.‬
‭Some examples are shown below.‬
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‭Exercises‬

‭Graph the solutions to the systems below.‬
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‭Part 4‬
‭Polynomials‬
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‭4.1 Standard Form and End Behavior‬

‭Polynomials‬‭include linear expressions and quadratic‬‭expressions,‬
‭as well as expressions adding multiples of higher exponents of the‬
‭variable.‬

‭For example, these are polynomials:‬

‭On the other hand, these are not polynomials:‬

‭Standard Form‬

‭Polynomials are usually written in‬‭standard form‬‭,‬‭in which all terms‬
‭are fully expanded and variable exponents are arranged from‬
‭greatest to least.‬

‭Original polynomial‬

‭Simplify‬
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‭Combine like terms‬

‭Arrange exponents from‬
‭greatest to least‬

‭End Behavior‬

‭The end behavior of a polynomial refers to how it behaves when we‬
‭substitute extremely large positive or negative values for‬ ‭.‬

‭If the polynomial evaluates to a very large positive number, we say it‬
‭approaches infinity. Otherwise, if the polynomial evaluates to a very‬
‭large negative number, we say it approaches negative infinity.‬

‭For example, consider the polynomial‬ ‭.‬
‭When we substitute a large positive number, such as‬ ‭, the‬
‭output is a large negative number.‬

‭When we substitute a large negative number, such as‬ ‭,‬
‭the output is a large positive number.‬
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‭Putting this together, we say that‬ ‭goes to negative‬‭infinity as‬
‭goes to positive infinity, and‬ ‭goes to positive‬‭infinity as‬ ‭goes‬
‭to negative infinity.‬

‭We can write this symbolically:‬ ‭as‬ ‭, and‬
‭as‬ ‭. This is the end behavior of the‬

‭polynomial‬ ‭.‬

‭Graphical Interpretation‬

‭Graphically, end behavior tells us whether the polynomial curves up‬
‭or down as we travel away from the origin in the right or left‬
‭direction.‬

‭Since‬ ‭as‬ ‭, we know that the polynomial‬
‭curves down as we travel to the right, and since‬ ‭as‬

‭, we know that the polynomial curves up as we travel‬‭to‬
‭the left.‬
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‭Shortcuts‬

‭Do you notice any patterns or shortcuts? It’s possible to determine‬
‭the end behavior of a polynomial without evaluating the full‬
‭polynomial.‬

‭The term with the highest exponent controls the end behavior,‬
‭because it makes the greatest contribution to the result. All the‬
‭other terms make much smaller contributions -- they’re peanuts in‬
‭comparison to the highest-exponent term.‬
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‭But we can do even better -- we don’t actually have to evaluate‬
‭anything at all! Within the term having the highest exponent, we‬
‭just need to look at the exponent and sign of the coefficient. If the‬
‭exponent is even, then the result after exponentiation will always be‬
‭positive. Consequently, the term will evaluate to have the same sign‬
‭as its coefficient.‬

‭For example, to find the end behavior of the polynomial‬

‭, we just need to look at the‬ ‭term. Since‬
‭the exponent is even,‬ ‭will always be positive --‬‭if we substitute‬

‭, then‬ ‭, and if we substitute‬ ‭, then‬
‭again. The coefficient‬ ‭is also positive, so‬ ‭is‬

‭always a positive times a positive, which makes a positive. As a‬
‭result, we have‬ ‭as‬ ‭and‬ ‭as‬

‭.‬

‭Likewise, to find the end behavior of the polynomial‬

‭, we just need to look at the‬
‭term. Since the exponent is even,‬ ‭will always be‬‭positive -- if we‬
‭substitute‬ ‭, then‬ ‭, and if we substitute‬

‭, then‬ ‭again. But the coefficient‬ ‭is‬
‭negative, so‬ ‭is always a negative times a positive,‬‭which‬
‭makes a negative. As a result, we have‬ ‭as‬
‭and‬ ‭as‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=2%0
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‭Examples with an Odd Exponent‬

‭On the other hand, if the exponent is odd, then the result after‬
‭exponentiation will always have the same sign as the input‬ ‭.‬
‭Consequently, the term will evaluate to be positive if the coefficient‬
‭and the input‬ ‭have the same sign, and negative if‬‭they have‬
‭opposite signs.‬

‭For example, to find the end behavior of the polynomial‬

‭, we just need to look at the‬ ‭term.‬
‭Since the exponent is odd, exponentiation will not change the sign --‬
‭if we substitute‬ ‭, then‬ ‭, and if we substitute‬

‭, then‬ ‭. The coefficient‬ ‭is positive, and‬
‭multiplying by a positive doesn’t change the sign either. As a result,‬
‭we have‬ ‭as‬ ‭and‬ ‭as‬
‭.‬
‭Likewise, to find the end behavior of the polynomial‬

‭, we just need to look at the‬
‭term. Since the exponent is odd, exponentiation‬‭will not‬

‭change the sign -- if we substitute‬ ‭, then‬
‭, and if we substitute‬ ‭, then‬

‭. But the coefficient‬ ‭is negative, and‬
‭multiplying by a negative changes the sign -- if‬ ‭,‬
‭then‬ ‭, and if‬ ‭, then‬

‭. As a result, we have‬ ‭as‬
‭and‬ ‭as‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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‭Exercises‬

‭Convert the following polynomials to standard form. Then, write‬
‭their end behavior symbolically:‬ ‭as‬ ‭, and‬

‭as‬ ‭.‬
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‭4.2 Zeros‬

‭The‬‭zeros‬‭of a polynomial are the inputs that cause‬‭it to evaluate to‬
‭zero.‬

‭For example, a zero of the polynomial‬ ‭is‬

‭because‬ ‭. Another zero is‬

‭because‬ ‭. Can you find the rest?‬

‭Finding Zeros by Factoring‬

‭One trick for finding the zeros of polynomials is to write the‬
‭polynomial in factored form.‬

‭Since we know that‬ ‭and‬ ‭are zeros of the polynomial,‬
‭we know the polynomial has to have factors‬ ‭and‬ ‭. If we‬
‭multiply these factors together, we get a polynomial whose‬
‭highest-exponent term is‬ ‭.‬

‭But our original polynomial has a highest-exponent term of‬ ‭, so‬
‭we need to multiply by one more factor. Consequently, the factored‬
‭polynomial will take the form‬ ‭for some‬
‭other zero‬ ‭.‬
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‭Let’s multiply out the factors and group like terms into the form of‬
‭the original polynomial.‬

‭From here, we can proceed in any of several different ways to‬
‭discover that‬ ‭.‬

‭●‬ ‭The‬ ‭coefficient of the right-hand side is‬ ‭, and‬‭the‬
‭coefficient of the left-hand side is‬ ‭, so we need‬

‭, which means‬ ‭.‬
‭●‬ ‭The‬ ‭coefficient of the right-hand side is‬ ‭, and‬‭the‬

‭coefficient of the left-hand side is‬ ‭, so we need‬
‭, which means‬ ‭.‬

‭●‬ ‭The constant coefficient of the right-hand side is‬ ‭, and the‬
‭constant coefficient of the left-hand side is‬ ‭, so‬‭we need‬

‭, which means‬ ‭.‬

‭Indeed, checking our answer, we find that substituting‬ ‭makes‬
‭the polynomial evaluate to‬ ‭.‬
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‭Fundamental Theorem of Algebra‬

‭Through this example, we’ve learned an important thing about the‬
‭zeros of polynomials:‬‭the number of zeros of a polynomial‬‭is no‬
‭more than its degree‬‭.‬

‭Each zero comes from a factor, and the degree of a polynomial limits‬
‭the amount of factors it has, which in turn limits the amount of‬
‭zeros it has. A third-degree polynomial can’t have more than‬
‭factors, so it has at most‬ ‭zeros. A tenth-degree‬‭polynomial can’t‬
‭have more than‬ ‭factors, so it has at most‬ ‭zeros.‬

‭Some polynomials look like they have fewer zeros than their degree‬
‭-- for example, the polynomial‬ ‭doesn’t appear to‬‭have any‬
‭zeros, because there is no solution to‬ ‭. But if we‬‭allow the‬
‭use of the imaginary unit‬ ‭, then it does have two‬‭zeros:‬

‭and‬ ‭.‬

‭Likewise, the polynomial‬ ‭factors to‬ ‭and thus‬
‭appears to have only one zero,‬ ‭. But since this factor‬‭is‬
‭squared, we can think of counting the‬ ‭zero twice,‬‭i.e. it has‬
‭a‬‭multiplicity‬‭of two.‬

