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Preamble: The Story of Math
Academy’s Eurisko Sequence

This book was written to support Eurisko, an advanced math and
computer science elective course sequence within the Math Academy
program at Pasadena High School. During its operation from 2020 to
2023, Eurisko was the most advanced high school math/CS sequence in
the USA. (“Eurisko” is Greek for “I discover,” and is the namesake of an
AI system from the 1980s that won a particular game competition twice
in a row, even when the rules were changed in an attempt to handicap
it.)

Eurisko’s courses were presented at a level of intensity comparable to
those offered at elite technical universities, and students wrote all their
code from scratch before they were allowed to import external libraries.
This was possible because students had already learned a large amount
of college-level math through Math Academy, including multivariable
calculus, linear algebra, and differential equations by the end of 10th
grade.
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The first Eurisko course was inspired by MIT’s Introduction to
Computer Science and went far beyond it. In addition to implementing
canonical data structures and algorithms (sorting, searching, graph
traversals), students wrote their own machine learning algorithms
from scratch (polynomial and logistic regression, k-nearest neighbors,
k-means clustering, parameter fitting via gradient descent).

In subsequent courses, students implemented more advanced machine
learning algorithms such as decision trees and neural networks. They
also reproduced academic research papers in artificial intelligence
leading up to Blondie24, an AI computer program that taught itself
to play checkers. At the same time, they worked together to implement
Space Empires, an extremely complex board game that pushed their
large-scale project skills (object-oriented design, version control, etc.)
to the limit. The ultimate goal was to create artificially intelligent
Space Empires players, drawing inspiration from techniques used in
Blondie24.

This book would not have been written if the Eurisko program had
not existed, and Eurisko would not have been possible without the
collaboration of Jason Roberts, founder of Math Academy. Eurisko
started in June 2020 when Jason asked me to teach his 15-year-old son
Colby some serious computer science over the summer. He pulled
in some of Colby’s classmates who had the necessary mathematical
background, and we put together a summer computer science group
that met three times a week with about 10 hours of problem sets each
week.

All problem sets required students to write code individually, from
scratch, in Python. They weren’t allowed to use external libraries.



Instead, they had to build everything themselves. They were allowed
to collaborate at a high level, discussing different approaches to solving
the problems, but every student had to write up every problem set on
their own.

To our surprise, the students progressed even faster than we could have
possibly expected:

• At the start of June, they didn’t know how to write helper
functions. Even something as simple as checking if a string was a
palindrome was not trivial to them.

• By the start of July, they had built a matrix class and a gradient
descent optimizer from scratch. The matrix class included
methods for matrix arithmetic as well as standard linear algebra
procedures like row reduction, determinants, and inverses.

• By the start of August, they had built a regression library on top
of their matrix class and gradient descent optimizer. The library
included polynomial, logistic, and multiple linear regressors with
interaction terms.

• On top of all this, they also implemented standard algorithms for
sorting arrays and traversing graphs. And per Jason’s suggestion,
to get some systems programming experience, they also created
a simple version of the Space Empires board game and played
against each other by programming and submitting autonomous
strategies.

At the end of the summer, Eurisko was fortunate to receive funding
for an official high school class through a partnership with App



Academy. Jason recruited a second cohort of incoming 10th graders,
and – through an extreme feat of class management – I managed to
continue supporting the first cohort while simultaneously launching
the second cohort within the same class period.

The class setup during the 2020-21 year was incredibly tricky. School
was fully remote due to the pandemic, and each cohort only had two
hours of class time over a group video call each week. If a student got
stuck, they had to ask for help by posting a message on Slack, and the
message had to be descriptive enough that I or another classmate could
quickly understand their question and respond briefly without burning
much time. This setup would be a steep learning curve for any junior
developer, much less a high school underclassman with little to no prior
coding experience – but we made do, and those students who muscled
through it emerged with an incredible amount of self-sufficiency and
debugging ability. (Not to mention, we did all this on school-issued
Chromebooks using free online development environments like Replit
and Gitpod.)

Later years became significantly smoother as I refined the curriculum
and school returned to in-person classes. During the 2021-22 year, most
problem sets contained written tutorials descriptive enough that I only
had to give a traditional lesson once per week. Over summer 2022 I
further refined and organized these tutorials into book chapters, and
during the 2022-23 year, the Eurisko classes were almost entirely self-
service. Students read the assigned chapter on their own and completed
practice problems. In class, instead of giving a traditional lesson, I
answered questions and helped students debug their code.



In 2021, Jason shared a wild idea to have Eurisko students reproduce
the Blondie24 research papers and use that as inspiration to create
artificially intelligent Space Empires players. This became our vision
for the ultimate capstone project. The first Eurisko cohort came within
striking distance but ultimately ran out of time because they only
had two full years of Eurisko instead of three. But the second cohort
managed to reproduce one to two of the three papers in the Blondie24
research program and use this as inspiration for evolving combat
strategies within Space Empires.

The second cohort’s final year (2022-23) also happened to be the final
year of the Eurisko program due to my relocation. All together, there
were 16 students who stayed for the duration of the program.

