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 Part 1 
 Linear Equa�ons and Systems 
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 1.1 Solving Linear Equa�ons 

 Loosely speaking, a  linear equa�on  is an equality  statement 
 containing only addi�on, subtrac�on, mul�plica�on, and division. It 
 does not need to include all of these opera�ons, but it cannot 
 include opera�ons beyond them, such as exponen�a�on. 

 For example, these are linear equa�ons: 

 On the other hand, these are not linear equa�ons: 

 Solu�ons to Linear Equa�ons 

 The  solu�on  of a linear equa�on is the value that  we can subs�tute 
 for the variable to make the equa�on true. 
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 Most linear equa�ons have a single solu�on. We can find the 
 solu�on by performing opera�ons on both sides of the equa�on, to 
 isolate the variable. 

 Given equa�on 

 Add  to both sides 

 Subtract  from both sides 

 Divide both sides by 

 To check our solu�on, we can subs�tute it in both sides of the 
 equa�on and check that they evaluate to the same result: 

 Case of No Solu�ons 

 However, some linear equa�ons have no solu�ons. When we try to 
 solve these equa�ons, the variable vanishes and we are le� with an 
 untrue statement. 

 Given equa�on 

 Subtract  from both sides 

https://www.codecogs.com/eqnedit.php?latex=2x%0
https://www.codecogs.com/eqnedit.php?latex=8%0
https://www.codecogs.com/eqnedit.php?latex=7%0
https://www.codecogs.com/eqnedit.php?latex=3x%0
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 This means that there is no number we can subs�tute for  to make 
 the given equa�on true. 

 In fact, the right-hand side will always be  more  than the le�-hand 
 side: the le�-hand side says to mul�ply the input by  and add  , 
 while the le�-hand side says to mul�ply the input by  and add  . 

 Both sides mul�ply the input by  , but then add different  amounts! 
 We can never hope to get the results to be the same. 

 Case of Infinitely Many Solu�ons 

 Even more interes�ng, some linear equa�ons have infinitely many 
 solu�ons. When we try to solve these equa�ons, the variable s�ll 
 vanishes, but this �me we are le� with a true statement. 

 Given equa�on 

 Add  to both sides 

 In other words, any number we subs�tute for  will  make the given 
 equa�on true. 

 The le�-hand side and the right-hand side will always come out to 
 the same result: the le�-hand side tells us to mul�ply the input by 

 and add  , and the right-hand side tells us to mul�ply  the input 
 by  and then subtract it from  . These are really  just two ways of 
 saying the same thing. 

https://www.codecogs.com/eqnedit.php?latex=2x%0
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 Exercises 

 Solve the following: 
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 1.2 Slope-Intercept Form 

 Before, we were solving linear equa�ons in one variable. Now, let’s 
 consider linear equa�ons in two variables. A few examples are 
 shown below: 

 Solu�ons to Two-Variable Equa�ons 

 The solu�on to a two-variable linear equa�on is no longer just the 
 number(s) that we can subs�tute for  to make the  equa�on true, 
 but rather the pair(s)  that we can subs�tute for  and  to 
 make the equa�on true. 

 Two-variable linear equa�ons usually have infinitely many solu�ons, 
 because we are usually able to solve for one variable in terms of the 
 other. 

https://www.codecogs.com/eqnedit.php?latex=x%0
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 Given equa�on 

 Subtract  from both sides 

 Subtract  from both sides 

 Divide both sides by 

 If we choose  , then we can make the given equa�on  true by 
 choosing  . If we choose  , then we can 
 make the given equa�on true by choosing  . 
 Whatever value we choose for  , we can make the equa�on  true by 
 choosing  as twice that value, minus  . 

 However, although there are infinitely many solu�ons to the 
 equa�on, that doesn’t mean that any random pair we pick will be a 
 solu�on. For example, if we try the pair  , then  the 
 le�-hand side comes out to  , not  . 

 Graphing 

 To really see what’s going on, it helps to plot the solu�ons on a 
 graph.  In fact, linear equa�ons are called linear because when we 
 plot them on a graph, they form a straight line 

 To plot all the solu�ons of  on the graph below,  we plot 
 two solu�ons and draw a line through them. We already saw that 
 one solu�on was  , and when we subs�tute  we get 

 , so another solu�on is  . 

https://www.codecogs.com/eqnedit.php?latex=35%0
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 Any point that is on the line is a solu�on of the original equa�on. For 
 example, we see that the line passes through the point  -- and 
 indeed, subs�tu�ng  and  makes the original equa�on 
 true. 

 Slope-Intercept Form 

 In general, when we solve for  in a linear equa�on  of two 
 variables, we end up with a result in the form  where 

 and  are constants (provided  doesn’t vanish).  This is called 
 slope-intercept  form, and the constants  and  are  called the 
 slope  and  y-intercept  of the line, respec�vely. 
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 The y-intercept takes its name from the fact that the line crosses the 
 y-axis at  . For example, the graph of  shown earlier 
 crossed the y-axis at  . This pa�ern is true in general  because the 
 pair  is a solu�on of the equa�on  : when we 
 subs�tute  , we find  . 

 The slope takes its name from the fact that  controls  how steep 
 the line is: for every unit the line travels right, it travels  units up 
 (or down, if  is nega�ve). For example, in the graph  of 

 , if we start at the point  and travel  unit right  and 
 units up, we arrive at the point  , which is also  on the line. 

 To graph a line  in slope-intercept form, it is easiest  to 
 start by plo�ng the intercept  . Then, we can pick  another 
 point by going right 1 unit and up  units. For example,  to plot the 
 line  , we can start at the intercept  , and since  the 
 slope is  , we will go right  unit and down  units  to arrive at a 
 second point  . Then, we can connect these two points  with a 
 line. 

https://www.codecogs.com/eqnedit.php?latex=b%0
https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=1%0
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 When we have a frac�onal slope, such as in the line  , it 
 is easier to go right  units and up  units, instead  of going right 

 unit and up  of a unit. We’re just repea�ng the  process  �mes, for 
 a total distance right of  and a total distance up  of 

 . The resul�ng line is shown in the graph below. 

 Horizontal and Ver�cal Lines 

 If the  term vanishes when we solve for  , such as  in the line 
 which simplifies to  , then we can interpret the 

 slope as being  because the line can be wri�en  . The 
 resul�ng line has a y-intercept  and is horizontal  because for 
 every unit it goes to the right, it goes  units up. 
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 Perhaps an easier way to think about it, though, is that the solu�on 
 is just all the points that have a y-coordinate of  , regardless of their 
 x-coordinates. 

 On the other hand, if  vanishes when we solve, such  as in the line 
 which simplifies to  , then we have a ver�cal 

 line that passes through all the points having an x-coordinate of  , 
 regardless of their y-coordinate. 
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 Finding the Equa�on from a Graph 

 Now, let’s think in reverse: if we draw a par�cular line, how can we 
 come up with its equa�on? 

 If we know the y-intercept and slope of the line, then it’s easy -- we 
 just subs�tute the slope for  and the y-intercept  for  in the 
 equa�on  . 

 For example, in the line below, we see that the y-intercept is  , 

 and when we go right  , we go up  , so the slope is  . The equa�on 

 of the line, then, is  . 

 But what if we aren’t given the slope and y-intercept, or even a 
 picture of the line, and we want to write the equa�on of the line 
 based on only two points it passes through? 
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 It’s straigh�orward to compute the slope based on the two points -- 
 we just need to find the  rise  , or the change in  , and divide it by the 
 run  , or the change in  . 

 For example, if the points are  and  , then we can 
 compute the rise as  and the run as  , 

 resul�ng in a slope of  . 

 Or, we can compute the rise as  and the run as 

 , s�ll resul�ng in a slope of  . 

 Either way, we get the same slope. 

 Subs�tu�ng for  in the equa�on  , we reach 

 . 

 It remains to find the y-intercept,  . We can do this  by subs�tu�ng 
 for  and  using the coordinates of one of the points  that we 
 know needs to be on the line, say,  . 

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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 It really doesn’t ma�er which point we use -- even if we used the 
 other point,  , we would get the same result for  . 

 Now that we know the y-intercept is  , we can write  the final 
 equa�on of the line: 



 26  Jus�n Math |  Algebra 

 Exercises 

 Graph the following linear equa�ons. 

 Write the equa�on of the line in slope-intercept form. 
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 Write the slope-intercept equa�on of the line that goes through 
 the given point, with the given slope. 

 Write the slope-intercept equa�on of the line that goes through 
 the given points. 
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 1.3 Point-Slope Form 

 Suppose we want to write the equa�on of a line with a given slope 
 , through a par�cular point  . In the previous chapter,  we 

 subs�tuted the given informa�on into a slope-intercept equa�on 
 form  , solved for  , and rewrote the slope-intercept 
 form with  and  subs�tuted so that  and  were  the only 
 variables. 

 Slope-intercept equa�on form 

 Subs�tute the given slope 

 Subs�tute the given point 

 Solve for 

 Final equa�on 

 However, there is an alterna�ve form,  point-slope  form  , that makes 
 it even easier to write the equa�on of a line if we know the slope 
 and a point  on the line. It is given by 

 . 
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 If we know that our desired line has slope  and passes 
 through the point  , then we can subs�tute directly 
 into point-slope form without performing any addi�onal 
 computa�ons: 

 This is an accepted form of the equa�on for a line, so we don’t need 
 to simplify it at all unless we’re asked to do so. 

 But even if we actually need to find the line in slope-intercept form, 
 it’s s�ll advantageous to begin with point-slope form, because all we 
 have to do is distribute the  and add  to get to  slope-intercept 
 form. 

 Point-slope form 

 Distribute the 

 Add  to both sides to reach 
 slope-intercept form 

 Deriva�on 

 The point-slope formula is easy to remember, too, because it just 
 says that the slope between any point  and the reference 
 point  needs to be equal to the given slope  . 

https://www.codecogs.com/eqnedit.php?latex=2%0
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 Moving from  to  , the amount we go up is  , and 
 the amount we go over horizontally is  , so the slope is just 

 . Equa�ng this to  and mul�plying to get rid of  the frac�on, 
 we reach point-slope form! 

 Slope must equal 

 Mul�ply both sides by 
 to reach point-slope form 

 Graphing 

 To graph a line whose equa�on is given in point-slope form, we 
 perform the same process as we do to graph a line that is in 
 slope-intercept form, except we start at the reference point rather 
 than at the y-intercept. 

 For example, consider the line  , for which the 

 reference point is  and the slope is  . To graph  this line, we 
 start at  , go up  and over  to the point  , and  draw a line 
 through the two points. 
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 Final Remark 

 One thing to watch out for in point-slope form: be careful about 
 nega�ves. 

 For example, the point-slope form of a line with slope  that goes 
 through the point  is NOT given by  . This 
 is the line that goes through the point  , not  . 

 The line that goes through  actually involves addi�on 
 rather than subtrac�on, because the nega�ves cancel the 
 subtrac�on in the original formula for point-slope form. 



 Jus�n Math |  Algebra  33 

 Point-slope formula 

 Subs�tute slope  and 
 point 

 Nega�ves cancel 

 Exercises 

 Write the point-slope equa�on of the line that goes through the 
 given point, with the given slope. 

 Write the point-slope equa�on of the line that goes through the 
 given points. 



 34  Jus�n Math |  Algebra 

 Graph the following lines. 
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 1.4 Standard Form 

 The  standard form  of a linear equa�on is  , where  ,  , 
 and  are all integers and  is nonnega�ve. 

 For example, we can convert the equa�on  to standard 
 form by moving  and  to the same side and mul�plying  to cancel 
 out any frac�ons. 

 Given equa�on 

 Subtract  from both sides 

 Mul�ply both sides by  , the least 
 common mul�ple of  and 

 Mul�ply both sides by  to make 
 the  coefficient posi�ve 

 Finding the Intercepts 

 Standard form makes it easy to see the intercepts of the line: to get 
 the x-intercept in  , we divide the constant  by  the 
 x-coefficient  , and to get the y-intercept, we divide  the constant 
 by the y-coefficient  . 

https://www.codecogs.com/eqnedit.php?latex=x%0


 36  Jus�n Math |  Algebra 

 For example, the x-coefficient of  is  , and the 

 y-coefficient is  which simplifies to  . 

 This trick for finding the intercepts works because finding the 
 intercept of a par�cular variable involves subs�tu�ng  for the other 
 variable. The x-intercept occurs at some point  where  is  , 
 so to solve for the x-intercept, we can subs�tute  for  and solve 
 for  . 