‭This is the‬‭fundamental theorem of algebra:‬‭the number‬‭of zeros of‬
‭a polynomial is equal to its degree, provided we allow the use of the‬
‭imaginary unit and count zeros according to their multiplicity.‬
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‭Solving a Polynomial Equation‬

‭Finding zeros of polynomials is important because of its generality:‬
‭every polynomial equation reduces to finding the zeros of some‬
‭polynomial.‬

‭For example, consider the polynomial equation‬
‭, for which we can see that‬ ‭is a‬

‭solution because‬ ‭. Subtracting‬
‭from both sides, we reach‬ ‭. Now, the‬
‭problem is to find the zeros of the polynomial‬

‭.‬

‭The polynomial has degree‬ ‭, so we are looking for‬ ‭zeros, each of‬
‭which corresponds to a factor of the polynomial. We know one of‬
‭the zeros is‬ ‭, which corresponds to a factor‬ ‭, and‬‭we‬
‭know the other two factors need to multiply to a quadratic‬

‭.‬

‭By multiplying out‬ ‭and comparing‬
‭coefficients to the original polynomial, we can solve for‬ ‭and‬ ‭.‬
‭Then, we can solve the quadratic to find the remaining zeros.‬
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‭Equating‬ ‭coefficients, we see that‬ ‭, so‬ ‭. Finally,‬
‭by equating the constants‬ ‭and‬ ‭, we see that‬ ‭.‬‭The‬
‭polynomial can then be written as‬

‭.‬

‭Solving the quadratic‬ ‭leads us to the two‬

‭remaining zeros:‬ ‭and‬ ‭.‬

‭We check to ensure that these zeros are indeed solutions of the‬
‭original equation:‬

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D(-4)%5E3%2B5(-4)%5E2%26%3D11(-4)-(-4)%5E3-4%20%5C%5C%2016%20%26%3D%2016%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3%2B5%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E2%26%3D11%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)-%5Cleft(%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3-4%20%5C%5C%20%5Cfrac%7B11%7D%7B8%7D%20%26%3D%20%5Cfrac%7B11%7D%7B8%7D%5Cend%7Balign*%7D%0
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‭Exercises‬

‭For each of the following polynomials, use the given zero(s) to find‬
‭the remaining zero(s).‬

‭For each of the following equations, use the given solution(s) to‬
‭find the remaining solution(s).‬
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‭4.3 Rational Roots and Synthetic Division‬

‭In the previous chapter, we learned how to find the remaining zeros‬
‭of a polynomial if we are given some zeros to start with. But how do‬
‭we get those initial zeros in the first place, if they’re not given to us‬
‭and aren’t obvious from the equation?‬

‭Rational Roots Theorem‬

‭The‬‭rational roots theorem‬‭can help us find some initial‬‭zeros‬
‭without blindly guessing. It states that for a polynomial with integer‬
‭coefficients, any rational number (i.e. any integer or fraction) that is‬
‭a root (i.e. zero) of the polynomial can be written as some factor of‬
‭the constant coefficient, divided by some factor of the leading‬
‭coefficient.‬

‭For example, if the polynomial‬
‭has a rational root, then it is some positive or negative fraction‬
‭having numerator‬ ‭or‬ ‭and denominator‬ ‭or‬ ‭.‬

‭The possible roots are then‬ ‭,‬ ‭,‬ ‭, or‬ ‭. We test‬‭each of‬
‭them below.‬

https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=3%0
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‭We see that‬ ‭and‬ ‭are indeed zeros of the polynomial.‬

‭Therefore, the polynomial can be written as‬

‭for some constants‬ ‭and‬ ‭, which we can find by expanding‬‭and‬
‭matching up coefficients.‬

‭We find that‬ ‭and‬ ‭.‬

‭The remaining quadratic factor becomes‬ ‭, which has‬‭zeros‬
‭.‬

‭Thus, the zeros of the polynomial are‬ ‭,‬ ‭,‬ ‭, and‬ ‭.‬

‭Synthetic Division‬

‭To speed up the process of finding the zeros of a polynomial, we can‬
‭use‬‭synthetic division‬‭to test possible zeros and‬‭update the‬
‭polynomial’s factored form and rational roots possibilities each time‬
‭we find a new zero.‬
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‭Given the polynomial‬ ‭, the rational‬
‭roots possibilities are‬ ‭,‬ ‭,‬ ‭, and‬ ‭.‬

‭To test whether, say,‬ ‭is a zero, we can start by‬‭setting up a‬
‭synthetic division template which includes‬ ‭at the‬‭far left, followed‬
‭by the coefficients of the polynomial (in the order that they appear‬
‭in standard form).‬

‭We put a‬ ‭under the first coefficient (in this case,‬ ‭) and add down‬
‭the column.‬

‭Then, we multiply the result by the leftmost number (in this case,‬ ‭)‬
‭and put it under the next coefficient (in this case,‬ ‭).‬

‭We repeat the same process over and over until we finish the final‬
‭column.‬

‭The bottom-right number is the remainder when we divide the‬
‭polynomial by the factor corresponding to the zero being tested.‬
‭Therefore, if the bottom-right number is‬ ‭, then the‬‭top-left number‬
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‭is indeed a zero of the polynomial, because its corresponding factor‬
‭is indeed a factor of the polynomial.‬

‭In this case, though, the bottom-right number is not‬ ‭but‬ ‭, so‬
‭is NOT a zero of the polynomial.‬

‭However, when we repeat synthetic division with‬ ‭,‬‭the‬
‭bottom-right number comes out to‬ ‭and we conclude‬‭that‬ ‭is a‬
‭zero of the polynomial.‬

‭Then‬ ‭is a factor of the polynomial, and the bottom‬‭row gives‬
‭us the coefficients in the sub-polynomial that multiplies‬ ‭to‬
‭yield the original polynomial.‬

‭The next factor will come from‬ ‭, so the rational‬
‭roots possibilities are just‬ ‭and‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=0%0
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‭We use synthetic division to test whether‬ ‭is a zero‬‭of‬
‭.‬

‭Since the bottom-right number is‬ ‭rather than‬ ‭,‬‭we see that‬
‭is not a zero of‬ ‭. However,‬ ‭is!‬

‭Using the bottom row as coefficients, we update the factored form‬
‭of our polynomial.‬
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‭Now that we’re down to a quadratic, we can solve it directly.‬

‭Thus, the zeros of the polynomial are‬ ‭,‬ ‭,‬ ‭, and‬ ‭, and‬
‭the factored form of the polynomial is‬

‭.‬

‭Final Remarks‬

‭In this example, the polynomial factored fully into linear factors.‬
‭However, if the last factor were‬ ‭, which does not‬‭have any‬
‭zeros, we would leave it in quadratic form. The zeros of the‬
‭polynomial would be just‬ ‭and‬ ‭, and the fully factored‬‭form of‬

‭the polynomial would be‬ ‭.‬

‭One last thing about synthetic division: be sure to include ALL‬
‭coefficients of the original polynomial in the top row of the synthetic‬
‭division setup, even if they are‬ ‭. For example, the‬‭polynomial‬

‭is really‬ ‭, so the top row in the‬
‭synthetic division setup should read‬ ‭.‬
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‭Exercises‬

‭For each polynomial, find all the zeros and write the polynomial in‬
‭factored form.‬
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‭4.4 Sketching Graphs‬

‭In the previous chapters, we learned how to find end behavior,‬
‭zeros, and factored forms of polynomials. In this chapter, we will put‬
‭all this information together to sketch graphs of polynomials.‬

‭End Behavior‬

‭End behavior tells us whether the polynomial goes up or down as‬
‭we move away from the origin.‬

‭For example, if the end behavior is‬ ‭as‬ ‭and‬
‭as‬ ‭, then we know that the polynomial goes‬

‭down as we go right, and up as we go left.‬
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‭Similarly, if the end behavior is‬ ‭as‬ ‭and‬
‭as‬ ‭, then we know that the polynomial goes‬

‭down as we go right, and down as we go left.‬

‭Zeros‬

‭The zeros tell us where the polynomial crosses the x-axis, and the‬
‭factored form tells us whether the polynomial crosses or doubles‬
‭back at each zero: if the exponent of the factor is odd, then the‬
‭polynomial crosses; if the exponent of the factor is even, then the‬
‭polynomial doubles back.‬