• Cohort 1 (Summer 2020 - Spring 2022): David Gieselman, George
Meza, Riley Paddock, Colby Roberts, Elijah Tarr

• Cohort 2 (Fall 2020 - Spring 2023): Maia Dimas, Justin Hong,
Cayden Lau, Anton Perez, William Wallius, Charlie Weinberger

• Cohort 3 (Fall 2021 - Spring 2023): Celeste Acosta, Elias Gee,
Benjamin Park, Jeffrey Smithwick

• Cohort 4 (Fall 2022 - Spring 2023): Matteo Paz

Finally, a sincere thank you to Sanjana Kulkarni for her thoughtful
suggestions and diligent proofreading of this book.
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Part I

Hello World
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1. Some Short Introductory
Coding Exercises

Let’s get started on some introductory coding exercises. It’s assumed
that you’ve had some basic exposure to programming and that
you know about variables, functions, if statements, for loops, while
statements, arrays, strings, and dictionaries. Ideally, you’ve learned some
object-oriented programming (classes, attributes, methods) as well. We
will speak in terms of Python, but the general ideas are applicable to any
programming language.

It’s important to understand that in coding, you should always try to
do as much as you can on your own, using Google as a resource if
needed. Don’t know what a word means? Google it. Don’t know how
to run a file from the command line? Google it. Don’t know how to get
the second character of a string? Google it. Our goal is to provide just
enough scaffolding to give you direction while avoiding hand-holding.
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Exercises

Write the following functions from scratch. Don’t use any external
libraries or any built-in functions that allow you to bypass the use of
for loops, while loops, or if statements in nontrivial ways. In particular,
don’t use Set or Counter . But you can use primitives like len()

and Array.append .

1. check_if_symmetric(string)

Return True if the input string is symmetric (i.e. a palindrome),
and False if not. You can ignore capitalization.

2. convert_to_numbers(string)

Return an array of numbers corresponding to letters in a
string where space = 0, a = 1, b = 2, and so on. For
example, convert_to_numbers('a cat') should return
[1,0,3,1,20] .

3. convert_to_letters(string)

This is the inverse of convert_to_numbers . For example,
convert_to_letters([1,0,3,1,20]) should return
'a cat' .

4. get_intersection(array1, array2)

Return an array consisting of the elements that are in both
array1 and array2 . There should not be any repeated

elements in the output array.

5. get_union(array1, array2)

Return an array consisting of the elements that are in either
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array1 or array2 . Again, there should not be any repeated
elements in the output array.

6. count_characters(string)

Count the number of each character in a string and
return the counts in a dictionary. Lowercase and
uppercase letters should not be treated differently. For
example, count_characters('A cat!!!') should
return the dictionary { 'a': 2, 'c': 1, 't': 1,

' ': 1, '!': 3 } .

7. is_prime(N)

Check whether an input integer N > 1 is prime by checking
whether there exists some n ∈ {2, 3, 4, . . . , ⌊N/2⌋} such that
n divides N. (The ⌊ ⌋ symbol denotes the floor function.)

Tests

In another file, write a variety of tests for each function. Two example
tests are shown below for check_if_symmetric . You can use these,
but you should also write more tests that cover all the edge-cases you
can think of. (For example, an empty string is symmetric, and the string
'!ab123 4 321ba!' is also symmetric.)
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from hello_world import check_if_symmetric

tests = [
{

'function': check_if_symmetric ,
'input': 'racecar',
'output': True

},
{

'function': check_if_symmetric ,
'input': 'batman',
'output': False

}
]

num_successes = 0
num_failures = 0

for test in tests:
function = test['function']
test_input = test['input']
desired_output = test['output']
actual_output = function(test_input)

if actual_output == desired_output:
num_successes += 1

else:
num_failures += 1
function_name = function.__name__
print('')
print(f'{function_name} failed on input {

test_input}');
print(f'\tActual output: {actual_output}')
print(f'\tDesired output: {desired_output}')

print(f'Testing complete: {num_successes} successes and
{num_failures} failures.')
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Debugging

Run your tests and fix any failures. If you struggle with anything, don’t
ask others for help until you’ve made a thorough effort to debug the
issue on your own. Here are some debugging tips:

1. Print out everything. Within the function that you’re debugging,
print out every manipulation that your code makes, even if you
don’t think it’s making a mistake there. Bugs often show up in
places you don’t expect. Also, don’t just print out the values of
variables – it will help you avoid confusion if you print the names
of the variables as well.

2. Identify the first discrepancy. Manually work out what the
printouts should be, and then look for the first instance where
the actual printouts deviate from what you’re expecting.

3. If the discrepancy involves a helper function, then isolate the issue
in a separate file and return to step 1. If the issue is occurring
when you’re passing inputs into a helper function, then create
a separate file where all you do is pass those inputs into the
helper function, and go back to step 1 (print out everything)
with the helper function. This way, you can focus entirely on
the helper function without worrying about any other pieces of
code interacting with it.

4. If the discrepancy does not involve a helper function and you still
can’t figure out what’s going wrong, then ask for help. Be sure
that you can explain what you’ve done to debug the issue so
far, including the furthest point back to which you’ve traced the
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bug. Keep your debugging print statements in your function and
make sure the printouts are organized so that another person
can follow along with them without knowing all the nitty-gritty
details of your code.

Code Quality

Your code should be clean and work in general. If you have thorough
test coverage, you can be fairly confident that your code works in general.
To be confident that your code is clean, do the following:

• Run your code through a linter (like pep8online) and fix all the
issues.

