
Computers, for the
Confused
Justin Paul Skycak, November 2015.

C
omputers are complex machines. How-
ever, the big picture behind comput-
ers quite simple. Complexity arises be-

cause commercial computers are optimized
for performance, so they include many tech-
nological bells and whistles to speed them up
and make them more easy to use. But the
main ideas behind computers can be under-
stood by anyone.

In this article, we will learn - in simple terms -
how computers work. Rather than focusing on the
nitty-gritty details and countless acronyms, we’ll
take a bird’s-eye view as we soar from circuitry to
the internet. We’ll also structure our journey in a
problem/solution approach so that we understand
why things are the way they are in the world of
computers.

So, what do computers do?

Computers exist because we can’t always figure out
solutions to problems just by thinking about them.
Sometimes, such as when attempting to break a code,
the only way we can solve a problem is by checking
each of a large number of possibilities. Other times,
we just tire of thinking.

Either way, rather than thinking about what would
happen if we were to do X, it is often easier to
just go ahead and do X and observe what happens.
Computers let us simulate situations and observe
outcomes.

How do we build a device to simulate
situations?

To simulate a situation, we need to do things to ob-
jects. Hence, our device should include memory (the
objects) and a processor (something that changes
the objects). We also need to tell, or program, the
processor how it should change what’s stored in mem-
ory.

For example, we could construct a computer out of
a person, some rocks, and a hole. The person would
be the processor, and the rocks/hole would be the
memory. Programming the person would be easy -
we could verbally tell the person how to move the
rocks in and out of the hole.

A computer can be created with a person
moving rocks in and out of a hole. So why isn’t
this what comes to mind when we think of
computers?

Although the person + rocks/hole system can techni-
cally pass as a computer, there are several practical
problems which make the system hard to use.

First of all, if we want to represent different num-
bers, we’re going to need a lot of rocks. If we we
want to represent the quantity sixty-four, we need
sixty-four rocks. But we don’t want to gather that
many rocks, and we don’t want to count them up
individually every time we need to find how many
rocks are in a pile.

Second of all, it’s slow and tiring to manually
move and count rocks, and they take up a lot of space.
Modern-day computers can execute roughly a million

page 1 of 4



operations per second, whereas a human/rocks/hole
computer would peak out around one operation per
second. Furthermore, rocks take up a lot of space, so
we can’t take our rock computer with us if we want
to relocate.

How can we use fewer rocks?

We can use fewer rocks if we use multiple holes.
Think about the way we count - we can represent
any number using only ten digits (0, 1, 2, ..., 9). The
key is in the way we order the digits. If we want
to represent the quantity sixty-four, we can put six
rocks in the left hole and four rocks in the right hole:
64. That’s only ten rocks!

We can do even better using two digits (0 and 1)
instead of all ten. Using ten digits, we count like
this: 0, 1, 2, ..., 9, 10, 11, 12, ..., 19, 20, 21, 22, ...
..., 99, 100, and so on. Each time we increase, we
change the rightmost digit to the next highest digit –
unless the rightmost digit was 9, in which case there
is not a next highest digit, so we increase the digit
immediately to the left of the 9 and replace 9 with 0.
Using only two digits but keeping the same rule for
increasing a quantity, we count like this: 0, 1, 10, 11,
100, 101, 110, 111, 1000, ... . In this binary system,
the quantity sixty-four is represented as 100000000.
Only a single rock is needed!

How can we make computers fast and small?

Most modern computers use electrical circuits. So
that the circuits cannot be easily messed up, they are
usually soldered onto chips called integrated circuits.

But although most of today’s computers are built
from electrical circuits, computers do not have to
be built from electrical circuits. Electrical circuits
are just the best known solution as of now. Per-
haps quantum computing or organic computing may
become a better option in the future.

How can we adapt the computer to multiple
purposes, if the circuit arrangement is fixed?

It’s easy enough to build a an electrical circuit to
accomplish a single task. However, we want to build
a computer that can do any sort of operation we tell
it. We want to build a programmable computer.

Integrated circuits are fixed, so we cannot rear-
range circuits to perform different operations as
needed. Besides, even if we could rearrange the
circuits, it would take a while, and we could very
easily make a mistake.

The solution is to store programs in the computer’s
memory. Rather than building a circuit to execute a
fixed operation, we build a circuit that can execute
multiple operations, and can execute those operations
in any sequence that is stored in its memory. We
allocate a memory locations to each operation, so
that an operation will be completed whenever its
memory location is filled. Then, we can change a
computer’s program by simply modifying its memory.

How do we modify and view a computer’s
memory?

We still need to figure out how to physically modify
a computer’s memory. We could manually turn on
and off different memory locations, but this would
be tedious and difficult. The solution is to use an
input device, such as a keyboard.

For each memory location that we allocate to a par-
ticular operation, we define a binary number called
an operation code (”opcode” for short). Whenever
the computer sees the opcode, it will know to ex-
ecute the corresponding operation. This way, we
can program a computer by giving it a list of binary
numbers, often via keyboard.

Because the results of a program are stored in a
computer’s memory, we also need some way to view
computer memory. The solution is to use an output
device, such as a monitor. The monitor can also help
us see what we’re doing as we’re programming the
computer.