‭For example, if the factored form of polynomial is‬

‭, then the polynomial crosses the x-axis at‬
‭and‬ ‭, and doubles back at‬ ‭. Combining this information‬‭with‬



‭Justin Math |‬‭Algebra‬ ‭139‬

‭the end behavior, which is‬ ‭as‬ ‭and‬
‭as‬ ‭, we can draw a rough sketch of the‬

‭polynomial.‬

‭Demonstration‬

‭Let’s sketch a rough graph of the following polynomial:‬

‭We first find the leading coefficient,‬ ‭,‬
‭which tells us the end behavior:‬ ‭as‬ ‭, and‬

‭as‬ ‭.‬

‭Then, we can look at the factors and their exponents to find the‬
‭zeros and tell whether the polynomial crosses the x-axis or doubles‬
‭back at each zero.‬
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‭Factor‬ ‭Zero‬ ‭Cross or Double Back‬

‭To sketch the graph, we draw our end behavior, plot the zeros on the‬
‭x-axis, and then connect them with the correct crossing or doubling‬
‭back behavior.‬
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‭Exercises‬

‭Sketch a rough graph of each polynomial.‬
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‭Chapter 5‬
‭Rational Functions‬
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‭5.1 Polynomial Long Division‬

‭A‬‭rational function‬‭is a fraction whose numerator‬‭and denominator‬
‭are both polynomials. Rational functions are usually written in‬
‭proper form‬‭, where the numerator is of a smaller‬‭degree‬‭than the‬
‭denominator. (The degree of a polynomial is its highest exponent.)‬

‭Methods for Converting to Proper Form‬

‭Sometimes, we can convert to proper form simply by splitting up the‬
‭fraction.‬

‭Other times, we can convert to proper form by factoring part of the‬
‭numerator so that it cancels with the denominator.‬
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‭We can also use synthetic division, a fast algorithm for division of a‬
‭linear factor that was introduced in the previous part on‬
‭polynomials.‬

‭To divide‬ ‭by‬ ‭, we set up a template with‬
‭(the zero of‬ ‭) on the far left, and the coefficients‬‭of‬

‭along the top row.‬

‭After filling in an initial‬ ‭, we repeatedly add down‬‭the columns,‬
‭multiplying each result by‬ ‭before placing it in‬‭the next column.‬

‭The bottom row then tells us the coefficients and remainder in the‬
‭proper form.‬

‭However, synthetic division only works with linear factors, so what‬
‭do we do when a factor isn’t linear?‬
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‭Polynomial Long Division‬

‭When faced with more complicated rational functions, we can turn‬
‭to‬‭polynomial long division‬‭, which works the same‬‭way as the long‬
‭division algorithm that’s familiar from simple arithmetic.‬

‭To divide‬ ‭by‬ ‭, we set up a template with‬
‭on the outside and‬ ‭on the inside.‬

‭On the inside, we write out all coefficients, including those which‬
‭are‬ ‭(and thus aren’t written in the condensed expression).‬

‭We begin by multiplying the divisor‬ ‭by‬ ‭to yield‬ ‭,‬
‭which cancels the interior‬ ‭term when we subtract.‬

‭Then, we multiply‬ ‭by‬ ‭to yield‬ ‭, which‬
‭cancels the next interior term‬ ‭when we subtract.‬
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‭We repeat this process until the degree of the leftover terms is less‬
‭than the degree of‬ ‭, in which case the leftover terms become‬
‭the remainder and appear as the numerator in the remaining‬
‭fraction.‬

‭The top row gives the result in proper form:‬
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‭Exercises‬

‭Find the proper form of each rational function.‬
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‭5.2 Horizontal Asymptotes‬

‭Like polynomials, rational functions can have end behavior that goes‬
‭to positive or negative infinity. However, rational functions can also‬
‭have another form of end behavior in which they become flat,‬
‭approaching (but never quite reaching) a horizontal line known as a‬
‭horizontal asymptote‬‭.‬

‭Demonstration‬

‭For example, consider the rational function‬ ‭. As‬‭we‬
‭input larger and larger numbers in the positive direction, the‬
‭function output becomes closer and closer to‬ ‭.‬

‭The same thing happens as we input larger and larger numbers in‬
‭the negative direction: the function output becomes closer and‬
‭closer to‬ ‭.‬
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‭As a result, we say that the function‬ ‭has a horizontal‬‭asymptote at‬
‭.‬

‭Why Horizontal Asymptotes Occur‬

‭To understand why this happens, take a look at the function in‬

‭proper form,‬ ‭.‬

‭When we input a very large positive or negative number, remainder‬
‭fraction’s denominator becomes much larger than its numerator,‬
‭causing the remainder fraction to shrink to‬ ‭.‬

‭On the other hand, the‬ ‭term persists, which causes‬‭the output to‬

‭be close to‬ ‭or‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=r%0
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‭Perhaps even more intuitively, notice that when we input very large‬

‭values of‬ ‭into‬ ‭, the leading (highest degree) terms‬‭in the‬
‭numerator and denominator become so much larger than the other‬
‭terms, that the other terms cease to matter. The fraction then‬

‭becomes approximately the ratio of the leading terms,‬ ‭, which‬

‭simplifies to‬ ‭, or‬ ‭in decimal form.‬

‭Case when the Denominator has Greater‬
‭Degree‬

‭Now consider the case when the denominator is of a greater degree‬

‭than the numerator -- say, when‬ ‭.‬

‭Again, when we input very large values of‬ ‭into the‬‭function, the‬
‭leading terms in the numerator and denominator become the only‬

‭terms that matter. The fraction then becomes approximately‬ ‭,‬

‭which simplifies to‬ ‭.‬

‭When we input very large values for‬ ‭, the denominator‬‭becomes‬
‭very large while the numerator stays the same, causing the fraction‬
‭to shrink to‬ ‭.‬

‭As a result, the function has a horizontal asymptote at‬ ‭. We can‬
‭confirm this by evaluating the function.‬
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‭Case when the Numerator has Greater Degree‬

‭Lastly, consider a rational function whose numerator is of greater‬

‭degree than its denominator -- say,‬ ‭.‬

‭Taking the ratio of leading terms, we have‬ ‭, which‬‭simplifies to‬

‭. This expression grows without bound when we input‬‭large‬
‭values of‬ ‭, so the function has no horizontal asymptote.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
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‭We can confirm this by evaluating the function.‬

‭Exercises‬

‭Find the horizontal asymptote, if any, of each rational function.‬
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‭5.3 Vertical Asymptotes‬

‭Unlike polynomials, rational functions can “blow up” to positive or‬
‭negative infinity even for relatively small input values. Such input‬
‭values are called‬‭vertical asymptotes‬‭, because they‬‭represent‬
‭vertical lines that the function approaches but never quite reaches.‬

‭Demonstration‬

‭For example, consider the rational function‬ ‭. As‬‭we‬
‭input numbers closer and closer to‬ ‭while staying‬‭greater than‬ ‭,‬
‭the function output blows up to positive infinity.‬

‭On the other hand, as we input numbers closer and closer to‬
‭while staying less than‬ ‭, the function output blows‬‭up to negative‬
‭infinity.‬
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‭As a result, we say the function‬ ‭has a vertical‬‭asymptote at‬ ‭.‬

‭To understand why this happens, notice that as our inputs become‬
‭closer and closer to‬ ‭, the denominator becomes closer‬‭and closer‬
‭to‬ ‭, while the numerator becomes closer and closer‬‭to‬ ‭.‬

‭As a result, we end up dividing a fairly constant numerator by a‬
‭smaller and smaller denominator, which yields a bigger and bigger‬
‭result.‬
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‭When the input is greater than‬ ‭, the denominator is positive,‬
‭which makes the result positive. When the input is less than‬ ‭, the‬
‭denominator is negative, which makes the result negative.‬

‭Case of Multiple Vertical Asymptotes‬

‭In general, vertical asymptotes occur when the denominator is zero‬
‭and the numerator is nonzero. In the above example, when we input‬

‭, the denominator is‬ ‭, but the numerator is‬ ‭.‬

‭There can also be multiple vertical asymptotes -- for example, in the‬

‭rational function‬ ‭, inputting‬ ‭makes the denominator‬
‭while the numerator is‬ ‭, and inputting‬ ‭makes‬‭the‬

‭denominator‬ ‭while the numerator is‬ ‭.‬

‭We confirm that‬ ‭and‬ ‭are indeed asymptotes by‬
‭evaluating the function.‬
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‭Case of No Vertical Asymptote‬