• Use proper cases. In Python, variables, functions, and files
use snake_case (all lowercase with underscores separating
words), while classes use PascalCase (no spaces with each
separate word capitalized).

• Make sure that your variable names are clear and appropriate.
Variables and classes should be nouns, while functions (including
methods) should be verbs. Additionally, names should be
descriptive. It’s okay to make a name multiple words long if
you need. For example, calc_prob() is much better than
prob() or cp() .

8



2. Converting Between Binary,
Decimal, and Hexadecimal

We are used to representing numbers using ten characters: 0, 1, 2, 3, 4,
5, 6, 7, 8, 9. This is called the decimal number system.

However, there are other number systems that use more or fewer
characters. For example, the binary or base-2 number system uses two
characters (0 and 1), and the hexadecimal or base-16 number system
uses sixteen characters (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,

where A = 10, B = 11, C = 12, D = 13, E = 14, F = 15).

Counting Demonstration

Below is a table that illustrates how to count from zero to thirty-
two in these different number systems. Each column corresponds to
a different number system, and each row shows how the same quantity
is represented in the three different number systems.
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The key pattern to notice is that you always increment the character
in the rightmost digit, unless it has reached the last character. In that
case, you replace it with the first character and then increment the digit
directly to the left.

Decimal Binary Hexadecimal

0 0 0

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14
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Decimal Binary Hexadecimal

21 10101 15

22 10110 16

23 10111 17

24 11000 18

25 11001 19

26 11010 1A
27 11011 1B
28 11100 1C
29 11101 1D
30 11110 1E
31 11111 1F
32 100000 20

Converting from Base-b to Decimal

In general, if you have a number consisting of digitsxnxn−1 . . . x1x0 in
base-b, then you can convert it to decimal using the following formula:

xn · bn + xn−1 · bn−1 + . . .+ x1 · b1 + x0 · b0

For instance, the number 11010 in binary (base-2) corresponds to the
following number in decimal:
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1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 0 · 20

= 26

Likewise, the number 3B07F in hexadecimal (base-16) corresponds to
the following number in decimal:

3 · 164 + B · 163 + 0 · 162 + 7 · 161 + F · 160

3 · 164 + 11 · 163 + 0 · 162 + 7 · 161 + 15 · 160

= 241791

Converting from Decimal to Base-b

On the other hand, if you have a decimal number and you want to
convert it to base-b, then you can repeatedly compute the highest power
of b (call it bn) that’s less than or equal to your decimal number, and
then subtract off the largest multiple of bn that’s less than or equal to
your decimal number.

For example, to convert the decimal number 26 to binary (base-2), we
do the following:

1. The largest power of 2 that’s less than or equal to 26 is 24 =

16. The largest multiple of 16 that’s less than or equal to 26 is
1 · 16 = 16. Subtracting off, we have 26− 16 = 10.

12
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2. The largest power of 2 that’s less than or equal to 10 is 23 = 8.

The largest multiple of8 that’s less than or equal to10 is1·8 = 8.

Subtracting off, we have 10− 8 = 2.

3. The largest power of 2 that’s less than or equal to 2 is 21 = 2.

The largest multiple of 2 that’s less than or equal to 2 is 1 ·2 = 2.

Subtracting off, we have 2− 2 = 0.

4. We subtracted off 1 · 24, 1 · 23, and 1 · 21. Therefore, We can
write 26 as 1 · 24 +1 · 23 +0 · 22 +1 · 21 +0 · 20, which has
coefficients 1, 1, 0, 1, 0 and therefore corresponds to the binary
number 11010.

Likewise, to convert the decimal number 241791 to hexadecimal (base-
16), we do the following:

1. The largest power of 16 that’s less than or equal to 241791 is
164 = 65536. The largest multiple of 65536 that’s less than or
equal to 241791 is 3·65536 = 196608. Subtracting off, we have
241791− 196608 = 45183.

2. The largest power of16 that’s less than or equal to45183 is163 =
4096. The largest multiple of 4096 that’s less than or equal to
45183 is 11 · 4096 = 45056. Subtracting off, we have 45183−
45056 = 127.

3. The largest power of 16 that’s less than or equal to 127 is 161 =
16. The largest multiple of 16 that’s less than or equal to 127 is
7 · 16 = 112. Subtracting off, we have 127− 112 = 15.

4. We subtracted off 3·164, 11·163, 7·161, and15·160.Therefore,
We can write 241791 as 3 · 164 +11 · 163 +0 · 162 +7 · 161

13
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+15 · 160, which has coefficients 3, 11, 0, 7, 15 and therefore
corresponds to the hexadecimal number 3B07F.

Exercises

Write the following functions. You can use string representations for
all your inputs and outputs. As always, write a handful of tests for each
function.

1. binary_to_decimal(string)

Take a binary representation of a number and
return the decimal representation. For example,
binary_to_decimal('11010') should return '26' .

2. hexadecimal_to_decimal(string)

Take a hexadecimal representation of a number and return the
decimal representation.

3. decimal_to_binary(string)

Take a decimal representation of a number and return the binary
representation.

4. decimal_to_hexadecimal(string)

Take a decimal representation of a number and return the
hexadecimal representation.