 Given equa�on 

 Subs�tute  for 

 Simplify 

 Divide by 

 Likewise, the y-intercept occurs at some point  where  is  , 
 so to solve for the y-intercept, we can subs�tute  for  and solve 
 for  . 

 Given equa�on 

 Subs�tute  for 

 Simplify 

 Divide by 

https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=a(0)%2Bby%3Dc%0
https://www.codecogs.com/eqnedit.php?latex=by%3Dc%0
https://www.codecogs.com/eqnedit.php?latex=b%0
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 Graphing 

 To plot the line, then, all we have to do is mark the intercepts and 
 then draw a line through them. 

 For example, in the line  , we computed the 

 x-intercept as  , or  , and the y-intercept as  ,  or  . 

 To graph the line, we just need to plot the intercepts  and 

 and draw a line through them. 
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 Exercises 

 Write the equa�on in standard form. (It may already be in 
 standard form.) 

 Graph the following by drawing a line through the intercepts. 
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 1.5 Linear Systems 

 A  linear system  consists of mul�ple linear equa�ons,  and the 
 solu�on of a linear system consists of the pairs that sa�sfy all of the 
 equa�ons. 

 For example, the solu�on to the linear system 

 is  because subs�tu�ng  for  and  for  makes  both 
 equa�ons true. 

 Graphical Interpreta�on 

 Graphically, we can think of a linear system as being a set of two 
 lines, and their solu�on as the point where they intersect. 

 The intersec�on point is the solu�on because it is on both lines, 
 meaning it makes both equa�ons true. 
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 Usually, two lines will intersect in exactly one point, and thus the 
 system will have a single solu�on. However, when the two lines are 
 parallel  , meaning that they have the same slope, the  lines will never 
 intersect, unless they are actually the same line. 

 If the system consists of two different parallel lines, then it will have 
 no solu�on because there are no intersec�on points. But if the 
 system consists of two lines that are actually the same, then the 
 system will have infinitely many solu�ons because every point on 
 the line is a solu�on. 
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 We can some�mes tell the solu�on of a system by graphing the 
 equa�ons and looking for the point where they intersect. However, 
 when the lines intersect at a point that doesn’t coincide with grid 
 lines on the graph, it can be difficult to iden�fy the exact 
 coordinates of the intersec�on point. 

 For example, can you iden�fy the point of intersec�on below? If you 
 think you can, would you bet your life on it? 
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 Subs�tu�on 

 There is another method for solving a system of linear equa�ons, 
 called the method of  subs�tu�on  , which makes it  possible to solve a 
 linear system without graphing it. 

 To perform subs�tu�on, we create a third equa�on by solving for a 
 par�cular variable in the first and second equa�ons and se�ng the 
 results equal to each other. 

 Since the third equa�on has a single variable, we can solve for the 
 numeric value of that variable, and then use it to find the numeric 
 value of the other variable. 

 Given system 

 Solve for 

 Set the results equal 
 to each other 

 Solve for 

https://www.codecogs.com/eqnedit.php?latex=y%0
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 Subs�tute  in 
 equa�on for 

 Final solu�on 

 To perform subs�tu�on even more quickly, instead of solving for a 
 par�cular variable in both equa�ons, we can solve for a par�cular 
 variable in just one of the equa�ons and then subs�tute the 
 resul�ng expression where the par�cular variable occurs in the 
 other equa�on. 

 Given system 

 Solve for  in bo�om 
 equa�on 

 Subs�tute into top equa�on 

 Solve for 

 Subs�tute  in 
 equa�on for 

https://www.codecogs.com/eqnedit.php?latex=y%0
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 Final solu�on 

 Remember that some systems have no solu�ons, and other 
 solu�ons have infinite solu�ons -- so it shouldn’t throw us off if the 
 third equa�on created by subs�tu�on has no solu�ons or infinite 
 solu�ons. 

 Elimina�on 

 An  even faster  way to solve some linear equa�ons  is the method of 
 elimina�on  . The method of elimina�on also creates  a third equa�on 
 in a single variable, but it does so by adding mul�ples of the two 
 original equa�ons to cancel out one of the variables. 

 Given system 

 Add the two equa�ons 

 cancels 

 Solve for 

 Subs�tute  in 
 top equa�on 

https://www.codecogs.com/eqnedit.php?latex=x%0


 Jus�n Math |  Algebra  45 

 Solve for 

 Final solu�on 

 In the previous example, one of the variables cancelled when we 
 added the two equa�ons. Other �mes, though, no variable will 
 cancel right away, and we will first need to mul�ply one of the 
 equa�ons by a number so that a variable will cancel when we add 
 the equa�ons. 

 Given system 

 Mul�ply top equa�on 
 by 

 Add the two equa�ons 
 to cancel 

 Other �mes s�ll, we may need to mul�ply both equa�ons by a 
 different number to cancel a variable. (We can just take the least 
 common mul�ple -- the same trick we use to add frac�ons with 
 different denominators.) 
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 Given system 

 Mul�ply top equa�on by 
 Mul�ply bo�om equa�on by 

 (Least common mul�ple is  ) 

 Add the two equa�ons 
 to cancel 

 Again, since some systems have no solu�ons, and other solu�ons 
 have infinite solu�ons, we should not be worried if the third 
 equa�on created by elimina�on simplifies to a never-true statement 
 like  (no solu�ons) or an always-true statement  like 
 (infinite solu�ons). 

 Exercises 

 Solve by subs�tu�on or elimina�on. 
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 Part 2 
 Quadra�c Equa�ons 
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 2.1 Standard Form 

 Quadra�c equa�ons  are similar to linear equa�ons,  except that they 
 contain squares of a single variable. 

 For example, the equa�ons below are quadra�c equa�ons: 

 On the other hand, the equa�ons below are not quadra�c 
 equa�ons. (A quadra�c equa�on must contain the square of one 
 variable, but cannot contain squares of mul�ple different variables, 
 and cannot contain other opera�ons not found in linear equa�ons, 
 such as square roots.) 

 Graphing 

 As a consequence of the squared variable, the shape of the graph of 
 a two-variable quadra�c equa�on is a parabola. 
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 To tell whether the graph of a quadra�c equa�on is an upward or 
 downward parabola, it is helpful to arrange the quadra�c equa�on 
 into  standard form  , which is given by 

 where  ,  , and  are constants and called  coefficients  .  The 
 coefficient on the  term, which is given by  , is  o�en called the 
 leading coefficient because it is the le�most coefficient when terms 
 in the standard equa�on are ordered properly. 

 Keep in mind that some coefficients may be zero -- for example, the 

 quadra�c equa�on  has  because it can be 

 wri�en as  . 

 If the leading coefficient,  , is posi�ve, then the  parabola opens 
 upward. Otherwise, if the leading coefficient is nega�ve, then the 
 parabola opens downward. 
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 To remember this, you might think of a  posi�ve  leading coefficient 
 causing the parabola to  smile  , and a  nega�ve  leading  coefficient 
 causing the parabola to  frown  . 

 Opens upward because leading 
 coefficient  is posi�ve 

 Opens downward because leading 
 coefficient  is nega�ve 

 Some�mes, we may have to rearrange a quadra�c equa�on into 
 standard form. 

 Given Equa�on 

 Standard Form 

 Leading Coefficient 

 Opening Direc�on 

 Vertex of a Parabola 

 The standard form of a quadra�c equa�on can also tell us about the 
 parabola’s  vertex  , or turning point. 

 For a quadra�c equa�on in the form  , the 

 x-coordinate of the vertex is given by  . 
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 To find the y-coordinate of the vertex, we can subs�tute the 
 x-coordinate of the vertex into the quadra�c equa�on and evaluate. 

 Standard Form 

 X-Coord 
 of Vertex 

 Y-Coord 
 of Vertex 

 Vertex 

 With a parabola’s vertex and direc�on of opening, we can draw a 
 decent sketch of the graph. 

 To make our graph a li�le more accurate, we can also make sure it 
 has the correct y-intercept. Since we set  to find  the 

 y-intercept, the y-intercept of  is always given  by 

 , which evaluates simply to  . 
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 Exercises 

 For the following quadra�c equa�ons: 
 a.  Write the quadra�c equa�on in standard form. 
 b.  Using the standard form, tell whether the parabola opens 

 upward or downward, and find the vertex and y-intercept. 
 c.  Finally, using the parabola’s vertex, opening direc�on, and 

 y-intercept, draw a rough sketch of the graph of the 
 equa�on. (If the vertex and the y-intercept are the same, 
 choose some other point.) 
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 2.2 Factoring 

 Factoring  is a method for solving quadra�c equa�ons.  It involves 
 conver�ng the quadra�c equa�on to standard form, then  factoring 
 it into a product of two linear terms (called  factors  ),  and finally 
 solving for the variable values that make either factor equal to  . 

 Original quadra�c equa�on 

 Convert to standard form 

 Factor 

 Set each factor to 

 Solve 

 When we factor, we are rearranging the equa�on to say that the 
 product of two numbers is  . The equa�on is solved  when either 
 number is  , because any number mul�plied by  is  . 
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 How to Factor 

 Factoring is easiest in hindsight. Mul�plying through, we see that 
 the factored form is equivalent to the standard form: 

 But how can we know this to begin with? In other words, if we want 
 to factor an expression  into the form  , 
 how do we know what  and  are? 

 Here’s the trick:  and  need to mul�ply to  and  add to  . 

 To factor the expression  , we need to find two numbers 
 that mul�ply to  and add to  . Although  and  mul�ply to  , 
 they don’t add to  . But  and  mul�ply to  AND  add to  , so 
 they work! The factored form is then  . 

 Even with nega�ves, the method is s�ll the same: to factor the 
 expression  , we need to find two numbers that mul�ply 
 to  and add to  . Although  and  mul�ply to  ,  they 
 don’t add to  . But  and  mul�ply to  AND add  to  , so 
 they work! The factored form is then  . 
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 Case of Many Poten�al Factors 

 Factoring can become a li�le tricky when  has a  lot of factors. In 
 such cases, it can be helpful to make a factor table. 

 For example, to factor  , we can list out the factors 
 of  and find which pair adds to  . Since this pair  is  and  , 
 the expression factors to  . 

 Factor Pair  Sum 

 To speed up the process, no�ce that the sums are automa�cally 
 ordered from biggest to smallest -- so we don’t necessarily have to 
 create the whole table. 
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 We could have started with some intermediate pair, say  and  , 
 and realized that since the sum is too big, we need the first factor to 
 be bigger than  . 

 Or, we could have no�ced that sum of  and  is in  the ballpark of 
 , and worked our way up from the bo�om of the table. 

 Case of Nega�ve Terms 

 To deal with a nega�ve value for  , we could use  the same method 
 as before, except that we would have to make both factors nega�ve. 

 For example, since we know that  and  are factors  of  that 
 add to  , we also know that  and  are factors of  that 
 add to  , so the expression  factors to 

 . 

 To deal with a nega�ve value for  , we can think  about the 
 difference instead of the sum. 

 For example, to factor  , we can find which factor 
 pair of  has a difference of  , and put a nega�ve  on the smaller 
 factor to make the sum. Since this pair is  and  , the expression 
 factors to  . 
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 Factor Pair  Difference 

 If  were nega�ve as well -- say, if we wanted to  factor 
 -- then we could use the same process but put the 

 nega�ve on the bigger factor to make the sum nega�ve. That is, we 
 would put the nega�ve on the  instead of the  ,  and the resul�ng 
 factored form would then be  . 
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 Case of a Common Factor 

 Some�mes, we can simplify quadra�c expressions by factoring out 
 something that ALL the terms have in common. 

 Original quadra�c equa�on 

 Factor a  out of all terms 

 Factor the quadra�c expression 

 Set each factor to 

 Solve 

 This makes it easy to factor quadra�c expressions where  is  -- 
 just factor out the variable! 

 Original quadra�c equa�on 

 Factor an  out of all terms 

 Set each factor to 

 Solve 
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 Case when the Leading Coefficient is Not One 

 Factoring out the variable works even when  is something  other 
 than  . 

 Original quadra�c equa�on 

 Factor an  out of all terms 

 Set each factor to 

 Solve 

 But what about when  is something other than  , and  is not 
 zero? 

 There’s a li�le trick that lets us reduce this to a factoring problem 
 with  equal to  . We mul�ply  by  , replace  with  , factor the 
 result, divide each constant in each factor by the original  , and 
 move denominators onto our variables. 

 Original quadra�c equa�on 

 Mul�ply  by  , and 
 replace  with 

 Factor normally 

 Divide each constant in 
 each factor by 
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 Simplify 

 Move denominators onto 
 variables 

 Set each factor to 

 Solve 

 We’ll talk about why this trick works in the next chapter, when we 
 cover the quadra�c formula. 