‭On the other hand, if the denominator is zero and the numerator is‬
‭also zero, then the input is not necessarily a vertical asymptote of‬
‭the function.‬

‭For example, inputting‬ ‭to‬ ‭makes the‬
‭denominator‬ ‭, but it also makes the numerator‬ ‭,‬‭and the result is‬
‭that the fraction does not blow up to infinity.‬
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‭To understand this behavior, notice that provided‬ ‭is not equal to‬
‭, the function can simplify.‬

‭When we input an‬ ‭that is not equal to‬ ‭, the‬ ‭factors‬‭in the‬
‭numerator and denominator cancel each other out, and we are left‬
‭with‬ ‭.‬

‭As a result, the graph of‬ ‭is just the graph of‬ ‭with a hole‬
‭at‬ ‭(where it is undefined).‬
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‭Exercises‬

‭Find the vertical asymptote(s), if any, of each rational function.‬
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‭5.4 Graphing with Horizontal and Vertical‬
‭Asymptotes‬

‭The horizontal and vertical asymptotes of a rational function can‬
‭give us insight into the shape of its graph.‬

‭For example, consider the function‬ ‭, which has a‬
‭horizontal asymptote‬ ‭and a vertical asymptote‬ ‭.‬

‭If we choose one input on each side of the vertical asymptote, we‬
‭can tell which section of the plane the function will occupy.‬

‭On the left side, we evaluate‬ ‭, which indicates the‬
‭section below the‬ ‭asymptote. On the right side,‬‭we evaluate‬

‭, which indicates the section above the‬
‭asymptote.‬



‭164‬ ‭Justin Math |‬‭Algebra‬

‭Case of Multiple Vertical Asymptotes‬

‭When there are multiple vertical asymptotes, we just have to choose‬
‭test points on the sides of each asymptote.‬

‭For example, to graph the function‬ ‭which has vertical‬
‭asymptotes‬ ‭and‬ ‭, we can evaluate‬
‭,‬ ‭,‬ ‭, and‬ ‭.‬
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‭Exercises‬

‭Use horizontal and vertical asymptotes to graph the following‬
‭rational functions.‬
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‭5.5 Graphing with Slant and Polynomial‬
‭Asymptotes‬

‭A horizontal asymptote is a horizontal line that arises from a‬
‭constant whole number term in the proper form of a rational‬
‭function.‬

‭Likewise, a‬‭slant asymptote‬‭is a slanted line that‬‭arises from a linear‬
‭term in the proper form of a rational function.‬

‭Demonstration‬

‭For example, the proper form of‬ ‭is given by‬

‭, which has‬ ‭as its whole number term.‬

‭As a result,‬ ‭has a slant asymptote at‬ ‭, which appears‬
‭in the graph of‬ ‭below.‬
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‭In general, the whole number part of the proper form is an‬
‭asymptote. If the whole number part is of a higher degree, say‬

‭with proper form‬ ‭, then‬

‭has a‬‭polynomial asymptote‬‭at‬ ‭.‬

‭The graph of‬ ‭approaches this asymptote just like‬‭it would‬
‭approach any other horizontal or slant asymptote.‬
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‭Existence and Degree‬

‭In general, a rational function has a horizontal, slant, or polynomial‬
‭asymptote if the degree of the denominator is less than the degree‬
‭of the numerator. The degree of the asymptote is given by the‬
‭difference in degrees of the numerator and denominator.‬

‭For example,‬ ‭has a difference in degrees‬
‭of‬ ‭, so we should expect an asymptote of degree‬ ‭.‬
‭Indeed, the proper form of the function is‬

‭which indicates a polynomial‬

‭asymptote of‬ ‭.‬

‭Big Picture‬



‭170‬ ‭Justin Math |‬‭Algebra‬

‭Zooming out of the previous graphs, we can see the big picture of‬
‭rational functions: they look like their whole number part (i.e. their‬
‭polynomial asymptotes), except at the‬‭singularities‬‭(vertical‬
‭asymptotes), when the denominator of the fractional part becomes‬
‭extremely small and the fraction blows up to positive or negative‬
‭infinity.‬
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‭Exercises‬

‭Use vertical and horizontal/slant/polynomial asymptotes to graph‬
‭the following rational functions.‬
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‭Part 6‬
‭Non-Polynomial Functions‬
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‭6.1 Radical Functions‬

‭A‬‭radical function‬‭is a function that involves roots:‬‭square roots,‬
‭cube roots, or any kind of fractional exponent in general. We can‬
‭often infer what their graphs look like by sandwiching them‬
‭between polynomial functions.‬

‭For example, the radical function‬ ‭can be written‬‭as‬

‭, and its exponent‬ ‭is between‬ ‭and‬ ‭, so the graph‬

‭of‬ ‭lies between the graphs of‬ ‭and‬ ‭.‬

‭Negative Inputs‬

‭However, there is one caveat:‬ ‭is not defined for‬
‭negative values of‬ ‭. If we try to input a negative‬‭number, we end‬



‭176‬ ‭Justin Math |‬‭Algebra‬

‭up taking the root of a negative number, which is undefined in the‬
‭real numbers.‬

‭As a consequence, the graph of‬ ‭remains blank for‬‭negative values‬
‭of‬ ‭, left of the‬ ‭-axis.‬

‭That being said, other radical functions can sometimes accept‬
‭negative inputs, which are converted to positive numbers before the‬
‭radical is applied.‬

‭For example,‬ ‭is a valid input to‬ ‭because the‬
‭operation inside the root converts the negative input to a positive,‬
‭and we can take the root of positive numbers.‬

‭But the operation also converts positive inputs to negatives, so the‬
‭positive section of the graph disappears.‬
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‭Cube Root Functions‬

‭Unlike square root functions, cube root functions like‬
‭can accept both positive and negative inputs because cube roots are‬
‭defined for both positive and negative numbers.‬
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‭In general, whether a radical function covers the whole graph or just‬
‭part of the graph depends on whether the root is an even root or an‬
‭odd root.‬

‭●‬ ‭Even roots are NOT defined for negative numbers, so the‬
‭graph is left blank for any input‬ ‭that makes the‬‭inside of the‬
‭root negative.‬

‭●‬ ‭Odd roots ARE defined for negative numbers, so the graph‬
‭exists for any input‬ ‭, even if it makes the inside‬‭of the root‬
‭negative.‬

‭Just remember that whether an x-value is a valid input to a root‬
‭function does not depend solely on the sign of the x-value, but‬
‭rather on what the function does to the input x-value before‬
‭applying the root.‬

‭Extraneous Solutions‬

‭When solving radical equations, valid algebraic steps can sometimes‬
‭lead us to solutions that aren’t actually correct.‬

‭For example, squaring both sides of the equation‬ ‭yields‬
‭. However, when we input‬ ‭into the equation to check‬

‭the solution, we reach‬ ‭, which simplifies to‬ ‭,‬
‭which is incorrect.‬

‭Therefore, we say that the solution‬ ‭is‬‭extraneous‬‭,‬‭and the‬
‭equation‬ ‭actually has no solutions in the real numbers.‬
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‭Squaring both sides of an equation can introduce extraneous‬
‭solutions because it introduces an additional solution that‬
‭corresponds to the negative root.‬

‭It’s easiest to see this if we forget about radicals for a moment -- for‬
‭example, if we start with‬ ‭and square both sides,‬‭we reach‬

‭, which is solved by‬ ‭. Squaring both sides‬
‭introduced a negative solution‬ ‭, and although‬ ‭is‬‭not‬

‭true,‬ ‭is true. Likewise, although‬ ‭is not a solution‬

‭to‬ ‭, it is a solution to‬ ‭because‬

‭.‬

‭A similar problem occurs when we raise both sides of an equation to‬
‭the fourth, sixth, eighth, or any even power -- raising to an even‬
‭power turns negative numbers to positives, so it introduces an‬
‭additional solution that corresponds to the negative root.‬

‭On the other hand, raising both sides of an equation to the third,‬
‭fifth, seventh, or any odd power does not change the sign of any‬
‭numbers, so it won’t lead to any extraneous solutions.‬

‭The main takeaway‬‭is that whenever we raise both sides‬‭of an‬
‭equation to an even power, we need to double-check the solutions‬
‭to make sure that they actually satisfy the equation.‬