5. binary_to_hexadecimal(string)

Take a binary representation of a number and return the
hexadecimal representation. This is easy once you’ve written the
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functions above: just convert from binary to decimal, and then
from decimal to hexadecimal.

6. hexadecimal_to_binary(string)

Take a hexadecimal representation of a number and return the
binary representation. This is easy once you’ve written the
functions above: just convert from hexadecimal to decimal, and
then from decimal to binary.
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3. Recursive Sequences

A recursive sequence is a sequence where each term is a function of
the previous terms.

For example, consider the following rule for generating a recursive
sequence: starting with 3, generate each term by doubling the previous
term and adding 1. The terms of this sequence are as follows:

3, 7, 15, 31, 63, 127, 255, 511, . . .

Implementing Recursive Sequences

One way to implement recursive sequences in code is to store all terms
in an array. For example, a function that returns the first n terms of the
recursive sequence “starting with 3, generate each term by doubling the
previous term and adding 1” could be implemented as follows:

17
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def calc_first_n_terms(n):
terms = [3]

while len(terms) < n:
prev_term = terms [-1]
next_term = 2 * prev_term + 1
terms.append(next_term)

return terms

If all we want is thenth term, then it can sometimes be more convenient
to make the implementation itself recursive. This way, we don’t have
to bother storing any intermediate values.

def calc_nth_term(n):
if n == 1:

return 3
else:

prev_term = calc_nth_term(n-1)
return 2 * prev_term + 1

To understand how the function above works, first notice that
calc_nth_term(1) will return 3. This is called the base case. If

a different input is passed, then the function will keep calling itself in a
lower input until it reaches the base case.

18
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calc_nth_term (4)
|
|--> prev_term

= calc_nth_term (3)
|
|--> prev_term

= calc_nth_term (2)
|
|--> prev_term

= calc_nth_term (1)
|
|--> return 3

|
|<--
|

|<-- return 2 * 3 + 1 = 7
|

|<-- return 2 * 7 + 1 = 15
|

|<-- return 2 * 15 + 1 = 31

Output: 31

Exercises

Several different recursive sequences are described below. For each
sequence, write a function to generate an array containing first n terms,
and then write a separate recursive function to generate the nth term.
Be sure to work these sequences out by hand and write tests.

1. Starting with 5, generate each term by multiplying the previous
term by 3 and subtracting 4.
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2. Starting with 25, generate each term by taking half of the
previous term if it’s even, or multiplying by 3 and adding 1 if
it’s odd. (This is an instance of a Collatz sequence.)

3. Starting with 0, 1, generate each term by adding the previous
two terms. (This is the famous Fibonacci sequence.)

4. Starting with 2,−3, generate each term by adding the product
of the previous two terms.

20



4. Simulating Coin Flips

It’s often possible to estimate probabilities of events by simulating a
large number of random experiments and measuring the proportion of
trials in which the desired outcome occurred. This technique is known
as Monte Carlo simulation, named after a famous casino town.

To simulate random experiments in code, it’s common to use a random
number generator and then map the output of the random number
generator to an outcome of the experiment. For example, to simulate a
coin flip, one could generate a random decimal r between 0 and 1 and
apply the following function:

outcome(r) =

heads if r < 0.5

tails otherwise

21
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Exercises

Write a function sim_probability(num_heads, num_flips)

that uses Monte Carlo simulation to compute the probability of getting
a given number of heads in a given number of flips of a fair coin.

1. First, simulate a large number of trials (say, 1000). In each trial,
flip a coin num_flips times and count how many heads appear.
You may import a random number generator for this.

2. Then, count the number of trials in which exactly num_heads

heads appeared and divide it by the total number of trials (1000).

To test your implementation, work out the result by hand for several
combinations of num_heads and num_flips , and verify that your
function consistently returns results that are close to these true values.

High-Level Sanity Checks

In this exercise, we tested the function by working out the probability
by hand. However, Monte Carlo simulation is often used to estimate
probabilities that are too complicated to work out by hand. In such
cases, it’s common to test the implementation by

• working out simple cases by hand when possible, and

• performing high-level sanity checks.
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High-level sanity checks still involve identifying and verifying true
statements, but these true statements do not need to refer to exact
values.

To illustrate, let’s brainstorm some characteristics about how the
probability of getting a particular number of heads is related to the
number of coin flips:

• The probabilities should form a distribution, i.e. they should be
non-negative and add up to 1.

• This distribution should look somewhat like a bell curve, with
the most likely outcome being that half of the coins land on heads
and the other half on tails.

• Since landing on heads is just as likely as landing on tails, the
distribution should be symmetric.

To verify these characteristics, you can choose some value of
num_flips , compute the values

• sim_probability(1, num_flips) ,

• sim_probability(2, num_flips) ,

• ...,

• sim_probability(num_heads, num_flips) ,

and then check the following:
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• The values are all non-negative and their sum is approximately
1.

• The graph of probability vs num_heads looks like a symmetric
bell curve.

Try doing this for several values of num_flips .