 Case of No Middle Term 

 Lastly, what about when  is  ? Since the factors  have to add to  , 
 they must be nega�ves of each other. Since the factors have to 
 mul�ply to  , and they are the same number (except  one is 
 nega�ve), they must be the posi�ve and nega�ve square roots of  ! 

 For example,  factors to  , and  factors 
 to  . 

 This trick also works if  is not equal to  -- we  just have to factor 
 out first. 

 Original quadra�c equa�on 

 Factor  out of all terms 
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 Factor the quadra�c 

 Solve 

 Exercises 

 Factor the following quadra�c equa�ons. Then, use the factored 
 form to find the solu�ons. 



 66  Jus�n Math |  Algebra 



 Jus�n Math |  Algebra  67 

 2.3 Quadra�c Formula 

 Some quadra�c equa�ons cannot be factored easily. For example, in 
 the equa�on  , we need to find two factors of 
 that add to  . But the only integer factors of  are  and  , and they 
 definitely don’t add to  ! 

 To solve these hard-to-factor quadra�c equa�ons, it’s easiest to use 
 the  quadra�c formula  given below, which tells us  explicitly how to 
 compute the solu�ons of a quadra�c equa�on  . 

 Worked Example 

 Using the quadra�c formula, we can compute the solu�ons to the 
 equa�on  . 

 Subs�tute  ,  , and 
 in quadra�c formula 

 Simplify 

 Separate the  into two 
 solu�ons (op�onal) 
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 These solu�ons look weird, but they’re correct. 

 Reverse Deriva�on 

 To gain some faith in the quadra�c formula, we can also rearrange it 
 back into the original equa�on to see that it must have the same 
 solu�ons as the original equa�on: 
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 The Discriminant 

 Using the quadra�c equa�on, we can see that some quadra�c 
 equa�ons have 2 solu�ons (as usual), but other quadra�c equa�ons 
 can have just 1 solu�on, or no solu�ons at all. 

 For example, using the quadra�c equa�on to solve  , we 
 find a single solu�on because the  part comes out  to 

 . 

 Similarly, using the quadra�c equa�on to solve  , we 
 find no solu�ons because the  part comes out to 

 , and we can’t take the square root of a 
 nega�ve number. (We’ll ignore imaginary solu�ons and consider 
 only real solu�ons for now.) 

 To see how many solu�ons a quadra�c equa�on has, we need only 
 consider the  part of the quadra�c formula, which  is called 
 the  discriminant  . If the discriminant is posi�ve,  then we have two 
 solu�ons. If it is  , then we have one solu�on.  If it is nega�ve, then 
 we have no solu�on. 

 We can also use the quadra�c formula to understand the trick for 
 factoring when  is not equal to  -- which was to  mul�ply  by  , 
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 replace  with  , factor the result, divide each constant in each 
 factor by the original  , and move denominators onto  our variables. 

 From the quadra�c formula, we know that the solu�ons of 

 are given by  . When we 
 mul�ply  by  and replace  with  , we have the  equa�on 

 , which has solu�ons  . 

 This means that if  is a solu�on of  , then  is  a 
 solu�on of  . 

 Thus, if  factors into  , then 

 factors into  . 

 Exercises 

 Use the quadra�c formula to solve the following quadra�c 
 equa�ons. 
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 2.4 Comple�ng the Square 

 Comple�ng the square  is another method for solving  quadra�c 
 equa�ons. Although we can use the quadra�c formula to solve any 
 quadra�c equa�on, comple�ng the square helps us gain a be�er 
 intui�on for quadra�c equa�ons and understand where the 
 quadra�c formula comes from. 

 As we will see in the next chapter, comple�ng the square will also 
 help us rearrange quadra�c equa�ons into forms that are easy to 
 graph. 

 Demonstra�on 

 The main idea behind comple�ng the square is that every quadra�c 
 expression has a squared factor hidden inside of it. 

 Original equa�on 

 Add  to both sides 

 Add  to both sides 

 Factor 

 Take posi�ve/nega�ve root 

 Solve 
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 General Procedure 

 To find the squared factor, we just need to move the constant to the 

 other side of the equa�on and add  to both sides.  Then, the 

 quadra�c expression will factor into  . 

 Original equa�on 

 Move the constant to the 
 other side 

 Add  to both sides 

 Factor 

 Take posi�ve/nega�ve root 

 Solve 
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 Hey, the solu�on is the same as the quadra�c equa�on with  ! 

 Case when the Leading Coefficient is Not One 

 To complete the square with  not equal to  , we can  simply divide 
 by  to create an equivalent equa�on where  IS equal  to  . 

 Original equa�on 

 Divide by 

 Add  to both sides 

 Add  to both sides 

 Factor 

 Take posi�ve/nega�ve root 
 and solve 
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 By comple�ng the square on the general form  , 
 we arrive at the quadra�c equa�on: 

 Original equa�on 

 Divide by 

 Move the constant to the 
 other side 

 Add  to 
 both sides 

 Factor 

 Take posi�ve/nega�ve root 

 Solve 

 Simplify 
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 Exercises 

 Solve the following quadra�c equa�ons by comple�ng the square. 
 If there are two solu�ons, leave your answer in the form 

 . 
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 2.5 Vertex Form 

 To easily graph a quadra�c equa�on, we can convert it to  vertex 
 form  : 

 In vertex form, we can tell the coordinates of the vertex of the 
 parabola just by looking at the equa�on: the vertex is at  . We 
 can also tell which way the parabola opens, by checking whether 
 is posi�ve (opens up) or nega�ve (opens down). 

 Equa�on  Vertex  Opens 

 Conver�ng to Vertex Form 

 To convert a quadra�c equa�on into vertex form, we can complete 
 the square. 
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 Original equa�on 

 Divide by 

 Move the constant to 
 the other side 

 Add  to both sides 

 Factor 

 Mul�ply by 

 Subtract 

 Exercises 

 Write the equa�on in vertex form  . Then, find 
 the coordinates of the vertex and tell which way the parabola 
 opens. 
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 2.6 Quadra�c Systems 

 Systems of quadra�c equa�ons can be solved via subs�tu�on. A�er 
 subs�tu�ng, the resul�ng equa�on can itself be reduced down to a 
 quadra�c equa�on and solved by techniques covered in this chapter. 

 Original system 

 Subs�tute for 

 Convert to standard form 

 Solve for 

 Evaluate 

 Solu�on 

https://www.codecogs.com/eqnedit.php?latex=y%0
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 Note that when evalua�ng  , it doesn’t ma�er which  equa�on we 
 use from the original equa�on. In the example above, we used the 
 first equa�on because it was easier to compute, but using the 
 second equa�on leads us to the same solu�ons. 

 Number of Solu�ons 

 There can be  ,  , or  points of intersec�on, depending  on the 
 arrangement of the parabolas. 
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 Just like in linear equa�ons, if the result reduces down to a true 
 statement, then there are infinitely many solu�ons because both 
 equa�ons in the system actually represent the same parabola. 

 Original system 

 Subs�tute for 

 Simplify 

 Solu�on 

 On the other hand, if the result reduces down to a false statement, 
 then there are no solu�ons because the parabolas never intersect. 

 Original system 

 Subs�tute for 

 Simplify 

 Solu�on 

https://www.codecogs.com/eqnedit.php?latex=y%0
https://www.codecogs.com/eqnedit.php?latex=y%0
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 Exercises 

 Solve the following systems of quadra�c equa�ons. 
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 Chapter 3 
 Inequali�es 
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 3.1 Linear Inequali�es in the Number Line 

 An  inequality  is similar to an equa�on, but instead  of saying two 
 quan��es are equal, it says that one quan�ty is greater than or less 
 than another. 

 For example, since  is greater than  , we write  . Likewise, 
 since  is less than  , we write  . 

 If we write  , then we mean that  can be  ,  ,  ,  , 
 or any other posi�ve number. If we write  , then  we mean that 

 can be  ,  ,  ,  , or any other nega�ve number. 

 “Or Equal To” Inequali�es 

 We can also write  to mean that  is greater than  or equal 
 to  . 

 In  , the number  is not a valid solu�on for  because  is 
 not greater than  , but in  , the number  is a valid  solu�on 
 because  is greater than  or equal to  . 

 Likewise, we can write  to mean that  is less than  or equal 
 to  . 

https://www.codecogs.com/eqnedit.php?latex=x%0
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 Solving Inequali�es 

 Inequali�es can be solved much like equa�ons: we can perform 
 algebraic manipula�ons to both sides of the equa�on un�l we 
 isolate the variable. 

 Original inequality 

 Add  to both sides 

 Subtract  from both sides 

 Divide both sides by 

 If we subs�tute any number that is greater than  , it will sa�sfy the 
 original inequality. 

 For example, if we subs�tute  , then the original  inequality 
 becomes  , which is true. Likewise, if we subs�tute 

 , then the original inequality becomes  , 
 which is true. 

 On the other hand, if we subs�tute any number that is  or less, it 
 will not sa�sfy the original inequality. 

 For example, if we subs�tute  , then the original  inequality 
 becomes  , which is not true. Likewise, if we subs�tute 

 , then the original inequality becomes  , which is  not 
 true. 
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 Flipping the Inequality 

 In manipula�ng inequali�es, there is just one catch:  whenever we 
 mul�ply or divide by a nega�ve number, we have to flip the 
 inequality. 

 Original inequality 

 Subtract  from both sides 

 Subtract  from both sides 

 Divide both sides by  and 
 flip the inequality 

 To understand why we need to flip the inequality whenever we 
 mul�ply or divide by a nega�ve sign, consider the example  . If 
 we mul�ply or divide by  , we reach  , which is not  true. 
 In order to keep the inequality true, we have to flip the inequality 
 sign:  . 

 Plo�ng Inequali�es 

 To visualize inequali�es, we can plot them on a number line. An 
 open (unfilled) circle around a point means that the point itself is 
 NOT a solu�on, while a closed (filled) circle around a point means 
 that the point itself is a solu�on. 
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 The number line can help us understand why we have to flip the 
 inequality sign whenever we mul�ply or divide by a nega�ve 
 number. 

 Star�ng with  , we know that  is the bigger number  that is 
 further from  . When we mul�ply or divide,  is s�ll  going to be 
 further from  than  is -- but if we mul�ply or  divide by a nega�ve 
 number, then  will be further from  in the nega�ve  direc�on, 
 which means it will actually be the lesser number. 
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 Interval Nota�on 

 The number line is a great intui�ve aid, but it takes a while to draw. 
 To simultaneously leverage the benefit of number line intui�on and 
 avoid the headache of drawing actual number lines, it is common to 
 use  interval nota�on  , which represents number line  segments using 
 parentheses for open circles and brackets for closed circles. 

http://www.texrendr.com/?eqn=-7%20%5Cleq%20x%20%5Cleq%203%0
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 To indicate that a segment con�nues forever, we imagine it having 
 an open circle at posi�ve or nega�ve infinity. 

 Exercises 

 Solve the following inequali�es, wri�ng the solu�ons in interval 
 nota�on. 
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 3.2 Linear Inequali�es in the Plane 

 When a linear equa�on has one variable, the solu�on covers a 
 sec�on of the number line: if our solu�on is  , 
 then the solu�on covers the sec�on of the number line that lies 
 right of that number; if our solu�on is  , then 
 the solu�on covers the sec�on of the number line that lies le� of 
 that number. 

 If equality is allowed (i.e.  or  ), then we use  a closed circle to 
 indicate that the circled number is itself a solu�on; otherwise, if 
 equality is not allowed (i.e.  or  ), then we use  an open circle. 

 Similarly, when a linear equa�on has two variables, the solu�on 
 covers a sec�on of the coordinate plane. If our solu�on is 

 , then the solu�on covers the sec�on of the coordinate 
 plane that lies above the line  , whereas if our solu�on 
 is  , then the solu�on covers the sec�on of the 
 coordinate plane that lies below the line  . 

 If equality is allowed (i.e.  or  ), then we use  a solid line to 
 indicate that points on the line itself are solu�ons. Otherwise, if 
 equality is not allowed (i.e.  or  ), then we use  a do�ed line. 
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 Worked Example 

 To illustrate, let’s solve and graph a two-variable linear inequality. 

 Original inequality 

 Simplify 

 Subtract  from both sides 

 Add  from both sides 

 Divide by 

 Since equality is not allowed in the solu�on, we draw a do�ed line. 
 Since the solu�on consists of values of  LESS THAN  those on the 
 line, we shade under the line. 