‭Solving Radical Equations‬

‭In general, the best way to solve a complicated radical equation is to‬
‭isolate the radical and exponentiate to cancel the radical.‬
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‭Original equation‬

‭Isolate the radical‬

‭Cube both sides‬

‭Set polynomial equal to‬

‭Factor polynomial‬

‭Solve‬

‭Remove extraneous‬
‭solutions‬

‭When there are multiple radicals in an equation, we first need to‬
‭reduce the number of radicals in the equation until there is a single‬
‭radical.‬

‭We can do this by repeatedly rearranging and exponentiating both‬
‭sides of the equation.‬

‭Original equation‬

‭Rearrange‬

‭Square‬

‭Rearrange‬

‭Square‬
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‭Simplify‬

‭Solve‬

‭Remove extraneous‬
‭solutions‬

‭Exercises‬

‭Graph the following radical functions.‬

‭Solve the following radical equations.‬
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‭6.2 Exponential and Logarithmic Functions‬

‭Exponential functions‬‭have variables as exponents,‬‭e.g.‬ ‭.‬

‭Their end behavior consists of growing without bound to infinity in‬
‭one direction, and decaying to a horizontal asymptote of‬ ‭in‬
‭the other direction.‬

‭The size of the number that is exponentiated, called the‬‭base‬‭,‬
‭governs which direction corresponds to which end behavior.‬

‭Exponential Growth‬

‭If the magnitude of the base is bigger than‬ ‭, then‬‭as‬ ‭increases,‬
‭the function is repeatedly multiplied by a number bigger than‬ ‭and‬
‭consequently grows without bound to infinity. For this reason, such‬
‭functions are called‬‭exponential growth‬‭functions.‬

‭By the same token, as‬ ‭decreases, the function is‬‭repeatedly‬
‭divided by a number bigger than‬ ‭and consequently‬‭decays to a‬
‭horizontal asymptote of‬ ‭.‬

‭For example, for the exponential growth function‬ ‭, each‬
‭unit increase in‬ ‭causes the output to be doubled,‬‭and each unit‬
‭decrease in‬ ‭causes the output to be halved.‬

https://www.codecogs.com/eqnedit.php?latex=1%0
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‭Exponential Decay‬

‭On the other hand, if the magnitude of the base is smaller than‬ ‭,‬
‭then as‬ ‭increases, the function is repeatedly multiplied‬‭by a‬
‭number smaller than‬ ‭and consequently decays to a‬‭horizontal‬
‭asymptote of‬ ‭. For this reason, such functions are‬‭called‬
‭exponential decay‬‭functions.‬

‭By the same token, as‬ ‭decreases, the function is‬‭repeatedly‬
‭divided by a number smaller than‬ ‭and consequently‬‭grows‬
‭without bound to infinity.‬

‭For example, for the exponential growth function‬ ‭,‬
‭each unit increase in‬ ‭causes the output to be halved,‬‭and each‬
‭unit decrease in‬ ‭causes the output to be doubled.‬
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‭Logarithms‬

‭Equations involving exponential terms can be solved with the help‬
‭of‬‭logarithmic functions‬‭, which cancel out exponentiation.‬

‭For example, the equation‬ ‭is solved by‬ ‭, the‬
‭logarithm base-‬ ‭of‬ ‭, which evaluates to roughly‬ ‭via‬
‭calculator.‬

‭If your calculator does not allow you to input a base for a logarithm,‬

‭you can compute‬ ‭as‬ ‭. This is called the‬‭change-of-base‬
‭formula.‬

‭Logarithmic graphs look similar to square-root graphs, except they‬
‭cross the x-axis at‬ ‭and extend downward towards‬‭an asymptote at‬

‭.‬

https://www.codecogs.com/eqnedit.php?latex=1%0
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‭Logarithmic graphs cross the x-axis at‬ ‭because raising‬‭any number‬
‭to the power of‬ ‭results in‬ ‭. That is, any logarithm‬
‭solves the equation‬ ‭, which we already know is solved‬‭by‬

‭.‬

‭Also, logarithmic graphs extend to negative infinity as‬ ‭approaches‬
‭, because a number (greater than one) gets smaller‬‭and smaller as‬

‭its exponent gets more and more negative.‬

‭Lastly, the base of the logarithm tells us where the y-value is‬ ‭--‬
‭that is, the function‬ ‭has‬ ‭. This is because‬

‭is the exponent we have to raise‬ ‭to, to get‬ ‭.‬

https://www.codecogs.com/eqnedit.php?latex=2%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B2%7D%0
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‭When the base of the logarithm is smaller than one, the graph flips‬
‭over the x-axis.‬

‭In this case, the graph extends to positive infinity as‬ ‭approaches‬
‭, because a number smaller than‬ ‭gets closer and‬‭closer to‬ ‭as its‬

‭exponent increases.‬

‭Likewise, as‬ ‭increases, the graph becomes more and‬‭more‬
‭negative because a negative exponent is needed to flip the‬
‭fractional base.‬

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=0%0


‭188‬ ‭Justin Math |‬‭Algebra‬

‭Properties of Logarithms‬

‭Expressions consisting of multiple logarithms of the same base can‬
‭be simplified by using two properties of logarithms:‬

‭1.‬ ‭Addition outside two logarithms with the same base turns into‬
‭multiplication inside a single logarithm. For example,‬

‭, and in general,‬
‭.‬

‭2.‬ ‭Multiplication outside two logarithms with the same base‬
‭turns into exponentiation inside a single logarithm. For‬

‭example,‬ ‭, and in general,‬
‭.‬

‭A particularly noteworthy consequence of the second rule is that‬
‭negative outside a log turns into reciprocal inside the log:‬

‭Additionally, logarithms of different bases can sometimes be‬
‭converted to logarithms of the same base. For example,‬ ‭is‬
‭the same as‬ ‭. In general,‬ ‭provided both‬
‭logarithms exist.‬



‭Justin Math |‬‭Algebra‬ ‭189‬

‭Below is an example of simplifying a logarithmic expression using all‬
‭of the properties that we have discussed:‬

‭Original expression‬

‭Rewrite using addition‬

‭Convert multiplication‬
‭to exponentiation‬

‭Simplify‬

‭Square base and‬
‭argument‬

‭Simplify‬

‭Convert addition‬
‭to multiplication‬

‭Simplify‬

‭Exercises‬

‭Graph the following exponential functions.‬

https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20f(x)%3D3%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20f(x)%3D5%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=3)%20%5Chspace%7B.5cm%7D%20f(x)%3D%5Cleft(%20%5Cfrac%7B1%7D%7B3%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=4)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B1%7D%7B5%7D%20%5Cright)%5Ex%0
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‭Use logarithms to solve the following exponential equations.‬

‭Graph the following logarithmic functions. Use logarithm rules to‬
‭simplify the expression, if needed.‬

https://www.codecogs.com/eqnedit.php?latex=5)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=6)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright)%5Ex%0
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‭6.3 Absolute Value‬

‭An‬‭absolute value‬‭function represents the‬‭magnitude‬‭of a number,‬
‭i.e. its distance from‬ ‭.‬

‭For example, the absolute value of‬ ‭is‬ ‭, and the‬‭absolute value‬

‭of‬ ‭is‬ ‭. We write this as‬ ‭, and‬ ‭.‬

‭In effect, absolute value just removes the negative sign from a‬
‭number, if there is a negative sign to begin with.‬

‭Graphs‬

‭Absolute value graphs are very straightforward -- they look similar to‬
‭the graph of‬ ‭, except the the outputs of negative‬ ‭are‬
‭turned positive.‬
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‭Solving Equations by Splitting‬

‭Absolute value equations are similar to square root equations, in‬
‭that we have to consider both positive and negative solutions. For‬

‭example, the solutions to the equation‬ ‭are‬ ‭.‬

‭We can usually solve more complicated absolute value equations by‬
‭isolating the absolute value and then breaking it up into positive and‬
‭negative equations.‬

‭Original equation‬

‭Isolate the absolute value‬

‭Split into positive and‬
‭negative equations‬

‭Solve‬

‭Extraneous Solutions‬

‭One caveat to solving absolute value equations this way is that if the‬
‭original equation tells us that the absolute value equals a negative‬
‭number, we will get the same solutions as if it were a positive‬
‭number, but none of them will be correct because absolute value‬
‭can never have a negative output.‬
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‭Original equation‬

‭Split into positive and‬
‭negative equations‬

‭Solve‬

‭Check solutions‬

‭Remove extraneous‬
‭solutions‬

‭Whenever an equation tells us that the output of some absolute‬
‭value is a negative number, the equation will have no solution.‬