24



5. Roulette Wheel Selection

As we saw previously, it’s easy to simulate a random coin flip by
generating a random decimal r between 0 and 1 and applying the
following function:

outcome(r) =

heads if r < 0.5

tails otherwise

This is a special case of a more general idea: sampling from a discrete
probability distribution. Flipping a fair coin is tantamount to sampling
from the distribution [0.5, 0.5] , i.e. 0.5 probability heads and 0.5
probability tails.

More complicated contexts may require sampling from longer
distributions that may or may not be uniform. For example, if we wish
to simulate the outcome of rolling a die with two red faces, one blue
face, one green face, and one yellow face, then we need to sample from
the distribution [0.4, 0.2, 0.2, 0.2] .

Note that when we sample from the distribution, we need only
sample an index from the distribution, and then use the index to look
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up the desired value. For example, when we sample an index from
the distribution [0.4, 0.2, 0.2, 0.2] , we have probabilities
0.4, 0.2, 0.2, and 0.2 of getting indices 0, 1, 2, and 3 respectively.
Then, all we need to do is look up that index in the following array:
[red, blue, green, yellow] .

Roulette Wheel Selection

Roulette wheel selection is an elegant technique for sampling an
index from an arbitrary discrete probability distribution. It works as
follows:

1. turn the distribution into a cumulative distribution,

2. sample a random number r between 0 and 1, and then

3. find the index of the first value in the cumulative distribution
that is greater than or equal to r.

To illustrate, let’s sample an index from the distribution
[0.4, 0.2, 0.2, 0.2] that was mentioned above in the

context of a die roll.

1. First, we construct the cumulative distribution:
[0.4, 0.4+0.2, 0.4+0.2+0.2, 0.4+0.2+0.2+0.2] ,

or more simply, [0.4, 0.6, 0.8, 1.0] .

2. Then, we sample a random number r between 0 and 1. Suppose
we get r = 0.63.
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3. Finally, we find the index of the first value in the cumulative
distribution that is greater than or equal to r = 0.63. In our
case, this is the value 0.8 at index 2, because the next value (1.0
at index 3) is greater than r = 0.63.

So, we have sampled the index 2.

Exercise

Write a function random_draw(distribution) that samples a
random number such that distribution[i] is the probability of
sampling index i .

To test your function on a particular distribution, sample many indices
from the distribution and ensure that the proportion of times each
index gets sampled matches the corresponding probability in the
distribution. Do this for a handful of different distributions.
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6. Cartesian Product

Implementing the Cartesian product provides good practice working
with arrays. Recall that the Cartesian product constructs all the points
whose elements occupy the given ranges. To illustrate:

>>> calc_cartesian_product ([
['a'],
[1, 2, 3],
['Y', 'Z']

])

[
['a', 1, 'Y'],
['a', 1, 'Z'],
['a', 2, 'Y'],
['a', 2, 'Z'],
['a', 3, 'Y'],
['a', 3, 'Z']

]
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Implementation

The Cartesian product can be implemented elegantly via the following
procedure:

1. Create an array that will contain all the points in the
cartesian product. Initialize it with a single empty point, i.e.
points = [[]] .

2. Create a copy of points , and for each copied point, loop
through the first range and create an extended point by
appending a range item onto the copied point, create a handful
of new points. Collect all these extended points and save them
to points .

3. Repeat step 2 for each range.

Below is a worked example.
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ranges = [
['a'],
[1, 2, 3],
['Y', 'Z']

]

points: [
[]

]

looping through range ['a']:
- item 'a' --> extended point ['a']

points: [
['a']

]

looping through range [1, 2, 3]:
- item 1 --> extended point ['a', 1]
- item 2 --> extended point ['a', 2]
- item 3 --> extended point ['a', 3]

points: [
['a', 1],
['a', 2],
['a', 3]

]

looping through range ['Y', 'Z']:
- item 'Y' --> extended points ['a', 1, 'Y'], ['a', 2,

'Y'], ['a', 3, 'Y']
- item 'Z' --> extended points ['a', 1, 'Z'], ['a', 2,

'Z'], ['a', 3, 'Z']

points: [
['a', 1, 'Y'], ['a', 2, 'Y'], ['a', 3, 'Y'],
['a', 1, 'Z'], ['a', 2, 'Z'], ['a', 3, 'Z']

]
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Copying an Array

When copying an array, it’s essential to create an entirely new array, not
just reference the original array. Observe that if we just reference the old
array, then any new changes to the original array get propagated to the
new array.

>>> arr = [1, 2]
>>> arr_copy = arr # just references the original

array

>>> arr.append (3)
>>> print(arr_copy)
[1, 2, 3] # this is not [1, 2]

To avoid this issue, you need to create an entirely new array:

>>> arr = [1, 2]
>>> arr_copy = []

# create an entirely new array
>>> for item in arr:

arr_copy.append(item)

>>> arr.append (3)
>>> print(arr_copy)
[1, 2]

Note that if our array contains items that are themselves arrays, then
it’s necessary to copy those items as well.