 Jus�n Math |  Algebra  97 

 We can check that any point in the shaded region is a solu�on: for 

 example, subs�tu�ng  into the original inequality yields 
 , which simplifies to  , 

 which is true. 

 Likewise, we can check that any point NOT in the shaded region is 

 NOT a solu�on: for example, subs�tu�ng  into the  original 
 inequality yields  , which simplifies to 

 , which is not true 

 Any point on the line itself will not be a solu�on, but would be a 
 solu�on if equality were allowed: for example, subs�tu�ng the 

 y-intercept  into the original inequality yields 
 , which simplifies to  , which 

 is not a solu�on but would be a solu�on if equality were allowed 
 (i.e.  ). 

 Case when a Variable Vanishes 

 If  vanishes while solving the equa�on, then the  boundary line will 
 be ver�cal. In this case, we shade le� or right of the line depending 
 on whether the solu�on tells us that  is less than  some number, or 
 greater than some number. 



 98  Jus�n Math |  Algebra 

 Original inequality 

 Simplify 

 Add  to both sides 

 Move  to le� side 

 Since equality is allowed in the solu�on, we draw a solid line. Since 
 the solu�on consists of values of  GREATER THAN  those on the 
 line, we shade on the right towards higher values of  . 

http://www.texrendr.com/?eqn=x%0
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 Exercises 

 Graph the solu�ons to the inequali�es below. 
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 3.3 Quadra�c Inequali�es 

 Quadra�c inequali�es are best visualized in the plane. For example, 
 to solve a quadra�c inequality  , we can find the 

 values of  where the parabola  is posi�ve. 

 Since  is a downward parabola, the solu�on 
 consists of the values of  in its midsec�on which  arches over the 
 x-axis. That is, the solu�on consists of all x-values between the 
 solu�ons to  . 

 This quadra�c equa�on factors to  , so the 
 parabola’s midsec�on is given by  , or  in 
 interval nota�on. 

 Case when the Solu�on is a Union 

 On the other hand, if we want to solve  , then we 

 need to find the values of  where the parabola 
 is nega�ve. 
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 This �me, the solu�on consists of all the values of  in the arms of 
 the parabola which extend under the x-axis. That is, the solu�on 
 consists of all x-values less than the le�most solu�on or greater than 
 the rightmost solu�on to  . 

 The solu�on of the inequality is then given by  , 
 which is  in interval nota�on. (The  symbol is 
 called a  union  , and it allows us to include mul�ple  segments in 
 interval nota�on.) 

 To solve  , we just need to propagate the 
 allowance of equality to our final answer. Thus, the solu�on is 

 , which is  in interval nota�on. 
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 Case when the Parabola is Never Zero 

 When a quadra�c inequality involves a parabola that is never zero, 
 there is either no solu�on or the solu�on is all real numbers. 

 For example, the parabola  has only posi�ve y-values,  so 
 has no solu�on and  is solved by all real 

 numbers. 

 In interval nota�on, we express all real numbers as the full number 
 line  , and we express no solu�on as  . (The  symbol  is 
 called the  empty set  , and it represents an interval  which doesn’t 
 contain any numbers.) 

 Exercises 

 Solve the following inequali�es, wri�ng the solu�ons in interval 
 nota�on. 
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 3.4 Systems of Inequali�es 

 To solve a  system  of inequali�es  , we need to solve  each individual 
 inequality and find where all their solu�ons overlap. For example, to 
 solve the system 

 we first graph each individual inequality and darken where the 
 shading overlaps. 

 The solu�on to the system consists of points that sa�sfy BOTH 
 individual inequali�es, so the solu�on is just the overlap of the two 
 shadings, which appears as the most darkened part of the graph. 
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 To display the solu�on to the system, we erase any other shading 
 and shade only the overlap. 

 Including Another Inequality 

 If we include another inequality in the system, then the solu�on 
 region will either stay the same or shrink. 

 For example, if we include  , then the solu�on region  will 
 stay the same because it is fully contained in the shading of 
 . 
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 However, if we include  , then the solu�on region  will shrink 
 because only part of it is contained in the shading of  . 
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 Quadra�c Inequali�es 

 Even with quadra�c inequali�es, the method is the same: the 
 solu�on is the overlap of the shading of the component inequali�es. 
 Some examples are shown below. 
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 Exercises 

 Graph the solu�ons to the systems below. 
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 Part 4 
 Polynomials 
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 4.1 Standard Form and End Behavior 

 Polynomials  include linear expressions and quadra�c  expressions, 
 as well as expressions adding mul�ples of higher exponents of the 
 variable. 

 For example, these are polynomials: 

 On the other hand, these are not polynomials: 

 Standard Form 

 Polynomials are usually wri�en in  standard form  ,  in which all terms 
 are fully expanded and variable exponents are arranged from 
 greatest to least. 

 Original polynomial 

 Simplify 
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 Combine like terms 

 Arrange exponents from 
 greatest to least 

 End Behavior 

 The end behavior of a polynomial refers to how it behaves when we 
 subs�tute extremely large posi�ve or nega�ve values for  . 

 If the polynomial evaluates to a very large posi�ve number, we say it 
 approaches infinity. Otherwise, if the polynomial evaluates to a very 
 large nega�ve number, we say it approaches nega�ve infinity. 

 For example, consider the polynomial  . 
 When we subs�tute a large posi�ve number, such as  , the 
 output is a large nega�ve number. 

 When we subs�tute a large nega�ve number, such as  , 
 the output is a large posi�ve number. 
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 Pu�ng this together, we say that  goes to nega�ve  infinity as 
 goes to posi�ve infinity, and  goes to posi�ve  infinity as  goes 
 to nega�ve infinity. 

 We can write this symbolically:  as  , and 
 as  . This is the end behavior of the 

 polynomial  . 

 Graphical Interpreta�on 

 Graphically, end behavior tells us whether the polynomial curves up 
 or down as we travel away from the origin in the right or le� 
 direc�on. 

 Since  as  , we know that the polynomial 
 curves down as we travel to the right, and since  as 

 , we know that the polynomial curves up as we travel  to 
 the le�. 
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 Shortcuts 

 Do you no�ce any pa�erns or shortcuts? It’s possible to determine 
 the end behavior of a polynomial without evalua�ng the full 
 polynomial. 

 The term with the highest exponent controls the end behavior, 
 because it makes the greatest contribu�on to the result. All the 
 other terms make much smaller contribu�ons -- they’re peanuts in 
 comparison to the highest-exponent term. 
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 But we can do even be�er -- we don’t actually have to evaluate 
 anything at all! Within the term having the highest exponent, we 
 just need to look at the exponent and sign of the coefficient. If the 
 exponent is even, then the result a�er exponen�a�on will always be 
 posi�ve. Consequently, the term will evaluate to have the same sign 
 as its coefficient. 

 For example, to find the end behavior of the polynomial 

 , we just need to look at the  term. Since 
 the exponent is even,  will always be posi�ve --  if we subs�tute 

 , then  , and if we subs�tute  , then 
 again. The coefficient  is also posi�ve, so  is 

 always a posi�ve �mes a posi�ve, which makes a posi�ve. As a 
 result, we have  as  and  as 

 . 

 Likewise, to find the end behavior of the polynomial 

 , we just need to look at the 
 term. Since the exponent is even,  will always be  posi�ve -- if we 
 subs�tute  , then  , and if we subs�tute 

 , then  again. But the coefficient  is 
 nega�ve, so  is always a nega�ve �mes a posi�ve,  which 
 makes a nega�ve. As a result, we have  as 
 and  as  . 

https://www.codecogs.com/eqnedit.php?latex=2%0
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 Examples with an Odd Exponent 

 On the other hand, if the exponent is odd, then the result a�er 
 exponen�a�on will always have the same sign as the input  . 
 Consequently, the term will evaluate to be posi�ve if the coefficient 
 and the input  have the same sign, and nega�ve if  they have 
 opposite signs. 

 For example, to find the end behavior of the polynomial 

 , we just need to look at the  term. 
 Since the exponent is odd, exponen�a�on will not change the sign -- 
 if we subs�tute  , then  , and if we subs�tute 

 , then  . The coefficient  is posi�ve, and 
 mul�plying by a posi�ve doesn’t change the sign either. As a result, 
 we have  as  and  as 
 . 
 Likewise, to find the end behavior of the polynomial 

 , we just need to look at the 
 term. Since the exponent is odd, exponen�a�on  will not 

 change the sign -- if we subs�tute  , then 
 , and if we subs�tute  , then 

 . But the coefficient  is nega�ve, and 
 mul�plying by a nega�ve changes the sign -- if  , 
 then  , and if  , then 

 . As a result, we have  as 
 and  as  . 

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=x%0
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 Exercises 

 Convert the following polynomials to standard form. Then, write 
 their end behavior symbolically:  as  , and 

 as  . 
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 4.2 Zeros 

 The  zeros  of a polynomial are the inputs that cause  it to evaluate to 
 zero. 

 For example, a zero of the polynomial  is 

 because  . Another zero is 

 because  . Can you find the rest? 

 Finding Zeros by Factoring 

 One trick for finding the zeros of polynomials is to write the 
 polynomial in factored form. 

 Since we know that  and  are zeros of the polynomial, 
 we know the polynomial has to have factors  and  . If we 
 mul�ply these factors together, we get a polynomial whose 
 highest-exponent term is  . 

 But our original polynomial has a highest-exponent term of  , so 
 we need to mul�ply by one more factor. Consequently, the factored 
 polynomial will take the form  for some 
 other zero  . 
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 Let’s mul�ply out the factors and group like terms into the form of 
 the original polynomial. 

 From here, we can proceed in any of several different ways to 
 discover that  . 

 ●  The  coefficient of the right-hand side is  , and  the 
 coefficient of the le�-hand side is  , so we need 

 , which means  . 
 ●  The  coefficient of the right-hand side is  , and  the 

 coefficient of the le�-hand side is  , so we need 
 , which means  . 

 ●  The constant coefficient of the right-hand side is  , and the 
 constant coefficient of the le�-hand side is  , so  we need 

 , which means  . 

 Indeed, checking our answer, we find that subs�tu�ng  makes 
 the polynomial evaluate to  . 
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 Fundamental Theorem of Algebra 

 Through this example, we’ve learned an important thing about the 
 zeros of polynomials:  the number of zeros of a polynomial  is no 
 more than its degree  . 

 Each zero comes from a factor, and the degree of a polynomial limits 
 the amount of factors it has, which in turn limits the amount of 
 zeros it has. A third-degree polynomial can’t have more than 
 factors, so it has at most  zeros. A tenth-degree  polynomial can’t 
 have more than  factors, so it has at most  zeros. 

 Some polynomials look like they have fewer zeros than their degree 
 -- for example, the polynomial  doesn’t appear to  have any 
 zeros, because there is no solu�on to  . But if we  allow the 
 use of the imaginary unit  , then it does have two  zeros: 

 and  . 

 Likewise, the polynomial  factors to  and thus 
 appears to have only one zero,  . But since this factor  is 
 squared, we can think of coun�ng the  zero twice,  i.e. it has 
 a  mul�plicity  of two. 

 This is the  fundamental theorem of algebra:  the number  of zeros of 
 a polynomial is equal to its degree, provided we allow the use of the 
 imaginary unit and count zeros according to their mul�plicity. 
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 Solving a Polynomial Equa�on 

 Finding zeros of polynomials is important because of its generality: 
 every polynomial equa�on reduces to finding the zeros of some 
 polynomial. 

 For example, consider the polynomial equa�on 
 , for which we can see that  is a 

 solu�on because  . Subtrac�ng 
 from both sides, we reach  . Now, the 
 problem is to find the zeros of the polynomial 

 . 

 The polynomial has degree  , so we are looking for  zeros, each of 
 which corresponds to a factor of the polynomial. We know one of 
 the zeros is  , which corresponds to a factor  , and  we 
 know the other two factors need to mul�ply to a quadra�c 

 . 

 By mul�plying out  and comparing 
 coefficients to the original polynomial, we can solve for  and  . 
 Then, we can solve the quadra�c to find the remaining zeros. 
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 Equa�ng  coefficients, we see that  , so  . Finally, 
 by equa�ng the constants  and  , we see that  .  The 
 polynomial can then be wri�en as 

 . 

 Solving the quadra�c  leads us to the two 

 remaining zeros:  and  . 

 We check to ensure that these zeros are indeed solu�ons of the 
 original equa�on: 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D(-4)%5E3%2B5(-4)%5E2%26%3D11(-4)-(-4)%5E3-4%20%5C%5C%2016%20%26%3D%2016%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3%2B5%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E2%26%3D11%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright)-%5Cleft(%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%5E3-4%20%5C%5C%20%5Cfrac%7B11%7D%7B8%7D%20%26%3D%20%5Cfrac%7B11%7D%7B8%7D%5Cend%7Balign*%7D%0
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 Exercises 

 For each of the following polynomials, use the given zero(s) to find 
 the remaining zero(s). 