‭That being said, if an equation tells us that the output of some‬
‭absolute value is a negative variable expression, the equation might‬
‭have a solution, because the variable expression itself might be‬
‭negative at times.‬
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‭In these cases, it’s usually best to solve the absolute value using the‬
‭conventional method of splitting up into positive and negative‬
‭equations, and then check the answers afterward to remove any‬
‭extraneous solutions.‬

‭Original equation‬

‭Split into positive and‬
‭negative equations‬

‭Solve‬

‭Check solutions‬



‭Justin Math |‬‭Algebra‬ ‭195‬

‭Remove extraneous‬
‭solutions‬

‭Case of Multiple Absolute Value Terms‬

‭When there are multiple absolute value terms, we need to split the‬
‭equation into positive and negative equations for each absolute‬
‭value term, one after the other.‬

‭Original equation‬

‭Split into positive and‬
‭negative equations‬

‭Isolate remaining‬
‭absolute value‬
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‭Split into positive and‬
‭negative equations‬

‭Simplify‬

‭Solve‬

‭Combine solutions‬

‭Remove extraneous‬
‭solutions‬

‭Exercises‬

‭Solve the following absolute value equations.‬
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‭6.4 Trigonometric Functions‬

‭Trigonometric functions‬‭represent the relationship‬‭between sides‬
‭and angles in right triangles.‬

‭There are three main “trig” functions: sine, cosine, and tangent, and‬
‭a mnemonic often used to remember what they represent is‬
‭SohCahToa:‬

‭●‬ ‭The SINE of an angle is the ratio of the lengths of the‬
‭OPPOSITE side and the HYPOTENUSE.‬

‭●‬ ‭The COSINE of an angle is the ratio of the lengths of the‬
‭ADJACENT side and the HYPOTENUSE.‬

‭●‬ ‭The TANGENT of an angle is the ratio of the lengths of the‬
‭OPPOSITE side and the ADJACENT side.‬
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‭For example, in the triangle below, we have‬ ‭,‬ ‭,‬

‭and‬ ‭.‬

‭Solving for a Side‬

‭Trig functions can be used to solve for unknown side lengths in right‬
‭triangles. For example, if we know that an angle is‬ ‭, the opposite‬
‭side has a length of‬ ‭, and we want to find the hypotenuse,‬‭we can‬
‭set up and solve an equation using sine.‬
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‭Sine equation‬

‭Solve‬

‭Evaluate via calculator‬

‭To find the remaining side, we can use any of three methods:‬
‭Pythagorean theorem, cosine, or tangent.‬

‭No matter which technique we use, we will end up with the same‬
‭result (though if we use our approximation of‬ ‭, we‬‭might‬
‭be slightly off due to rounding error).‬
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‭Pythagorean theorem‬

‭Cosine‬

‭Tangent‬

‭Solving for an Angle‬

‭Similarly, using inverse trig functions, we can solve for unknown‬
‭angles in right triangles.‬
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‭For example, if we know that the adjacent side is‬ ‭and the opposite‬
‭side is‬ ‭, we can set up an equation with tangent‬‭and then use‬
‭inverse tangent to find the angle.‬

‭Tangent equation‬

‭Inverse tangent‬

‭Evaluate via calculator‬

‭To find the remaining angle, we can use any of three methods: sum‬
‭of degrees in a triangle, tangent, or Pythagorean theorem followed‬
‭by sine or cosine. Regardless of which method we choose, we will‬
‭end up with the same result.‬
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‭Sum of degrees in triangle‬

‭Inverse tangent‬

‭Pythagorean theorem‬

‭Inverse sine‬

‭Inverse cosine‬
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‭The Unit Circle‬

‭To gain a better understanding of trig functions, we can imagine‬
‭putting a triangle inside of a circle on the coordinate plane.‬

‭The coordinates of the corner point‬ ‭on the circle‬‭then tell us‬
‭the other two sides of the triangle: the horizontal side has length‬
‭and the vertical side has length‬ ‭. If we make the‬‭circle have radius‬

‭, then the hypotenuse of the triangle is‬ ‭, and we‬‭have‬

‭and our point‬ ‭can be written as‬ ‭.‬
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‭Immediately, we notice two important things. First, using the‬
‭Pythagorean theorem on the triangle, we see that‬

‭.‬

‭This is a handy equation that can be useful in simplifying‬
‭trigonometric expressions. For example, the expression‬

‭is actually just equivalent to‬ ‭.‬

‭Second, angles repeat every‬ ‭, since going‬ ‭around‬‭the‬
‭circle brings us back to the starting point of‬ ‭.‬
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‭That means, for example, that‬ ‭and‬ ‭are both‬
‭equivalent to‬ ‭.‬

‭Special Angles‬

‭For most angles, a calculator is needed to compute the‬
‭corresponding trig function values. However, at particular angle‬
‭measures, the trig functions have simple, exact values:‬

‭We can remember which values correspond to which angles and‬
‭which trig functions by thinking about them visually in the unit circle‬

‭and mentally pairing‬ ‭with‬ ‭.‬
‭●‬ ‭At‬ ‭, the x-coordinate is bigger than the y-coordinate,‬‭so‬

‭the x-coordinate must be‬ ‭and the y-coordinate must‬‭be‬ ‭.‬
‭●‬ ‭At‬ ‭, this is reversed.‬

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20390%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20%2B%20360%5E%5Ccirc%20%5C%5C%20-330%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20-%20360%5E%5Ccirc%20%5Cend%7Balign*%7D%0
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‭●‬ ‭At‬ ‭, the x-coordinate and y-coordinate are the same, so‬

‭they both are‬ ‭.‬
‭●‬ ‭At‬ ‭, we’re on the x-axis, so the x-coordinate is‬ ‭and the‬

‭y-coordinate is‬ ‭.‬
‭●‬ ‭At‬ ‭, we’re on the y-axis, so the y-coordinate is‬ ‭and the‬

‭x-coordinate is‬ ‭.‬

‭To get tangent, we can just take the ratio of the y-coordinate to the‬
‭x-coordinate.‬
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‭Using symmetry, we can label angles in the other three quadrants of‬
‭the circle.‬

‭Derivation of Special Angles‬

‭You might be wondering where the values‬ ‭,‬ ‭, and‬ ‭come‬
‭from in the first place.‬

‭To see where‬ ‭comes from, we can construct a right‬‭triangle with‬
‭a hypotenuse of‬ ‭and an angle of‬ ‭.‬

‭The other angle must also be‬ ‭, so the triangle’s‬‭two legs must be‬
‭equal in length, and we can use the Pythagorean theorem to‬

‭discover that the length of each leg is‬ ‭.‬
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‭Pythagorean theorem‬

‭Simplify‬

‭Solve‬

‭Simplify‬

‭Likewise, to see where‬ ‭and‬ ‭come from, we can construct‬‭a‬
‭right triangle with a hypotenuse of‬ ‭and an angle‬‭of‬ ‭.‬

‭The other angle must be‬ ‭, which is exactly half --‬‭consequently,‬
‭we can combine two of these triangles to form an equilateral‬
‭triangle whose side lengths are all equal to the hypotenuse of‬ ‭.‬
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‭The shortest sides of the two triangles together make up a side of‬
‭the equilateral triangle, which we know has length‬ ‭, so the shortest‬

‭sides of the two triangles must each be‬ ‭. Using the‬‭Pythagorean‬

‭theorem, we find that the length of the other leg is‬ ‭.‬

‭Pythagorean theorem‬

‭Simplify‬

‭Solve‬

‭Simplify‬
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‭Graphs‬

‭The graphs of sine, cosine, and tangent are drawn below. They‬
‭repeat every‬ ‭, since‬ ‭is one full revolution around‬‭the unit‬
‭circle and thus brings us full-circle back to the starting point.‬

‭Tangent actually repeats twice every‬ ‭(or once every‬ ‭)‬
‭because it goes from positive to negative from the first to second‬
‭quadrant, and again positive to negative from the third to fourth‬
‭quadrant.‬

‭To make sense of the shapes of the graphs, try to trace out the trig‬
‭function values while following around the unit circle.‬
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‭Radians‬

‭The standard way to measure angles is actually not in degrees --‬
‭rather, it is in‬‭radians‬‭. One radian is equivalent‬‭to the angle whose‬
‭arc is equal to one radius of a circle.‬
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‭Since the full arc length (‬‭circumference‬‭) of the circle is‬ ‭times the‬
‭radius, a full‬ ‭around the circle is equivalent to‬ ‭radians.‬