Inputs modify computer memory so that the processor (CPU)

knows how to operate on the memory. Then, output devices

are used to display the resulting memory.1

This is where we make the jump from physical
hardware to abstract software. We no longer have
to worry about designing the physical parts of a
computer, since we now have a set of opcodes, called
an instruction set, which define all the individual
operations that a computer can execute. We just

1
https://upload.wikimedia.org/
wikipedia/commons/6/60/Computer2.png

page 2 of 4



need to figure out what opcodes to give the computer,
and in what order to give them, so that the computer
completes our desired task. We need to create a
language by which we can easily communicate with
the computer.

Suppose we create a language that allows us
to communicate with our computer. How can
we be sure that ALL computers will understand
us?

Often, when we write a program for a particular
computer, we also want to be able to run it on an-
other computer. The two computers might not have
the same instruction sets, so an instruction on one
computer might not mean the same thing on the
other computer. However, we can solve this problem
with standards.

We design instruction sets according to certain
standards, and when we’re writing code that should
be transferable from one computer to another, we
write the code in terms of the standard instructions.
Different computers can have different instruction
sets, but as long as the instruction sets adhere to
standards, code written in terms of the standards
can be used on any computer.

Thanks to standards, pieces of code that accom-
plish particular tasks can be used across computer
platforms. These pieces of code can be gathered
into libraries, and rather than writing programs from
scratch, we can piece together code from a library.

How can we write programs more easily?

We have a way to put programs into our computer’s
memory, we can write our instructions in terms of
standards so that our programs can be read by any
computer, and we can write programs by piecing
together code from libraries. However, writing pro-
grams in binary is tedious and error-inviting for hu-
mans (even when using letters, we make many ty-
pos!). We think semantically; hence, we would rather
use a language which assigns mnemonics (words and
abbreviations that are indicative of an operation’s
function) to the binary machine code. We call this
language assembly language.

If we write a program in the mnemonics of assem-
bly language, though, we still need the computer to
receive binary machine code. The computer can’t
read the assembly language, so we need to translate
it. We do this with an assembler, a computer pro-
gram that takes assembly code as input and gives
the corresponding machine code as output.

Even still, working with assembly language can
be tedious at times. It would be nice if we could
write programs in a language that flows better and
is more like the ones we speak with other humans.
This way, we would make fewer errors when writing
programs, and programs would make more sense to
us when we try to read them. Furthermore, although
there are standards in place, different machine and
assembly languages are often used for different kinds
of computers. How can we make an easy one-size-
fits-all programming language?

This is where we make the jump from low-level
languages (the machine and assembly languages) to
high-level languages, such as C, Python, MATLAB,
Java, etc. Just as we used a program called an as-
sembler to translate assembly language to machine
language, we use another program called a compiler
to translate high-level languages to low-level lan-
guages.

Using an input device, we can easily program a
computer to do any task that can be accomplished by
the computer’s instruction set, and our program can
work on any computer that is designed in accordance
with particular standards. Humans can program
computers, so why not let computers program other
computers? Instead of using a keyboard as an input
device, why not use another computer? All we need
to do is transmit information from one computer to
another.

How can we transmit information from one
computer to another?

One solution is to connect a memory storage device
to a computer, write part of the computer’s memory
to that device, physically transport that device to
another computer, and write the device memory to
this computer. However, using this method, infor-
mation could travel only as fast as humans could
manually transport it.

A better solution is to use wires or optical fibers
to transmit information from one computer to other
computers, without any manual labor involved. We
can also designate specific computers in the network,
called servers, to do specific functions for all the
other computers. This arrangement of communicat-
ing computers is called a computer network.

page 3 of 4



An example of a wired computer network.2

However, if our computers are connected with
wires, then they are no longer portable. An even
better solution is a wireless computer network, which
uses electromagnetic waves to transmit information
between computers. A computer can generate an
electromangetic wave and send it to an elevated
object like a tower or satellite, so that the wave
bounces back down everywhere within a given range.

Information can only be sent a limited distance
with electromagnetic waves, though - for example,
we cannot send a signal directly to somewhere that
is on the opposite side of the Earth. Thus, we end up
with a bunch of computers communicating locally.

How can we connect all the computers in the
world, if they can only communicate locally?

The solution is called the Internet. Although we can-
not send information directly to a computer outside
of our local range, we can send information to a com-
puter that is within our range, have that computer
send it to another computer within its range, and
so on, until the information reaches the intended
computer.

2
https://upload.wikimedia.org/
wikipedia/commons/thumb/4/4d/
Network Overlay merged.svg/
2000px-Network Overlay merged.svg.png

Visualizing the connectivity of the internet’s IP addresses.3

But how does a computer know the next
computer to which it should send information?

Just as you need an address to ship a letter to a
person, a computer needs some way of identifying
the computer in order to transfer information to it.
Thus, we label each computer in the internet with
an address, called an IP address, so that computers
can identify each other.

We also set up domain name servers, computers
that are specialized for sending information to each
other. We also make communication standards so
that each computer knows what to do to send infor-
mation on a route so that it reaches a domain name
server.

3
https://upload.wikimedia.org/
wikipedia/commons/d/d2/Internet map 1024.jpg

page 4 of 4