 For each of the following equa�ons, use the given solu�on(s) to 
 find the remaining solu�on(s). 
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 4.3 Ra�onal Roots and Synthe�c Division 

 In the previous chapter, we learned how to find the remaining zeros 
 of a polynomial if we are given some zeros to start with. But how do 
 we get those ini�al zeros in the first place, if they’re not given to us 
 and aren’t obvious from the equa�on? 

 Ra�onal Roots Theorem 

 The  ra�onal roots theorem  can help us find some ini�al  zeros 
 without blindly guessing. It states that for a polynomial with integer 
 coefficients, any ra�onal number (i.e. any integer or frac�on) that is 
 a root (i.e. zero) of the polynomial can be wri�en as some factor of 
 the constant coefficient, divided by some factor of the leading 
 coefficient. 

 For example, if the polynomial 
 has a ra�onal root, then it is some posi�ve or nega�ve frac�on 
 having numerator  or  and denominator  or  . 

 The possible roots are then  ,  ,  , or  . We test  each of 
 them below. 

https://www.codecogs.com/eqnedit.php?latex=1%0
https://www.codecogs.com/eqnedit.php?latex=3%0
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 We see that  and  are indeed zeros of the polynomial. 

 Therefore, the polynomial can be wri�en as 

 for some constants  and  , which we can find by expanding  and 
 matching up coefficients. 

 We find that  and  . 

 The remaining quadra�c factor becomes  , which has  zeros 
 . 

 Thus, the zeros of the polynomial are  ,  ,  , and  . 

 Synthe�c Division 

 To speed up the process of finding the zeros of a polynomial, we can 
 use  synthe�c division  to test possible zeros and  update the 
 polynomial’s factored form and ra�onal roots possibili�es each �me 
 we find a new zero. 
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 Given the polynomial  , the ra�onal 
 roots possibili�es are  ,  ,  , and  . 

 To test whether, say,  is a zero, we can start by  se�ng up a 
 synthe�c division template which includes  at the  far le�, followed 
 by the coefficients of the polynomial (in the order that they appear 
 in standard form). 

 We put a  under the first coefficient (in this case,  ) and add down 
 the column. 

 Then, we mul�ply the result by the le�most number (in this case,  ) 
 and put it under the next coefficient (in this case,  ). 

 We repeat the same process over and over un�l we finish the final 
 column. 

 The bo�om-right number is the remainder when we divide the 
 polynomial by the factor corresponding to the zero being tested. 
 Therefore, if the bo�om-right number is  , then the  top-le� number 
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 is indeed a zero of the polynomial, because its corresponding factor 
 is indeed a factor of the polynomial. 

 In this case, though, the bo�om-right number is not  but  , so 
 is NOT a zero of the polynomial. 

 However, when we repeat synthe�c division with  ,  the 
 bo�om-right number comes out to  and we conclude  that  is a 
 zero of the polynomial. 

 Then  is a factor of the polynomial, and the bo�om  row gives 
 us the coefficients in the sub-polynomial that mul�plies  to 
 yield the original polynomial. 

 The next factor will come from  , so the ra�onal 
 roots possibili�es are just  and  . 

https://www.codecogs.com/eqnedit.php?latex=0%0
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 We use synthe�c division to test whether  is a zero  of 
 . 

 Since the bo�om-right number is  rather than  ,  we see that 
 is not a zero of  . However,  is! 

 Using the bo�om row as coefficients, we update the factored form 
 of our polynomial. 
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 Now that we’re down to a quadra�c, we can solve it directly. 

 Thus, the zeros of the polynomial are  ,  ,  , and  , and 
 the factored form of the polynomial is 

 . 

 Final Remarks 

 In this example, the polynomial factored fully into linear factors. 
 However, if the last factor were  , which does not  have any 
 zeros, we would leave it in quadra�c form. The zeros of the 
 polynomial would be just  and  , and the fully factored  form of 

 the polynomial would be  . 

 One last thing about synthe�c division: be sure to include ALL 
 coefficients of the original polynomial in the top row of the synthe�c 
 division setup, even if they are  . For example, the  polynomial 

 is really  , so the top row in the 
 synthe�c division setup should read  . 
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 Exercises 

 For each polynomial, find all the zeros and write the polynomial in 
 factored form. 
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 4.4 Sketching Graphs 

 In the previous chapters, we learned how to find end behavior, 
 zeros, and factored forms of polynomials. In this chapter, we will put 
 all this informa�on together to sketch graphs of polynomials. 

 End Behavior 

 End behavior tells us whether the polynomial goes up or down as 
 we move away from the origin. 

 For example, if the end behavior is  as  and 
 as  , then we know that the polynomial goes 

 down as we go right, and up as we go le�. 
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 Similarly, if the end behavior is  as  and 
 as  , then we know that the polynomial goes 

 down as we go right, and down as we go le�. 

 Zeros 

 The zeros tell us where the polynomial crosses the x-axis, and the 
 factored form tells us whether the polynomial crosses or doubles 
 back at each zero: if the exponent of the factor is odd, then the 
 polynomial crosses; if the exponent of the factor is even, then the 
 polynomial doubles back. 

 For example, if the factored form of polynomial is 

 , then the polynomial crosses the x-axis at 
 and  , and doubles back at  . Combining this informa�on  with 
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 the end behavior, which is  as  and 
 as  , we can draw a rough sketch of the 

 polynomial. 

 Demonstra�on 

 Let’s sketch a rough graph of the following polynomial: 

 We first find the leading coefficient,  , 
 which tells us the end behavior:  as  , and 

 as  . 

 Then, we can look at the factors and their exponents to find the 
 zeros and tell whether the polynomial crosses the x-axis or doubles 
 back at each zero. 
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 Factor  Zero  Cross or Double Back 

 To sketch the graph, we draw our end behavior, plot the zeros on the 
 x-axis, and then connect them with the correct crossing or doubling 
 back behavior. 
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 Exercises 

 Sketch a rough graph of each polynomial. 
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 Chapter 5 
 Ra�onal Func�ons 
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 5.1 Polynomial Long Division 

 A  ra�onal func�on  is a frac�on whose numerator  and denominator 
 are both polynomials. Ra�onal func�ons are usually wri�en in 
 proper form  , where the numerator is of a smaller  degree  than the 
 denominator. (The degree of a polynomial is its highest exponent.) 

 Methods for Conver�ng to Proper Form 

 Some�mes, we can convert to proper form simply by spli�ng up the 
 frac�on. 

 Other �mes, we can convert to proper form by factoring part of the 
 numerator so that it cancels with the denominator. 
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 We can also use synthe�c division, a fast algorithm for division of a 
 linear factor that was introduced in the previous part on 
 polynomials. 

 To divide  by  , we set up a template with 
 (the zero of  ) on the far le�, and the coefficients  of 

 along the top row. 

 A�er filling in an ini�al  , we repeatedly add down  the columns, 
 mul�plying each result by  before placing it in  the next column. 

 The bo�om row then tells us the coefficients and remainder in the 
 proper form. 

 However, synthe�c division only works with linear factors, so what 
 do we do when a factor isn’t linear? 
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 Polynomial Long Division 

 When faced with more complicated ra�onal func�ons, we can turn 
 to  polynomial long division  , which works the same  way as the long 
 division algorithm that’s familiar from simple arithme�c. 

 To divide  by  , we set up a template with 
 on the outside and  on the inside. 

 On the inside, we write out all coefficients, including those which 
 are  (and thus aren’t wri�en in the condensed expression). 

 We begin by mul�plying the divisor  by  to yield  , 
 which cancels the interior  term when we subtract. 

 Then, we mul�ply  by  to yield  , which 
 cancels the next interior term  when we subtract. 
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 We repeat this process un�l the degree of the le�over terms is less 
 than the degree of  , in which case the le�over terms become 
 the remainder and appear as the numerator in the remaining 
 frac�on. 

 The top row gives the result in proper form: 
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 Exercises 

 Find the proper form of each ra�onal func�on. 
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 5.2 Horizontal Asymptotes 

 Like polynomials, ra�onal func�ons can have end behavior that goes 
 to posi�ve or nega�ve infinity. However, ra�onal func�ons can also 
 have another form of end behavior in which they become flat, 
 approaching (but never quite reaching) a horizontal line known as a 
 horizontal asymptote  . 

 Demonstra�on 

 For example, consider the ra�onal func�on  . As  we 
 input larger and larger numbers in the posi�ve direc�on, the 
 func�on output becomes closer and closer to  . 

 The same thing happens as we input larger and larger numbers in 
 the nega�ve direc�on: the func�on output becomes closer and 
 closer to  . 
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 As a result, we say that the func�on  has a horizontal  asymptote at 
 . 

 Why Horizontal Asymptotes Occur 

 To understand why this happens, take a look at the func�on in 

 proper form,  . 

 When we input a very large posi�ve or nega�ve number, remainder 
 frac�on’s denominator becomes much larger than its numerator, 
 causing the remainder frac�on to shrink to  . 

 On the other hand, the  term persists, which causes  the output to 

 be close to  or  . 

https://www.codecogs.com/eqnedit.php?latex=r%0
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 Perhaps even more intui�vely, no�ce that when we input very large 

 values of  into  , the leading (highest degree) terms  in the 
 numerator and denominator become so much larger than the other 
 terms, that the other terms cease to ma�er. The frac�on then 

 becomes approximately the ra�o of the leading terms,  , which 

 simplifies to  , or  in decimal form. 

 Case when the Denominator has Greater 
 Degree 

 Now consider the case when the denominator is of a greater degree 

 than the numerator -- say, when  . 

 Again, when we input very large values of  into the  func�on, the 
 leading terms in the numerator and denominator become the only 

 terms that ma�er. The frac�on then becomes approximately  , 

 which simplifies to  . 

 When we input very large values for  , the denominator  becomes 
 very large while the numerator stays the same, causing the frac�on 
 to shrink to  . 

 As a result, the func�on has a horizontal asymptote at  . We can 
 confirm this by evalua�ng the func�on. 
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 Case when the Numerator has Greater Degree 

 Lastly, consider a ra�onal func�on whose numerator is of greater 

 degree than its denominator -- say,  . 

 Taking the ra�o of leading terms, we have  , which  simplifies to 

 . This expression grows without bound when we input  large 
 values of  , so the func�on has no horizontal asymptote. 

https://www.codecogs.com/eqnedit.php?latex=x%0
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 We can confirm this by evalua�ng the func�on. 

 Exercises 

 Find the horizontal asymptote, if any, of each ra�onal func�on. 
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 5.3 Ver�cal Asymptotes 

 Unlike polynomials, ra�onal func�ons can “blow up” to posi�ve or 
 nega�ve infinity even for rela�vely small input values. Such input 
 values are called  ver�cal asymptotes  , because they  represent 
 ver�cal lines that the func�on approaches but never quite reaches. 

 Demonstra�on 

 For example, consider the ra�onal func�on  . As  we 
 input numbers closer and closer to  while staying  greater than  , 
 the func�on output blows up to posi�ve infinity. 

 On the other hand, as we input numbers closer and closer to 
 while staying less than  , the func�on output blows  up to nega�ve 
 infinity. 
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 As a result, we say the func�on  has a ver�cal  asymptote at  . 

 To understand why this happens, no�ce that as our inputs become 
 closer and closer to  , the denominator becomes closer  and closer 
 to  , while the numerator becomes closer and closer  to  . 

 As a result, we end up dividing a fairly constant numerator by a 
 smaller and smaller denominator, which yields a bigger and bigger 
 result. 
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 When the input is greater than  , the denominator is posi�ve, 
 which makes the result posi�ve. When the input is less than  , the 
 denominator is nega�ve, which makes the result nega�ve. 

 Case of Mul�ple Ver�cal Asymptotes 

 In general, ver�cal asymptotes occur when the denominator is zero 
 and the numerator is nonzero. In the above example, when we input 

 , the denominator is  , but the numerator is  . 

 There can also be mul�ple ver�cal asymptotes -- for example, in the 

 ra�onal func�on  , inpu�ng  makes the denominator 
 while the numerator is  , and inpu�ng  makes  the 

 denominator  while the numerator is  . 

 We confirm that  and  are indeed asymptotes by 
 evalua�ng the func�on. 
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 Case of No Ver�cal Asymptote 

 On the other hand, if the denominator is zero and the numerator is 
 also zero, then the input is not necessarily a ver�cal asymptote of 
 the func�on. 