‭Below is a copy of the unit circle, using radians instead of degrees.‬
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‭The trig functions are graphed in terms of radians below. Nothing‬
‭changes, except for the units of the x-axis.‬

‭Reciprocal Trigonometric Functions‬

‭There are three other trig functions: secant, cosecant, and‬
‭cotangent. They are just the reciprocals of cosine, sine, and tangent.‬



‭216‬ ‭Justin Math |‬‭Algebra‬

‭Consequently, they can be understood by thinking about the‬
‭properties of cosine, sine, and tangent. We will not explore them‬
‭further, but we include their graphs below.‬
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‭Exercises‬

‭Use trigonometry to find the missing sides and angles of the‬
‭triangles.‬
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‭Use the unit circle to find the exact values of the following‬
‭trigonometric expressions.‬
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‭6.5 Piecewise Functions‬

‭A‬‭piecewise function‬‭is pieced together from multiple‬‭different‬
‭functions.‬

‭For example, the absolute value function is a piecewise function‬
‭because it consists of the line‬ ‭for negative‬ ‭,‬‭and‬
‭for positive‬ ‭.‬

‭Case Notation‬

‭More generally, piecewise functions can be defined using case‬
‭notation, which tells which functions to use as pieces and where to‬
‭use them as pieces.‬
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‭The absolute value function, for example, can be written in case‬
‭notation as follows:‬

‭This case notation just tells us that for negative inputs (‬ ‭) we‬
‭should use the function‬ ‭to calculate the function‬‭output,‬
‭and for nonnegative inputs (‬ ‭) we should use the function‬

‭to calculate the function output.‬

‭Two more equivalent case notation forms for the absolute value‬
‭function are shown below.‬
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‭Sometimes, piecewise functions have breaks in them. For example,‬
‭if we modify the case notation of the absolute value function so that‬
‭the right piece is elevated, the graph has a break in it. This looks‬
‭unusual, but it is a perfectly valid function.‬

‭Many Function Types‬

‭There is no limit to what types of functions a piecewise function can‬
‭consist of. For example, the equation and graph of a more‬
‭complicated piecewise function are shown below.‬
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‭Many Cases‬

‭Likewise, there is no limit to the number of pieces a piecewise‬
‭function can have. For example, rounding is an example of a‬
‭piecewise function with infinitely many pieces.‬



‭Justin Math |‬‭Algebra‬ ‭223‬

‭Exercises‬

‭Graph the following piecewise functions.‬
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‭Chapter 7‬
‭Transformations of Functions‬
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‭7.1 Shifts‬

‭When a function is‬‭shifted‬‭, all of its points move‬‭vertically and/or‬
‭horizontally by the same amount. The function’s size and shape are‬
‭preserved -- it is just slid in some direction, like sliding a book across‬
‭a table.‬

‭Shifts Outside the Function‬

‭Shifts occur when a constant term is added in a function. When the‬
‭constant term is added on the outside of a function, e.g. when‬

‭is transformed into‬ ‭, the function shifts up‬
‭by that many units. (If a negative term is added, the function moves‬
‭down.)‬
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‭Shifts Inside the Function‬

‭On the other hand, when the constant term is added on the inside‬

‭of a function, e.g. when‬ ‭is transformed into‬

‭, the function shifts left by that many units. (If‬‭a‬
‭negative term is added, the function moves right.)‬

‭Intuition‬

‭Vertical shifts are very intuitive: if we add a number to a function,‬
‭that number is added to every output of the function. If the number‬
‭is positive, every output y-value is increased by that amount. If the‬
‭number is negative, every output y-value is decreased by that‬
‭amount.‬
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‭The intuition behind horizontal shifts is a little less straightforward,‬
‭because ADDING a number inside a function moves it left in the‬
‭NEGATIVE direction along the x-axis.‬

‭But think about it this way: when we transform‬ ‭into‬

‭, the output originally at‬ ‭is now at‬ ‭,‬

‭because‬ ‭is the same as‬ ‭. Similarly, the output‬‭originally‬

‭at‬ ‭is now at‬ ‭, because‬ ‭is the same as‬ ‭.‬
‭Every input needs to move‬ ‭units left, to keep its‬‭output the same.‬

‭Combining Shifts‬

‭When we have both vertical and horizontal shifts, it doesn’t matter‬
‭which we perform first.‬

‭For example, to transform‬ ‭into‬ ‭,‬
‭we can either shift it left‬ ‭units and then up‬ ‭units, or up‬ ‭units‬
‭and then left‬ ‭units. Either way, we get the same‬‭result.‬
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‭Exercises‬

‭Use shifts to graph the following functions.‬
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‭7.2 Rescalings‬

‭When a function is‬‭rescaled‬‭, it is stretched or compressed‬‭along one‬
‭of the axes, like a slinky. The function’s general shape is preserved,‬
‭but it might look a bit thinner or fatter afterwards.‬

‭Rescalings Outside the Function‬

‭Rescalings occur when a constant term is multiplied in a function.‬
‭When the constant term is multiplied on the outside of a function,‬
‭the function stretches or compresses along the y-axis.‬

‭For example, multiplying outside by‬ ‭with the transformation‬

‭stretches the function outward vertically, away from the x-axis.‬

‭On the contrary, multiplying outside by‬ ‭with the‬‭transformation‬

‭compresses the function inward vertically, towards the x-axis.‬
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‭Rescalings Inside the Function‬

‭On the other hand, when the constant term is multiplied on the‬
‭inside of a function, the function stretches or compresses‬
‭horizontally along the x-axis.‬

‭For example, multiplying inside by‬ ‭with the transformation‬

‭compresses the function inward horizontally, towards the y-axis.‬

‭On the contrary, multiplying inside by‬ ‭with the‬‭transformation‬

‭stretches the function outward horizontally, away from the y-axis.‬
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‭For functions that are more linear than curvy, such as‬ ‭,‬
‭vertical and horizontal rescalings can have similar effects on the‬
‭graph.‬
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‭Intuition‬

‭Similar to vertical shifts, vertical rescalings are very intuitive: if we‬
‭multiply a function by a number, every output of the function is‬
‭multiplied by that number.‬

‭If the number is greater than‬ ‭, every output y-value‬‭is increased by‬
‭the multiplier. If the number is less than‬ ‭, every‬‭output y-value is‬
‭decreased by the multiplier.‬

‭Similar to horizontal shifts, the intuition behind horizontal rescalings‬
‭is not as straightforward. Multiplying a BIG number inside a function‬
‭COMPRESSES it, rather than stretching it.‬

‭Think about it this way: when we transform‬ ‭into‬

‭, the output originally at‬ ‭is now at‬ ‭,‬

‭because‬ ‭is the same as‬ ‭. Similarly, the output‬‭originally‬

‭at‬ ‭is now at‬ ‭, because‬ ‭is the same thing as‬

‭. Every input needs to be divided by‬ ‭, to keep its‬‭output‬
‭the same.‬

‭Combining Rescalings and Shifts‬

‭When we have both vertical and horizontal rescalings, it doesn’t‬
‭matter which we perform first.‬
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‭However, when dealing with rescalings and shifts simultaneously, it’s‬
‭important to perform horizontal shifts first, then rescalings, and‬
‭lastly vertical shifts. This way, horizontal shifts are themselves‬
‭rescaled, and vertical shifts are not.‬

‭To see why horizontal shifts themselves need to be rescaled,‬
‭consider the function transformation of‬ ‭into‬

‭.‬

‭In the original function, we have‬ ‭. If we rescale‬‭first and then‬

‭shift‬ ‭right, then the input‬ ‭is rescaled to‬ ‭and‬‭shifted‬

‭to‬ ‭.‬

‭When we input the transformed input into the transformed‬
‭function, it should produce the same result as the original input in‬

‭the original function -- but this is not the case for‬ ‭.‬

‭On the other hand, if we first shift‬ ‭right and then‬‭rescale, then the‬

‭input‬ ‭is shifted to‬ ‭and rescaled to‬ ‭.‬

‭Indeed,‬ ‭produces the same result as the original‬‭input in the‬
‭original function.‬

https://www.codecogs.com/eqnedit.php?latex=1%0
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‭Exercises‬

‭Use rescalings (followed by shifts) to graph the following functions.‬
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‭7.3 Reflections‬

