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I. NETWORKS AS GRAPHS

Networks, or collections of interacting components, are
ubiquitous: societies are networks of people, which are net-
works of cells, which are networks of molecules, which are
networks of particles. Networks are often modeled as weighted
graphs, collections of vertices connected by edges, where
each edge is assigned a weight (usually a real number). Each
vertex A represents a network component, each edge A

f←− B
represents direct interaction in which A receives f from B
(or B sends f to A), and the weight w(f) quantifies some
property of f . For example, if A and B are dominoes, then f
could be the action of A being toppled by B, and w(f) could
be the probability that A will fall if B falls.

However, many networks have properties that are not imme-
diately obvious from their graphical representations. Perhaps
B can be toppled by another domino, C, which too far away
to topple A. When C falls, it initiates a chain of topples which
causes A to fall: C topples B, and B topples A. There is no
arrow A← C, though, because C cannot itself hit A.

In real-world networks, hidden properties can be meaning-
ful. For example, the targeted dissemination of information
through social networks relies on the existence of indirect con-
nections. To this end, it can be helpful to explicitly represent
the indirect interactions which graph-theoretic models leave
implicit.

II. WEIGHTED CATEGORIES

Category theory [2], an approach to mathematics that de-
scribes mathematical objects in terms relationships to other
objects (rather than their internal specifics), has been used to
describe properties of biological systems [1,3-5] and can be
used to restructure graphs so that all interactions, both direct
and indirect, are made explicit. Weighted categories are similar
to weighted graphs, except that vertices are called objects and
edges are called arrows, the weights of arrows are functions
rather than real numbers, and any two arrows with the same
source and target need not be equivalent. Intuitively, a weighted
category C can be described as

1) a collection Ob(C) of objects, together with
2) a collection Hom(C) of arrows A

f←− B between
objects, where each arrow f points from a single
sending object B to a single receiving object A and
has weight w(f).

In mathematical settings, arrows are also called homomor-
phisms, hence the notation Hom(C). The arrows of a category
must additionally satisfy the following criteria:

1) For any sequence A1
f1←− · · · fn←− An+1 of head-to-

toe adjacent arrows, there is a single composite arrow
A1

f1f2···fn←−−−−−− An+1.

2) For each object X , there is an identity arrow X
iX←−−

X , and composite arrows are the same regardless of
whether identity arrows are included.

3) The weights satisfy some weight composition rule (·)
so that w(f1f2 · · · fn) = w(f1) · w(f2) · · · · · w(fn).

A careful reader will notice ambiguity in criterion (1):
the arrow obtained by composing f1, f2, and f3 is called
f1f2f3, the arrow obtained by composing f1 and f2f3 is called
f1f2f3, and the arrow obtained by composing f1f2 and f3 is
called f1f2f3. This ambiguity is deliberate, because the actual
mathematical definition of a category requires that all three
“versions” of f1f2f3 are indistinguishable and hence coincide.
A concrete example of criterion (2) is that the arrows f1f2,
i1f1f2, f1i2f2, f1f2i3, i1f1i2f2, i1f1f2i3, and i1f1i2f2i3 all
coincide. In criterion (3), simple weight rules include, but are
not limited to, addition or multiplication. A straightforward
consequence of (3) is that all identity arrows are assigned the
same weight, called the identity weight.

III. CONVERTING GRAPHS TO CATEGORIES

Given a weighted graph network model, where vertices in
a set V represent network components and edges in a set
E represent direct interactions, one can generate a weighted
category C whose arrows represent all communication, both
direct and indirect, that occurs in the network. One does this
by choosing Ob(C) = V and generating Hom(C) according
to the following steps:

1) Include edge arrows. For each edge f in E, include f
in Hom(C).

2) Include identity arrows. For each vertex X in V , include
iX in Hom(C). Identity edges and identity arrows must
coincide.

3) Include composite arrows. For each sequence of head-
to-toe adjacent arrows f1, f2..., fn in Hom(C), include
the composite arrow f1f2 · · · fn in Hom(C).

The weights are specified entirely by our choice of weight
composition rule: since identity arrows are all assigned the
identity weight and all other noncomposite arrows can be
identified as edges, the rule w(f1f2 · · · fn) = w(f1) · w(f2) ·
· · · · w(fn) specifies the weight of every composite arrow.
The choice of weight composition rule often depends on the
modeling context. For example, suppose that in the category of
economic entities, A is a manufacturer, B is a middleman, and
C is a customer who wants a product from the manufacturer
A. In this category, each arrow might represent a sale, and the
weight of an arrow might be the amount spent by the buyer. In
this case, the amount spent by the final buyer in a sequence of
exchanges depends only on the final exchange, so the weight
composition rule should be chosen as w(f) · w(g) = w(f)
for composable weights f and g, so that w(f1f2 · · · fn) =
w(f1) · w(f2) · · · · · w(fn) = w(f1).
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