 For example, inpu�ng  to  makes the 
 denominator  , but it also makes the numerator  ,  and the result is 
 that the frac�on does not blow up to infinity. 
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 To understand this behavior, no�ce that provided  is not equal to 
 , the func�on can simplify. 

 When we input an  that is not equal to  , the  factors  in the 
 numerator and denominator cancel each other out, and we are le� 
 with  . 

 As a result, the graph of  is just the graph of  with a hole 
 at  (where it is undefined). 
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 Exercises 

 Find the ver�cal asymptote(s), if any, of each ra�onal func�on. 
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 5.4 Graphing with Horizontal and Ver�cal 
 Asymptotes 

 The horizontal and ver�cal asymptotes of a ra�onal func�on can 
 give us insight into the shape of its graph. 

 For example, consider the func�on  , which has a 
 horizontal asymptote  and a ver�cal asymptote  . 

 If we choose one input on each side of the ver�cal asymptote, we 
 can tell which sec�on of the plane the func�on will occupy. 

 On the le� side, we evaluate  , which indicates the 
 sec�on below the  asymptote. On the right side,  we evaluate 

 , which indicates the sec�on above the 
 asymptote. 
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 Case of Mul�ple Ver�cal Asymptotes 

 When there are mul�ple ver�cal asymptotes, we just have to choose 
 test points on the sides of each asymptote. 

 For example, to graph the func�on  which has ver�cal 
 asymptotes  and  , we can evaluate 
 ,  ,  , and  . 
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 Exercises 

 Use horizontal and ver�cal asymptotes to graph the following 
 ra�onal func�ons. 
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 5.5 Graphing with Slant and Polynomial 
 Asymptotes 

 A horizontal asymptote is a horizontal line that arises from a 
 constant whole number term in the proper form of a ra�onal 
 func�on. 

 Likewise, a  slant asymptote  is a slanted line that  arises from a linear 
 term in the proper form of a ra�onal func�on. 

 Demonstra�on 

 For example, the proper form of  is given by 

 , which has  as its whole number term. 

 As a result,  has a slant asymptote at  , which appears 
 in the graph of  below. 
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 In general, the whole number part of the proper form is an 
 asymptote. If the whole number part is of a higher degree, say 

 with proper form  , then 

 has a  polynomial asymptote  at  . 

 The graph of  approaches this asymptote just like  it would 
 approach any other horizontal or slant asymptote. 
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 Existence and Degree 

 In general, a ra�onal func�on has a horizontal, slant, or polynomial 
 asymptote if the degree of the denominator is less than the degree 
 of the numerator. The degree of the asymptote is given by the 
 difference in degrees of the numerator and denominator. 

 For example,  has a difference in degrees 
 of  , so we should expect an asymptote of degree  . 
 Indeed, the proper form of the func�on is 

 which indicates a polynomial 

 asymptote of  . 

 Big Picture 
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 Zooming out of the previous graphs, we can see the big picture of 
 ra�onal func�ons: they look like their whole number part (i.e. their 
 polynomial asymptotes), except at the  singulari�es  (ver�cal 
 asymptotes), when the denominator of the frac�onal part becomes 
 extremely small and the frac�on blows up to posi�ve or nega�ve 
 infinity. 
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 Exercises 

 Use ver�cal and horizontal/slant/polynomial asymptotes to graph 
 the following ra�onal func�ons. 
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 Part 6 
 Non-Polynomial Func�ons 
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 6.1 Radical Func�ons 

 A  radical func�on  is a func�on that involves roots:  square roots, 
 cube roots, or any kind of frac�onal exponent in general. We can 
 o�en infer what their graphs look like by sandwiching them 
 between polynomial func�ons. 

 For example, the radical func�on  can be wri�en  as 

 , and its exponent  is between  and  , so the graph 

 of  lies between the graphs of  and  . 

 Nega�ve Inputs 

 However, there is one caveat:  is not defined for 
 nega�ve values of  . If we try to input a nega�ve  number, we end 
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 up taking the root of a nega�ve number, which is undefined in the 
 real numbers. 

 As a consequence, the graph of  remains blank for  nega�ve values 
 of  , le� of the  -axis. 

 That being said, other radical func�ons can some�mes accept 
 nega�ve inputs, which are converted to posi�ve numbers before the 
 radical is applied. 

 For example,  is a valid input to  because the 
 opera�on inside the root converts the nega�ve input to a posi�ve, 
 and we can take the root of posi�ve numbers. 

 But the opera�on also converts posi�ve inputs to nega�ves, so the 
 posi�ve sec�on of the graph disappears. 
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 Cube Root Func�ons 

 Unlike square root func�ons, cube root func�ons like 
 can accept both posi�ve and nega�ve inputs because cube roots are 
 defined for both posi�ve and nega�ve numbers. 
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 In general, whether a radical func�on covers the whole graph or just 
 part of the graph depends on whether the root is an even root or an 
 odd root. 

 ●  Even roots are NOT defined for nega�ve numbers, so the 
 graph is le� blank for any input  that makes the  inside of the 
 root nega�ve. 

 ●  Odd roots ARE defined for nega�ve numbers, so the graph 
 exists for any input  , even if it makes the inside  of the root 
 nega�ve. 

 Just remember that whether an x-value is a valid input to a root 
 func�on does not depend solely on the sign of the x-value, but 
 rather on what the func�on does to the input x-value before 
 applying the root. 

 Extraneous Solu�ons 

 When solving radical equa�ons, valid algebraic steps can some�mes 
 lead us to solu�ons that aren’t actually correct. 

 For example, squaring both sides of the equa�on  yields 
 . However, when we input  into the equa�on to check 

 the solu�on, we reach  , which simplifies to  , 
 which is incorrect. 

 Therefore, we say that the solu�on  is  extraneous  ,  and the 
 equa�on  actually has no solu�ons in the real numbers. 
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 Squaring both sides of an equa�on can introduce extraneous 
 solu�ons because it introduces an addi�onal solu�on that 
 corresponds to the nega�ve root. 

 It’s easiest to see this if we forget about radicals for a moment -- for 
 example, if we start with  and square both sides,  we reach 

 , which is solved by  . Squaring both sides 
 introduced a nega�ve solu�on  , and although  is  not 

 true,  is true. Likewise, although  is not a solu�on 

 to  , it is a solu�on to  because 

 . 

 A similar problem occurs when we raise both sides of an equa�on to 
 the fourth, sixth, eighth, or any even power -- raising to an even 
 power turns nega�ve numbers to posi�ves, so it introduces an 
 addi�onal solu�on that corresponds to the nega�ve root. 

 On the other hand, raising both sides of an equa�on to the third, 
 fi�h, seventh, or any odd power does not change the sign of any 
 numbers, so it won’t lead to any extraneous solu�ons. 

 The main takeaway  is that whenever we raise both sides  of an 
 equa�on to an even power, we need to double-check the solu�ons 
 to make sure that they actually sa�sfy the equa�on. 

 Solving Radical Equa�ons 

 In general, the best way to solve a complicated radical equa�on is to 
 isolate the radical and exponen�ate to cancel the radical. 
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 Original equa�on 

 Isolate the radical 

 Cube both sides 

 Set polynomial equal to 

 Factor polynomial 

 Solve 

 Remove extraneous 
 solu�ons 

 When there are mul�ple radicals in an equa�on, we first need to 
 reduce the number of radicals in the equa�on un�l there is a single 
 radical. 

 We can do this by repeatedly rearranging and exponen�a�ng both 
 sides of the equa�on. 

 Original equa�on 

 Rearrange 

 Square 

 Rearrange 

 Square 
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 Simplify 

 Solve 

 Remove extraneous 
 solu�ons 

 Exercises 

 Graph the following radical func�ons. 

 Solve the following radical equa�ons. 
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 6.2 Exponen�al and Logarithmic Func�ons 

 Exponen�al func�ons  have variables as exponents,  e.g.  . 

 Their end behavior consists of growing without bound to infinity in 
 one direc�on, and decaying to a horizontal asymptote of  in 
 the other direc�on. 

 The size of the number that is exponen�ated, called the  base  , 
 governs which direc�on corresponds to which end behavior. 

 Exponen�al Growth 

 If the magnitude of the base is bigger than  , then  as  increases, 
 the func�on is repeatedly mul�plied by a number bigger than  and 
 consequently grows without bound to infinity. For this reason, such 
 func�ons are called  exponen�al growth  func�ons. 

 By the same token, as  decreases, the func�on is  repeatedly 
 divided by a number bigger than  and consequently  decays to a 
 horizontal asymptote of  . 

 For example, for the exponen�al growth func�on  , each 
 unit increase in  causes the output to be doubled,  and each unit 
 decrease in  causes the output to be halved. 

https://www.codecogs.com/eqnedit.php?latex=1%0
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 Exponen�al Decay 

 On the other hand, if the magnitude of the base is smaller than  , 
 then as  increases, the func�on is repeatedly mul�plied  by a 
 number smaller than  and consequently decays to a  horizontal 
 asymptote of  . For this reason, such func�ons are  called 
 exponen�al decay  func�ons. 

 By the same token, as  decreases, the func�on is  repeatedly 
 divided by a number smaller than  and consequently  grows 
 without bound to infinity. 

 For example, for the exponen�al growth func�on  , 
 each unit increase in  causes the output to be halved,  and each 
 unit decrease in  causes the output to be doubled. 
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 Logarithms 

 Equa�ons involving exponen�al terms can be solved with the help 
 of  logarithmic func�ons  , which cancel out exponen�a�on. 

 For example, the equa�on  is solved by  , the 
 logarithm base-  of  , which evaluates to roughly  via 
 calculator. 

 If your calculator does not allow you to input a base for a logarithm, 

 you can compute  as  . This is called the  change-of-base 
 formula. 

 Logarithmic graphs look similar to square-root graphs, except they 
 cross the x-axis at  and extend downward towards  an asymptote at 

 . 

https://www.codecogs.com/eqnedit.php?latex=1%0
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 Logarithmic graphs cross the x-axis at  because raising  any number 
 to the power of  results in  . That is, any logarithm 
 solves the equa�on  , which we already know is solved  by 

 . 

 Also, logarithmic graphs extend to nega�ve infinity as  approaches 
 , because a number (greater than one) gets smaller  and smaller as 

 its exponent gets more and more nega�ve. 

 Lastly, the base of the logarithm tells us where the y-value is  -- 
 that is, the func�on  has  . This is because 

 is the exponent we have to raise  to, to get  . 

https://www.codecogs.com/eqnedit.php?latex=2%5E%7B-1%7D%3D%5Cfrac%7B1%7D%7B2%7D%0
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 When the base of the logarithm is smaller than one, the graph flips 
 over the x-axis. 

 In this case, the graph extends to posi�ve infinity as  approaches 
 , because a number smaller than  gets closer and  closer to  as its 

 exponent increases. 

 Likewise, as  increases, the graph becomes more and  more 
 nega�ve because a nega�ve exponent is needed to flip the 
 frac�onal base. 

https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=0%0
https://www.codecogs.com/eqnedit.php?latex=0%0
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 Proper�es of Logarithms 

 Expressions consis�ng of mul�ple logarithms of the same base can 
 be simplified by using two proper�es of logarithms: 

 1.  Addi�on outside two logarithms with the same base turns into 
 mul�plica�on inside a single logarithm. For example, 

 , and in general, 
 . 

 2.  Mul�plica�on outside two logarithms with the same base 
 turns into exponen�a�on inside a single logarithm. For 

 example,  , and in general, 
 . 

 A par�cularly noteworthy consequence of the second rule is that 
 nega�ve outside a log turns into reciprocal inside the log: 

 Addi�onally, logarithms of different bases can some�mes be 
 converted to logarithms of the same base. For example,  is 
 the same as  . In general,  provided both 
 logarithms exist. 
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 Below is an example of simplifying a logarithmic expression using all 
 of the proper�es that we have discussed: 

 Original expression 

 Rewrite using addi�on 

 Convert mul�plica�on 
 to exponen�a�on 

 Simplify 

 Square base and 
 argument 

 Simplify 

 Convert addi�on 
 to mul�plica�on 

 Simplify 

 Exercises 

 Graph the following exponen�al func�ons. 

https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20f(x)%3D3%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20f(x)%3D5%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=3)%20%5Chspace%7B.5cm%7D%20f(x)%3D%5Cleft(%20%5Cfrac%7B1%7D%7B3%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=4)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B1%7D%7B5%7D%20%5Cright)%5Ex%0
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 Use logarithms to solve the following exponen�al equa�ons. 