Implement calc_cartesian_product , verify that it reproduces
the example above, and write a handful of other tests.
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Part II

Searching and Sorting
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7. Brute Force Search with
Linear-Encoding
Cryptography

An encoding function maps a string to a sequence of numbers. For
example, you have already implemented the trivial encoding function,
defined as follows:

' ' --> 0
'a' --> 1
'b' --> 2
...
'z' --> 26

There are many different types of encoding functions, but here we will
focus on linear encoding functions. For example, using a linear encoding
function f(x) = 2x + 3, we can encode the message 'a cat' as
follows:
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Original message: 'a cat'
Trivial encoding: [1, 0, 3, 1, 20]
Linear encoding: [2*1+3 , 2*0+3 , 2*3+3, 2*1+3, 2*20+3]

= [5, 3, 9, 5, 43]

Recovering a Message

If we want to recover our message from the linear encoding, we first solve
for the inverse of the encoding function, i.e. the decoding function:

f(x) = 2x+ 3

x = 2f−1(x) + 3

f−1(x) =
x− 3

2

Then, we apply the decoding function to the encoded message:

Linear encoding: [5, 3, 9, 5, 43]
Trivial encoding: [(5-3)/2, (3-3)/2, (9-3)/2, (5-3)/2,

(43 -3) /2]
= [1, 0, 3, 1, 20]

Original message: 'a cat'
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Recovering a Message with Multiple Possible
Encoding Functions

Now, suppose we have a message [3, 1, 9, 31, 15] and we know
that this message was encoded using a linear encoding function f(x) =

ax + b with a ∈ {1, 2} and b ∈ {1, 2}. Can we break the code and
recover the initial message?

The simplest way to do this is through brute-force search, which
involves trying every single possibility. Here, there are 4 possible
encoding functions:

fab(x) = ax+ b

f11(x) = 1x+ 1

f12(x) = 1x+ 2

f21(x) = 2x+ 1

f22(x) = 2x+ 2

By inverting these encoding functions, we obtain the following
decoding functions:
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f−1
ab (x) =

x− b

a

f−1
11 (x) =

x− 1

1

f−1
12 (x) =

x− 2

1

f−1
21 (x) =

x− 1

2

f−1
22 (x) =

x− 2

2

Let’s apply each of these decoding functions to our encoded message
[3, 1, 9, 31, 15] and see what they come up with. Remember

that in order to represent a message, the results must all be integers
between 0 and 26 inclusive.
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[3, 1, 9, 31, 15]

a, b
[(3-b)/a, (1-b)/a, (9-b)/a, (31-b)/a, (15-b)/a]

a=1, b=1
[(3 -1)/1, (1-1)/1, (9-1)/1, (31-1)/1, (15 -1)/1]
[2, 0, 8, 30, 14]
30 is too big
does not represent a message

a=1, b=2
[(3 -2)/1, (1-2)/1, (9-2)/1, (31-2)/1, (15 -2)/1]
[1, -1, 7, 29, 13]
-1 is too small , 29 is too big
does not represent a message

a=2, b=1
[(3 -1)/2, (1-1)/2, (9-1)/2, (31-1)/2, (15 -1)/2]
[1, 0, 4, 15, 7]
message: 'a dog'

a=2, b=2
[(3 -2)/2, (1-2)/2, (9-2)/2, (31-2)/2, (15 -2)/2]
[0.5, -0.5, 3.5, 14.5, 6.5]
contains non -integer entries
does not represent a message

We conclude that the original message was 'a dog' and that it was
encoded using a = 2 and b = 1.
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Exercises

As usual, be sure to include a variety of tests.

1. Write a function encode_string(string, a, b) that
encodes the string using the linear encoding function
f(x) = ax+ b and returns the resulting array of numbers.

2. Write a function decode_numbers(numbers, a, b) that
attempts to decode the numbers array under the assumption
that the encoding function was f(x) = ax+ b. If the numbers
represent a message, then return the string corresponding to that
message. Otherwise, return False .

3. Write a script to decode the message [377, 717, 71,

513, 105, 921, 581, 547, 547, 105, 377, 717,

241, 71, 105, 547, 71, 377, 547, 717, 751, 683,

785, 513, 241, 547, 751] , given that it was encoded
with a linear encoding function f(x) = ax + b where a and
b are both integers between 0 and 100 inclusive. Be sure to
print out all valid messages along with the values of a and b that
generated them. Note that although there may be more than
one valid message, only one will contain real words.
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8. Solving Magic Squares via
Backtracking

Brute force search can often be slow or infeasible when there are lots of
possibilities that must be checked.

However, a technique called backtracking can often be used to
drastically cut down the number of possibilities that must be checked.
The idea is that whenever we find ourselves constructing a set of
possibilities that we know are hopeless, we skip over them and backtrack
to the the point right before we started constructing the hopeless
possibilities.

Exercise: Brute Force

Use brute-force search to find all arrangements of the digits 1, 2, . . . ,
9 into a 3× 3 magic square where all the rows, columns, and diagonals
add up to 15 and no digits are repeated.

You may use 9 nested for loops if you’d like. It’s ugly but conceptually
simple and gets the job done. To illustrate, pseudocode is provided
below.
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digits = [1, 2, ..., 9]
square = [

[None , None , None]
[None , None , None]
[None , None , None]

]

for num1 in digits:
clear out the square and put num1 in

for num2 in digits excluding num1:
clear out the square and put num1 , num2 in

for num3 in digits excluding num1 , num2:
clear out the square and put num1 , num2 , num3 in

... and so on

for num9 in digits excluding num1 , ..., num8:
clear out the square and put num1 , ..., num9 in

if is_valid(square):
print(square)

Note that this solution will be rather slow because it will require
checking 9! = 362 880 arrangements of digits.