‭When a function is‬‭reflected‬‭, it flips across one‬‭of the axes to‬
‭become its mirror image.‬

‭Reflections occur when a function is made negative -- when the‬
‭negative is outside the function, the reflection is over the y-axis; and‬
‭when the negative is inside the function, the reflection is over the‬
‭x-axis.‬

‭The intuition behind reflections is that, depending where it is‬
‭placed, the negative sign switches positive and negative values of‬
‭the‬ ‭or‬ ‭variable.‬

‭If the negative is outside the function, then the output y-value‬
‭switches sign, essentially reflecting every point over the x-axis.‬
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‭On the other hand, if the negative is inside the function, then the‬
‭input x-value switches sign, essentially reflecting every point over‬
‭the y-axis.‬

‭Order of Function Transformations‬

‭When we have both vertical and horizontal reflections, it doesn’t‬
‭matter which we perform first. Likewise, when dealing with‬
‭reflections and rescalings simultaneously, it doesn’t matter which‬
‭we perform first.‬

‭However, when dealing with reflections and shifts simultaneously,‬
‭it’s important to perform horizontal shifts first, then reflections, and‬
‭lastly vertical shifts.‬

‭We are left with an‬‭order of function transformations‬‭,‬‭similar to the‬
‭concept of order of operations in arithmetic, but different in actual‬
‭order:‬

‭1.‬ ‭Horizontal shifts‬
‭2.‬ ‭Rescalings and reflections (interchangeable)‬
‭3.‬ ‭Vertical shifts‬
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‭Exercises‬

‭Use reflections and rescalings (followed by shifts) to graph the‬
‭following functions.‬
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‭7.4 Inverse Functions‬

‭Inverting‬‭a function entails reversing the outputs‬‭and inputs of the‬
‭function.‬

‭For example, if inputting‬ ‭into a function‬ ‭produces‬‭an‬
‭output‬ ‭, then inputting‬ ‭into the‬‭inverse function‬

‭results in the output‬ ‭.‬

‭Computing Inverse Functions‬

‭We can compute inverse functions by switching‬ ‭and‬ ‭in the‬
‭equation for a function, and then solving for‬ ‭again.‬

‭Original function‬

‭Replace‬ ‭with‬

‭Switch‬ ‭and‬

‭Solve for‬

‭Replace‬ ‭with‬

‭Testing our inverse function on a few sample inputs, we see that it‬
‭does indeed reverse the outputs and inputs of the original function.‬
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‭Graphing Inverse Functions‬

‭Graphing inverse functions is even easier than computing them: we‬
‭just have to reflect the original function over the line‬ ‭.‬

‭This makes sense, intuitively, since computing the inverse function‬
‭involves switching‬ ‭and‬ ‭.‬

‭Case when No Inverse Exists‬

‭Graphically, we can see that some functions don’t have inverse‬
‭functions. If reflecting the graph over the line‬ ‭causes multiple‬
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‭y-values to be associated with a single x-value, then this breaks the‬
‭definition of a function, and the resulting graph is not a function.‬

‭Algebraically, an inverse function is supposed to take original‬
‭outputs back to original inputs, but it can’t do this if it can’t‬
‭distinguish which input x-value caused the output y-value.‬

‭For example, the function‬ ‭has‬ ‭, so‬
‭when a supposed inverse function takes an output of‬ ‭, it will not‬
‭know whether the output came from the input‬ ‭or‬ ‭. Therefore,‬

‭no inverse function can be constructed for‬ ‭.‬

‭Domain Restrictions‬

‭That being said, inverse functions can be created if we restrict the‬
‭domain‬‭, the set of allowed inputs.‬
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‭For example, if we restrict the domain of‬ ‭to only positive‬
‭inputs, then the inverse function would know that an output of‬
‭comes from an input of‬ ‭.‬

‭We can also see this graphically -- if we graph‬ ‭only for‬
‭positive values of‬ ‭, then no x-value has multiple‬‭y-values when we‬
‭reflect the graph over the line‬ ‭.‬

‭Exercises‬

‭Sketch the original function and the graph of the supposed inverse‬
‭by reflecting the original function‬ ‭over the line‬ ‭. Then, if‬
‭the inverse function‬ ‭exists, use algebra to find‬‭its equation.‬
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‭7.5 Compositions‬

‭Compositions of functions consist of multiple functions linked‬
‭together, where the output of one function becomes the input of‬
‭another function.‬

‭Demonstration‬

‭For example, the function‬ ‭can be thought of as the‬‭composition‬
‭of two functions: the first function squares the input, and then the‬
‭second function doubles the input.‬

‭Using formal notation, we can define the first function that squares‬

‭the input as‬ ‭, and the second function that doubles‬‭the‬
‭input as‬ ‭.‬

‭Then the composition can be computed by using the output of‬ ‭as‬
‭the input to‬ ‭. Starting at the end, we can compute‬‭the composition‬
‭by evaluating‬ ‭in terms of‬ ‭, and then evaluating‬ ‭in terms of‬ ‭.‬

‭Or, we can start at the beginning, computing‬ ‭in‬‭terms of‬ ‭and‬
‭then evaluating‬ ‭in terms of the result. Either way,‬‭we end up with‬
‭the same formula for the composition.‬

https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%202f(x)%20%3D%202x%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%20g(x%5E2)%20%3D%202x%5E2%0
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‭Order of Composition‬

‭The order of composition is very important and is not‬
‭interchangeable.‬

‭●‬ ‭The function computed above is‬ ‭, which applies‬ ‭first‬
‭and then‬ ‭.‬

‭●‬ ‭On the other hand, the function‬ ‭applies‬ ‭first‬‭and then‬
‭, and consequently evaluates to something different:‬

‭.‬

‭Compositions of Many Functions‬

‭For compositions of more than two functions, we can compute one‬
‭step at a time.‬

‭Given functions‬

‭Input‬ ‭into‬

‭Input‬ ‭into‬

‭Input‬ ‭into‬

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7Df(x)%26%3D%5Csin%20x%20%5C%5C%20g(x)%26%3Dx%5E2%20%5C%5C%20h(x)%26%3D5x%2B1%20%5C%5C%20p(x)%26%3D%5Csqrt%7Bx%7D%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20%5Csin%5E2%20x%0
https://www.codecogs.com/eqnedit.php?latex=g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=h%0
https://www.codecogs.com/eqnedit.php?latex=(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%205%5Csin%5E2%20x%20%2B%201%0
https://www.codecogs.com/eqnedit.php?latex=h%20%5Ccirc%20g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=(p%20%5Ccirc%20h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Csqrt%7B5%5Csin%5E2%20x%20%2B%201%7D%0
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‭Exercises‬

‭Find the expression for the indicated composition.‬

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D1)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3Dx%2B5%20%5C%5C%20%26g(x)%3D2x%5E2%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D2)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D5%5Ex%20%5C%5C%20%26g(x)%3D%7C4-x%7C%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D3)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D-2%5Ex%20%5C%5C%20%26g(x)%3D%7Cx%2B4%7C%20%5C%5C%20%26h(x)%3D%5Csqrt%7Bx%7D%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D4)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D2x%20%5C%5C%20%26g(x)%3D%5Cfrac%7Bx%7D%7Bx-1%7D%20%5C%5C%20%26h(x)%3D%5Csin%20x%20%5Cend%7Balign*%7D%0
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‭Solutions‬
‭to Exercises‬
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‭Part 1‬

‭Chapter 1.1‬

‭Chapter 1.2‬
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‭Chapter 1.3‬
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‭Chapter 1.4‬
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‭Chapter 1.5‬
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‭Part 2‬

‭Chapter 2.1‬
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‭Chapter 2.2‬

‭Chapter 2.3‬
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‭Chapter 2.4‬

‭Chapter 2.5‬



‭266‬ ‭Justin Math |‬‭Algebra‬

‭Chapter 2.6‬
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‭Part 3‬

‭Chapter 3.1‬

‭Chapter 3.2‬
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‭Chapter 3.3‬
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‭Chapter 3.4‬
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‭Part 4‬

‭Chapter 4.1‬
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‭Chapter 4.2‬
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‭Chapter 4.3‬
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‭Chapter 4.4‬
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‭Chapter 5.1‬
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‭Chapter 5.4‬
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‭Chapter 5.5‬
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‭Part 6‬

‭Chapter 6.1‬

https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20%0
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‭Chapter 6.2‬
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‭Chapter 6.5‬
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‭Chapter 7.2‬
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