 Graph the following logarithmic func�ons. Use logarithm rules to 
 simplify the expression, if needed. 

https://www.codecogs.com/eqnedit.php?latex=5)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%5Ex%0
https://www.codecogs.com/eqnedit.php?latex=6)%20%5Chspace%7B.5cm%7D%20f(x)%3D%20%5Cleft(%20%5Cfrac%7B2%7D%7B3%7D%20%5Cright)%5Ex%0
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 6.3 Absolute Value 

 An  absolute value  func�on represents the  magnitude  of a number, 
 i.e. its distance from  . 

 For example, the absolute value of  is  , and the  absolute value 

 of  is  . We write this as  , and  . 

 In effect, absolute value just removes the nega�ve sign from a 
 number, if there is a nega�ve sign to begin with. 

 Graphs 

 Absolute value graphs are very straigh�orward -- they look similar to 
 the graph of  , except the the outputs of nega�ve  are 
 turned posi�ve. 
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 Solving Equa�ons by Spli�ng 

 Absolute value equa�ons are similar to square root equa�ons, in 
 that we have to consider both posi�ve and nega�ve solu�ons. For 

 example, the solu�ons to the equa�on  are  . 

 We can usually solve more complicated absolute value equa�ons by 
 isola�ng the absolute value and then breaking it up into posi�ve and 
 nega�ve equa�ons. 

 Original equa�on 

 Isolate the absolute value 

 Split into posi�ve and 
 nega�ve equa�ons 

 Solve 

 Extraneous Solu�ons 

 One caveat to solving absolute value equa�ons this way is that if the 
 original equa�on tells us that the absolute value equals a nega�ve 
 number, we will get the same solu�ons as if it were a posi�ve 
 number, but none of them will be correct because absolute value 
 can never have a nega�ve output. 
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 Original equa�on 

 Split into posi�ve and 
 nega�ve equa�ons 

 Solve 

 Check solu�ons 

 Remove extraneous 
 solu�ons 

 Whenever an equa�on tells us that the output of some absolute 
 value is a nega�ve number, the equa�on will have no solu�on. 

 That being said, if an equa�on tells us that the output of some 
 absolute value is a nega�ve variable expression, the equa�on might 
 have a solu�on, because the variable expression itself might be 
 nega�ve at �mes. 
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 In these cases, it’s usually best to solve the absolute value using the 
 conven�onal method of spli�ng up into posi�ve and nega�ve 
 equa�ons, and then check the answers a�erward to remove any 
 extraneous solu�ons. 

 Original equa�on 

 Split into posi�ve and 
 nega�ve equa�ons 

 Solve 

 Check solu�ons 
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 Remove extraneous 
 solu�ons 

 Case of Mul�ple Absolute Value Terms 

 When there are mul�ple absolute value terms, we need to split the 
 equa�on into posi�ve and nega�ve equa�ons for each absolute 
 value term, one a�er the other. 

 Original equa�on 

 Split into posi�ve and 
 nega�ve equa�ons 

 Isolate remaining 
 absolute value 
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 Split into posi�ve and 
 nega�ve equa�ons 

 Simplify 

 Solve 

 Combine solu�ons 

 Remove extraneous 
 solu�ons 

 Exercises 

 Solve the following absolute value equa�ons. 
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 6.4 Trigonometric Func�ons 

 Trigonometric func�ons  represent the rela�onship  between sides 
 and angles in right triangles. 

 There are three main “trig” func�ons: sine, cosine, and tangent, and 
 a mnemonic o�en used to remember what they represent is 
 SohCahToa: 

 ●  The SINE of an angle is the ra�o of the lengths of the 
 OPPOSITE side and the HYPOTENUSE. 

 ●  The COSINE of an angle is the ra�o of the lengths of the 
 ADJACENT side and the HYPOTENUSE. 

 ●  The TANGENT of an angle is the ra�o of the lengths of the 
 OPPOSITE side and the ADJACENT side. 
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 For example, in the triangle below, we have  ,  , 

 and  . 

 Solving for a Side 

 Trig func�ons can be used to solve for unknown side lengths in right 
 triangles. For example, if we know that an angle is  , the opposite 
 side has a length of  , and we want to find the hypotenuse,  we can 
 set up and solve an equa�on using sine. 
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 Sine equa�on 

 Solve 

 Evaluate via calculator 

 To find the remaining side, we can use any of three methods: 
 Pythagorean theorem, cosine, or tangent. 

 No ma�er which technique we use, we will end up with the same 
 result (though if we use our approxima�on of  , we  might 
 be slightly off due to rounding error). 
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 Pythagorean theorem 

 Cosine 

 Tangent 

 Solving for an Angle 

 Similarly, using inverse trig func�ons, we can solve for unknown 
 angles in right triangles. 
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 For example, if we know that the adjacent side is  and the opposite 
 side is  , we can set up an equa�on with tangent  and then use 
 inverse tangent to find the angle. 

 Tangent equa�on 

 Inverse tangent 

 Evaluate via calculator 

 To find the remaining angle, we can use any of three methods: sum 
 of degrees in a triangle, tangent, or Pythagorean theorem followed 
 by sine or cosine. Regardless of which method we choose, we will 
 end up with the same result. 
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 Sum of degrees in triangle 

 Inverse tangent 

 Pythagorean theorem 

 Inverse sine 

 Inverse cosine 
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 The Unit Circle 

 To gain a be�er understanding of trig func�ons, we can imagine 
 pu�ng a triangle inside of a circle on the coordinate plane. 

 The coordinates of the corner point  on the circle  then tell us 
 the other two sides of the triangle: the horizontal side has length 
 and the ver�cal side has length  . If we make the  circle have radius 

 , then the hypotenuse of the triangle is  , and we  have 

 and our point  can be wri�en as  . 
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 Immediately, we no�ce two important things. First, using the 
 Pythagorean theorem on the triangle, we see that 

 . 

 This is a handy equa�on that can be useful in simplifying 
 trigonometric expressions. For example, the expression 

 is actually just equivalent to  . 

 Second, angles repeat every  , since going  around  the 
 circle brings us back to the star�ng point of  . 
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 That means, for example, that  and  are both 
 equivalent to  . 

 Special Angles 

 For most angles, a calculator is needed to compute the 
 corresponding trig func�on values. However, at par�cular angle 
 measures, the trig func�ons have simple, exact values: 

 We can remember which values correspond to which angles and 
 which trig func�ons by thinking about them visually in the unit circle 

 and mentally pairing  with  . 
 ●  At  , the x-coordinate is bigger than the y-coordinate,  so 

 the x-coordinate must be  and the y-coordinate must  be  . 
 ●  At  , this is reversed. 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D%20390%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20%2B%20360%5E%5Ccirc%20%5C%5C%20-330%5E%5Ccirc%20%26%3D%2030%5E%5Ccirc%20-%20360%5E%5Ccirc%20%5Cend%7Balign*%7D%0
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 ●  At  , the x-coordinate and y-coordinate are the same, so 

 they both are  . 
 ●  At  , we’re on the x-axis, so the x-coordinate is  and the 

 y-coordinate is  . 
 ●  At  , we’re on the y-axis, so the y-coordinate is  and the 

 x-coordinate is  . 

 To get tangent, we can just take the ra�o of the y-coordinate to the 
 x-coordinate. 
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 Using symmetry, we can label angles in the other three quadrants of 
 the circle. 

 Deriva�on of Special Angles 

 You might be wondering where the values  ,  , and  come 
 from in the first place. 

 To see where  comes from, we can construct a right  triangle with 
 a hypotenuse of  and an angle of  . 

 The other angle must also be  , so the triangle’s  two legs must be 
 equal in length, and we can use the Pythagorean theorem to 

 discover that the length of each leg is  . 
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 Pythagorean theorem 

 Simplify 

 Solve 

 Simplify 

 Likewise, to see where  and  come from, we can construct  a 
 right triangle with a hypotenuse of  and an angle  of  . 

 The other angle must be  , which is exactly half --  consequently, 
 we can combine two of these triangles to form an equilateral 
 triangle whose side lengths are all equal to the hypotenuse of  . 
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 The shortest sides of the two triangles together make up a side of 
 the equilateral triangle, which we know has length  , so the shortest 

 sides of the two triangles must each be  . Using the  Pythagorean 

 theorem, we find that the length of the other leg is  . 

 Pythagorean theorem 

 Simplify 

 Solve 

 Simplify 
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 Graphs 

 The graphs of sine, cosine, and tangent are drawn below. They 
 repeat every  , since  is one full revolu�on around  the unit 
 circle and thus brings us full-circle back to the star�ng point. 

 Tangent actually repeats twice every  (or once every  ) 
 because it goes from posi�ve to nega�ve from the first to second 
 quadrant, and again posi�ve to nega�ve from the third to fourth 
 quadrant. 

 To make sense of the shapes of the graphs, try to trace out the trig 
 func�on values while following around the unit circle. 
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 Radians 

 The standard way to measure angles is actually not in degrees -- 
 rather, it is in  radians  . One radian is equivalent  to the angle whose 
 arc is equal to one radius of a circle. 
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 Since the full arc length (  circumference  ) of the circle is  �mes the 
 radius, a full  around the circle is equivalent to  radians. 

 Below is a copy of the unit circle, using radians instead of degrees. 
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 The trig func�ons are graphed in terms of radians below. Nothing 
 changes, except for the units of the x-axis. 

 Reciprocal Trigonometric Func�ons 

 There are three other trig func�ons: secant, cosecant, and 
 cotangent. They are just the reciprocals of cosine, sine, and tangent. 
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 Consequently, they can be understood by thinking about the 
 proper�es of cosine, sine, and tangent. We will not explore them 
 further, but we include their graphs below. 
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 Exercises 

 Use trigonometry to find the missing sides and angles of the 
 triangles. 
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 Use the unit circle to find the exact values of the following 
 trigonometric expressions. 
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 6.5 Piecewise Func�ons 

 A  piecewise func�on  is pieced together from mul�ple  different 
 func�ons. 

 For example, the absolute value func�on is a piecewise func�on 
 because it consists of the line  for nega�ve  ,  and 
 for posi�ve  . 

 Case Nota�on 

 More generally, piecewise func�ons can be defined using case 
 nota�on, which tells which func�ons to use as pieces and where to 
 use them as pieces. 
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 The absolute value func�on, for example, can be wri�en in case 
 nota�on as follows: 

 This case nota�on just tells us that for nega�ve inputs (  ) we 
 should use the func�on  to calculate the func�on  output, 
 and for nonnega�ve inputs (  ) we should use the func�on 

 to calculate the func�on output. 

 Two more equivalent case nota�on forms for the absolute value 
 func�on are shown below. 
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 Some�mes, piecewise func�ons have breaks in them. For example, 
 if we modify the case nota�on of the absolute value func�on so that 
 the right piece is elevated, the graph has a break in it. This looks 
 unusual, but it is a perfectly valid func�on. 

 Many Func�on Types 

 There is no limit to what types of func�ons a piecewise func�on can 
 consist of. For example, the equa�on and graph of a more 
 complicated piecewise func�on are shown below. 
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 Many Cases 

 Likewise, there is no limit to the number of pieces a piecewise 
 func�on can have. For example, rounding is an example of a 
 piecewise func�on with infinitely many pieces. 
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 Exercises 

 Graph the following piecewise func�ons. 
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 Chapter 7 
 Transforma�ons of Func�ons 
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 7.1 Shi�s 

 When a func�on is  shi�ed  , all of its points move  ver�cally and/or 
 horizontally by the same amount. The func�on’s size and shape are 
 preserved -- it is just slid in some direc�on, like sliding a book across 
 a table. 

 Shi�s Outside the Func�on 

 Shi�s occur when a constant term is added in a func�on. When the 
 constant term is added on the outside of a func�on, e.g. when 

 is transformed into  , the func�on shi�s up 
 by that many units. (If a nega�ve term is added, the func�on moves 
 down.) 
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 Shi�s Inside the Func�on 

 On the other hand, when the constant term is added on the inside 

 of a func�on, e.g. when  is transformed into 

 , the func�on shi�s le� by that many units. (If  a 
 nega�ve term is added, the func�on moves right.) 

 Intui�on 

 Ver�cal shi�s are very intui�ve: if we add a number to a func�on, 
 that number is added to every output of the func�on. If the number 
 is posi�ve, every output y-value is increased by that amount. If the 
 number is nega�ve, every output y-value is decreased by that 
 amount. 
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 The intui�on behind horizontal shi�s is a li�le less straigh�orward, 
 because ADDING a number inside a func�on moves it le� in the 
 NEGATIVE direc�on along the x-axis. 