Exercise: Backtracking

Repeat the above exercise, but this time, whenever you reach an
arrangement of digits that can no longer become a valid magic square,
do not explore that arrangement any further. You can accomplish this
by doing the following:
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1. Write a function is_hopeless(square) to check whether
an incomplete square could ever become a valid square. A square
is hopeless if any row, column, or diagonal is filled in and does
not sum to 15.

2. Place continue statements in your 9 nested for loops so that
you skip inner loops whenever you detect a hopeless square.

Below are some examples to illustrate how the is_hopeless

function should work.

>>> is_hopeless ([
[1, 2, None],
[None , 3, None],
[5, 6, 4 ]

])

OUTPUT: True

REASONING
- A diagonal is filled in and it doesn ’t sum to 15.

- No matter how we fill the rest of the square ,
this diagonal still won’t sum to 15.

- Therefore , this incomplete arrangement cannot lead
to any valid square.
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>>> is_hopeless ([
[1, 2, None],
[None , None , None],
[5, 6, 4 ]

])

OUTPUT: False

REASONING: There are no filled rows , columns , or
diagonals that don’t sum to 15.

>>> is_hopeless ([
[None , None , None]
[None , None , None]
[None , None , None]

])

OUTPUT: False

REASONING: There are no filled rows , columns , or
diagonals that don’t sum to 15.
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Below is an illustration of how to skip inner loops using continue

statements.

for num1 in digits:
clear out the square and put num1 in it

if is_hopeless(square):
continue

for num2 in digits excluding num1:
clear out the square and put num1 , num2 in it

if is_hopeless(square):
continue

... and so on

To give a concrete demonstration of backtracking, the first several
arrangements that get explored are shown below.
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[[_,_,_],
[_,_,_],
[_,_,_]]

[[1,_,_],
[_,_,_],
[_,_,_]]

[[1,2,_],
[_,_,_],
[_,_,_]]

[[1,2,3],
[_,_,_],
[_,_,_]]

^ hopeless -- do not explore further

[[1,2,4],
[_,_,_],
[_,_,_]]

^ hopeless -- do not explore further

[[1,2,5],
[_,_,_],
[_,_,_]]

^ hopeless -- do not explore further

...

[[1,2,9],
[_,_,_],
[_,_,_]]

^ hopeless -- do not explore further

[[1,3,_],
[_,_,_],
[_,_,_]]

...
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9. Estimating Roots via
Bisection Search and
Newton-Raphson Method

Two of the simplest methods for estimating roots of functions are
bisection search and the Newton-Raphson method. We will cover
both of these here.

Bisection Search

To estimate the root of a function using bisection search, we start
with a lower bound and an upper bound and then repeatedly move one
bound halfway to the other.

Let’s use bisection search to approximate the value of 3
√
2 by

approximating the root of the function f(x) = x3 − 2. We’ll use
x = 1 as the lower bound and x = 3 as the upper bound since
f(1) < 0 < f(3). Note that the function values are positive to the
right of the root and negative to the left of the root.

47



Justin Skycak

1. Our bounds are [1, 3] and the midpoint 2. Since f(2) = 6 > 0,

we know that 2 is bigger than the root. So, we use 2 as our new
upper bound.

2. Our bounds are [1, 2] and the midpoint 1.5. Since f(1.5) =

1.375 > 0, we know that 1.5 is bigger than the root. So, we use
1.5 as our new upper bound.

3. Our bounds are [1, 1.5] and the midpoint is 1.25. Since
f(1.25) = −0.046875 < 0, we know that 1.25 is smaller than
the root. So, we use 1.25 as our new lower bound.

4. Our bounds are [1.25, 1.5] and the midpoint is 1.375. Since
f(1.375) ≈ 0.599609 > 0, we know that 1.375 is bigger than
the root. So, we use 1.375 as our new upper bound.

Our next bounds are [1.25, 1.375], which tells us that 3
√
2 is between

1.25 and 1.375. Our best guess is the midpoint, 1.3125, and the
precision of our guess (i.e. the maximum amount we can be off by) is the
distance from the midpoint to the bounds. In our case, the precision
is 0.0625. We can keep on repeating the bisection procedure until our
guess is as precise as we want.

Newton-Raphson Method

To estimate the root of a function using the Newton-Raphson
method, we start with an initial guess and then repeatedly update our
guess to be the root of the tangent line to the function.
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To illustrate, let’s again approximate the value of 3
√
2 by approximating

the root of the function f(x) = x3 − 2. We’ll use x = 2 as our
initial guess. Remember that the slope of the tangent line is given by
the derivative, which in this case is f ′(x) = 3x2.

1. Our guess is x = 2. The function value is f(2) = 6 and the
slope of the tangent line is f ′(2) = 12, so the tangent line is
given by y − 6 = 12(x − 2). The root of this tangent line is
obtained by solving the equation 0 − 6 = 12(x − 2), which
gives us x = 1.5.

2. Our guess isx = 1.5.The function value is f(1.5) = 1.375 and
the slope of the tangent line is f ′(1.5) = 6.75, so the tangent
line is given by y − 1.375 = 6.75(x − 1.5). The root of this
tangent line is obtained by solving the equation 0 − 1.375 =

6.75(x− 1.5), which gives us x ≈ 1.2963.