 But think about it this way: when we transform  into 

 , the output originally at  is now at  , 

 because  is the same as  . Similarly, the output  originally 

 at  is now at  , because  is the same as  . 
 Every input needs to move  units le�, to keep its  output the same. 

 Combining Shi�s 

 When we have both ver�cal and horizontal shi�s, it doesn’t ma�er 
 which we perform first. 

 For example, to transform  into  , 
 we can either shi� it le�  units and then up  units, or up  units 
 and then le�  units. Either way, we get the same  result. 
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 Exercises 

 Use shi�s to graph the following func�ons. 
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 7.2 Rescalings 

 When a func�on is  rescaled  , it is stretched or compressed  along one 
 of the axes, like a slinky. The func�on’s general shape is preserved, 
 but it might look a bit thinner or fa�er a�erwards. 

 Rescalings Outside the Func�on 

 Rescalings occur when a constant term is mul�plied in a func�on. 
 When the constant term is mul�plied on the outside of a func�on, 
 the func�on stretches or compresses along the y-axis. 

 For example, mul�plying outside by  with the transforma�on 

 stretches the func�on outward ver�cally, away from the x-axis. 

 On the contrary, mul�plying outside by  with the  transforma�on 

 compresses the func�on inward ver�cally, towards the x-axis. 
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 Rescalings Inside the Func�on 

 On the other hand, when the constant term is mul�plied on the 
 inside of a func�on, the func�on stretches or compresses 
 horizontally along the x-axis. 

 For example, mul�plying inside by  with the transforma�on 

 compresses the func�on inward horizontally, towards the y-axis. 

 On the contrary, mul�plying inside by  with the  transforma�on 

 stretches the func�on outward horizontally, away from the y-axis. 
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 For func�ons that are more linear than curvy, such as  , 
 ver�cal and horizontal rescalings can have similar effects on the 
 graph. 
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 Intui�on 

 Similar to ver�cal shi�s, ver�cal rescalings are very intui�ve: if we 
 mul�ply a func�on by a number, every output of the func�on is 
 mul�plied by that number. 

 If the number is greater than  , every output y-value  is increased by 
 the mul�plier. If the number is less than  , every  output y-value is 
 decreased by the mul�plier. 

 Similar to horizontal shi�s, the intui�on behind horizontal rescalings 
 is not as straigh�orward. Mul�plying a BIG number inside a func�on 
 COMPRESSES it, rather than stretching it. 

 Think about it this way: when we transform  into 

 , the output originally at  is now at  , 

 because  is the same as  . Similarly, the output  originally 

 at  is now at  , because  is the same thing as 

 . Every input needs to be divided by  , to keep its  output 
 the same. 

 Combining Rescalings and Shi�s 

 When we have both ver�cal and horizontal rescalings, it doesn’t 
 ma�er which we perform first. 
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 However, when dealing with rescalings and shi�s simultaneously, it’s 
 important to perform horizontal shi�s first, then rescalings, and 
 lastly ver�cal shi�s. This way, horizontal shi�s are themselves 
 rescaled, and ver�cal shi�s are not. 

 To see why horizontal shi�s themselves need to be rescaled, 
 consider the func�on transforma�on of  into 

 . 

 In the original func�on, we have  . If we rescale  first and then 

 shi�  right, then the input  is rescaled to  and  shi�ed 

 to  . 

 When we input the transformed input into the transformed 
 func�on, it should produce the same result as the original input in 

 the original func�on -- but this is not the case for  . 

 On the other hand, if we first shi�  right and then  rescale, then the 

 input  is shi�ed to  and rescaled to  . 

 Indeed,  produces the same result as the original  input in the 
 original func�on. 

https://www.codecogs.com/eqnedit.php?latex=1%0
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 Exercises 

 Use rescalings (followed by shi�s) to graph the following func�ons. 
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 7.3 Reflec�ons 

 When a func�on is  reflected  , it flips across one  of the axes to 
 become its mirror image. 

 Reflec�ons occur when a func�on is made nega�ve -- when the 
 nega�ve is outside the func�on, the reflec�on is over the y-axis; and 
 when the nega�ve is inside the func�on, the reflec�on is over the 
 x-axis. 

 The intui�on behind reflec�ons is that, depending where it is 
 placed, the nega�ve sign switches posi�ve and nega�ve values of 
 the  or  variable. 

 If the nega�ve is outside the func�on, then the output y-value 
 switches sign, essen�ally reflec�ng every point over the x-axis. 
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 On the other hand, if the nega�ve is inside the func�on, then the 
 input x-value switches sign, essen�ally reflec�ng every point over 
 the y-axis. 

 Order of Func�on Transforma�ons 

 When we have both ver�cal and horizontal reflec�ons, it doesn’t 
 ma�er which we perform first. Likewise, when dealing with 
 reflec�ons and rescalings simultaneously, it doesn’t ma�er which 
 we perform first. 

 However, when dealing with reflec�ons and shi�s simultaneously, 
 it’s important to perform horizontal shi�s first, then reflec�ons, and 
 lastly ver�cal shi�s. 

 We are le� with an  order of func�on transforma�ons  ,  similar to the 
 concept of order of opera�ons in arithme�c, but different in actual 
 order: 

 1.  Horizontal shi�s 
 2.  Rescalings and reflec�ons (interchangeable) 
 3.  Ver�cal shi�s 
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 Exercises 

 Use reflec�ons and rescalings (followed by shi�s) to graph the 
 following func�ons. 
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 7.4 Inverse Func�ons 

 Inver�ng  a func�on entails reversing the outputs  and inputs of the 
 func�on. 

 For example, if inpu�ng  into a func�on  produces  an 
 output  , then inpu�ng  into the  inverse func�on 

 results in the output  . 

 Compu�ng Inverse Func�ons 

 We can compute inverse func�ons by switching  and  in the 
 equa�on for a func�on, and then solving for  again. 

 Original func�on 

 Replace  with 

 Switch  and 

 Solve for 

 Replace  with 

 Tes�ng our inverse func�on on a few sample inputs, we see that it 
 does indeed reverse the outputs and inputs of the original func�on. 
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 Graphing Inverse Func�ons 

 Graphing inverse func�ons is even easier than compu�ng them: we 
 just have to reflect the original func�on over the line  . 

 This makes sense, intui�vely, since compu�ng the inverse func�on 
 involves switching  and  . 

 Case when No Inverse Exists 

 Graphically, we can see that some func�ons don’t have inverse 
 func�ons. If reflec�ng the graph over the line  causes mul�ple 
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 y-values to be associated with a single x-value, then this breaks the 
 defini�on of a func�on, and the resul�ng graph is not a func�on. 

 Algebraically, an inverse func�on is supposed to take original 
 outputs back to original inputs, but it can’t do this if it can’t 
 dis�nguish which input x-value caused the output y-value. 

 For example, the func�on  has  , so 
 when a supposed inverse func�on takes an output of  , it will not 
 know whether the output came from the input  or  . Therefore, 

 no inverse func�on can be constructed for  . 

 Domain Restric�ons 

 That being said, inverse func�ons can be created if we restrict the 
 domain  , the set of allowed inputs. 
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 For example, if we restrict the domain of  to only posi�ve 
 inputs, then the inverse func�on would know that an output of 
 comes from an input of  . 

 We can also see this graphically -- if we graph  only for 
 posi�ve values of  , then no x-value has mul�ple  y-values when we 
 reflect the graph over the line  . 

 Exercises 

 Sketch the original func�on and the graph of the supposed inverse 
 by reflec�ng the original func�on  over the line  . Then, if 
 the inverse func�on  exists, use algebra to find  its equa�on. 
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 7.5 Composi�ons 

 Composi�ons of func�ons consist of mul�ple func�ons linked 
 together, where the output of one func�on becomes the input of 
 another func�on. 

 Demonstra�on 

 For example, the func�on  can be thought of as the  composi�on 
 of two func�ons: the first func�on squares the input, and then the 
 second func�on doubles the input. 

 Using formal nota�on, we can define the first func�on that squares 

 the input as  , and the second func�on that doubles  the 
 input as  . 

 Then the composi�on can be computed by using the output of  as 
 the input to  . Star�ng at the end, we can compute  the composi�on 
 by evalua�ng  in terms of  , and then evalua�ng  in terms of  . 

 Or, we can start at the beginning, compu�ng  in  terms of  and 
 then evalua�ng  in terms of the result. Either way,  we end up with 
 the same formula for the composi�on. 

https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%202f(x)%20%3D%202x%5E2%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=x%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20g(f(x))%20%3D%20g(x%5E2)%20%3D%202x%5E2%0


 248  Jus�n Math |  Algebra 

 Order of Composi�on 

 The order of composi�on is very important and is not 
 interchangeable. 

 ●  The func�on computed above is  , which applies  first 
 and then  . 

 ●  On the other hand, the func�on  applies  first  and then 
 , and consequently evaluates to something different: 

 . 

 Composi�ons of Many Func�ons 

 For composi�ons of more than two func�ons, we can compute one 
 step at a �me. 

 Given func�ons 

 Input  into 

 Input  into 

 Input  into 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7Df(x)%26%3D%5Csin%20x%20%5C%5C%20g(x)%26%3Dx%5E2%20%5C%5C%20h(x)%26%3D5x%2B1%20%5C%5C%20p(x)%26%3D%5Csqrt%7Bx%7D%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=f%0
https://www.codecogs.com/eqnedit.php?latex=g%0
https://www.codecogs.com/eqnedit.php?latex=(g%20%5Ccirc%20f)(x)%20%3D%20%5Csin%5E2%20x%0
https://www.codecogs.com/eqnedit.php?latex=g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=h%0
https://www.codecogs.com/eqnedit.php?latex=(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%205%5Csin%5E2%20x%20%2B%201%0
https://www.codecogs.com/eqnedit.php?latex=h%20%5Ccirc%20g%20%5Ccirc%20f%0
https://www.codecogs.com/eqnedit.php?latex=p%0
https://www.codecogs.com/eqnedit.php?latex=(p%20%5Ccirc%20h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Csqrt%7B5%5Csin%5E2%20x%20%2B%201%7D%0
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 Exercises 

 Find the expression for the indicated composi�on. 

https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D1)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3Dx%2B5%20%5C%5C%20%26g(x)%3D2x%5E2%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D2)%20%5Chspace%7B.5cm%7D%20%26(g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D5%5Ex%20%5C%5C%20%26g(x)%3D%7C4-x%7C%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D3)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D-2%5Ex%20%5C%5C%20%26g(x)%3D%7Cx%2B4%7C%20%5C%5C%20%26h(x)%3D%5Csqrt%7Bx%7D%20%5Cend%7Balign*%7D%0
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7Balign*%7D4)%20%5Chspace%7B.5cm%7D%20%26(h%20%5Ccirc%20g%20%5Ccirc%20f)(x)%20%3D%20%5Cunderline%7B%5Chspace%7B.5cm%7D%7D%20%5C%5C%20%26f(x)%3D2x%20%5C%5C%20%26g(x)%3D%5Cfrac%7Bx%7D%7Bx-1%7D%20%5C%5C%20%26h(x)%3D%5Csin%20x%20%5Cend%7Balign*%7D%0
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 Solu�ons 
 to Exercises 
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 Part 1 

 Chapter 1.1 

 Chapter 1.2 
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 Chapter 1.3 
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 Chapter 1.4 
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 Chapter 1.5 
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 Part 2 

 Chapter 2.1 
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 Chapter 2.2 

 Chapter 2.3 
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 Chapter 2.4 

 Chapter 2.5 
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 Chapter 2.6 
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 Part 3 

 Chapter 3.1 

 Chapter 3.2 
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 Chapter 3.3 
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 Chapter 3.4 
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 Part 4 

 Chapter 4.1 
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 Chapter 4.2 
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 Chapter 4.3 
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 Chapter 4.4 
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 Part 5 

 Chapter 5.1 
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 Chapter 5.2 

 Chapter 5.3 
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 Chapter 5.4 
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 Chapter 5.5 
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 Part 6 

 Chapter 6.1 

https://www.codecogs.com/eqnedit.php?latex=1)%20%5Chspace%7B.5cm%7D%20%0
https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20%0
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 Chapter 6.2 

https://www.codecogs.com/eqnedit.php?latex=2)%20%5Chspace%7B.5cm%7D%20%0


 288  Jus�n Math |  Algebra 



 Jus�n Math |  Algebra  289 



 290  Jus�n Math |  Algebra 

 Chapter 6.3 
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 Chapter 6.4 
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 Chapter 6.5 
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 Part 7 

 Chapter 7.1 
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 Chapter 7.2 
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 Chapter 7.4 
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