Our next guess would be x = 1.2963. Note that this is rounded to
4 decimal places, but we wouldn’t actually round this number in our
computer program. We can keep on repeating the Newton-Raphson
procedure until our guesses converge, i.e. stay the same when rounded
to the desired number of decimal places.

Lastly, note that to implement the Newton-Raphson procedure, it’s
necessary to come up with a formula for the root of the tangent line. If
the tangent line is y− y0 = m(x− x0), then the root is the value of x
that solves the equation 0− y0 = m(x− x0). You can find this value
of x in terms of the other variables x0, y0, and m.
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Exercises

As usual, be sure to include a variety of tests.

1. Write a script that approximates 3
√
2 to a precision of 6 decimal

places using bisection search. (This should match up against the
provided example and continue for more iterations.)

2. Write a script that approximates 3
√
2 to a precision of 6 decimal

places using the Newton-Raphson method. (This should
match up against the provided example and continue for more
iterations.)

3. Write a function calc_root_bisection(a, n, precision)

that approximates n
√
a to the desired level of precision using

bisection search.

4. Write a function calc_root_newton_raphson(a, n,

precision) that approximates n
√
a to the desired level of

precision using the Newton-Raphson method.
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10. Single-Variable Gradient
Descent

Gradient descent is a technique for minimizing differentiable
functions. The idea is that we take an initial guess as to what the
minimum is, and then repeatedly use the gradient to nudge that guess
further and further “downhill” into an actual minimum.

Let’s start by considering the simple case of minimizing a single-variable
function – say, f(x) = x2 with the initial guess that the minimum is
at x = 1. Of course, this guess is not correct since the minimum is not
actually at x = 1, but we will repeatedly update the guess to become
more and more correct.

Intuition About the Sign of the Derivative

To update our guess, we start by computing the gradient at x = 1. For
a single-variable function, the gradient is just the plain old derivative.
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f(x) = x2

f ′(x) = 2x

f ′(1) = 2 · 1 = 2

We found that the derivative is f ′(1) = 2. Now that we know the
value of the derivative at our guess, we can use it to update our guess.
In general, we have the following intuition:

• If the derivative is positive, then the function is sloping up, and
we can move downhill by nudging our guess to the left (i.e.
decreasing the x-value of our guess).

• If the derivative is negative, then the function is sloping down,
and we can move downhill by nudging our guess to the right (i.e.
increasing our the x-value of our guess).

Put more simply:

• If the function is increasing, then we should decrease our guess.

• If the function is decreasing, then we should increase our guess.

Here, the derivative f ′(1) = 2 is positive, which means the function
is increasing and we should decrease the x-value of our guess. Indeed,
if we sketch up a graph of the situation, we can see that decreasing our
guess will take us closer to the actual minimum:
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Gradient Descent Formula

Now, the question is: by how much should we update our guess? If we
decrease thex-value of our guess by too much, then we’ll pass right over
the minimum and end up on the other side, maybe even further away
from the minimum than we were to start with. But if we decrease the
x-value of our guess by too little, then we will barely move at all and we
will have to repeat this procedure an excessive number of times before
actually getting close to the minimum.

For most differentiable functions that appear in machine learning, the
amount by which we should update our guess depends on how steep the
graph is. The steeper the graph is, the further we are from the minimum,
and the more freedom we have to update our guess without worrying
about moving it too far. So, we have the following formula for our next
guess:
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xn+1 = xn − αf ′(xn)

Before we perform any computations with this formula, let’s elaborate
on each part of it.

• xn is our nth guess (i.e. the current guess), and xn+1 is the next
guess.

• f ′(xn) is the derivative at our current guess, and it tells us
whether the function is increasing or decreasing (as well as how
steep the function is).

• α is a positive constant called the learning rate, and the quantity
αf ′(xn) is the amount by which we update our guess. (We
generally try to run the gradient descent algorithm with a
learning rate around α ≈ 0.01 to start with, but if this learning
rate causes our guesses to diverge, then decrease the learning rate
and try again. More on that later.)

• We are subtracting αf ′(xn) because we want to move our guess
xn in the opposite direction as the derivative f ′(xn). Remember
that if the function is increasing (i.e. positive derivative) then we
want to move our guess to the left (i.e. decrease it), and if the
function is decreasing (i.e. negative derivative) then we want to
move our guess to the right (i.e. increase it). The steeper the graph
is (i.e. the larger the magnitude of the derivative), the further we
want to move our guess.

54



Introduction to Algorithms and Machine Learning

Worked Example

Now, let’s finish working out our example. We are trying to minimize
the function f(x) = x2, our first guess is x0 = 1, and the derivative at
this guess is f ′(1) = 2. If we use a learning rate of α = 0.01, then our
next guess is

x1 = x0 − αf ′(x0)

= 1− (0.01) f ′(1)

= 1− (0.01)(2)

= 0.98.

To get the guess after that, we simply repeat the procedure again:

x2 = x1 − αf ′(x1)

= 0.98− (0.01) f ′(0.98)

= 0.98− (0.01)(1.96)

= 0.9604

In practice, we usually implement gradient descent as a computer
program because it is extremely tedious to do by hand. You should do
this and verify that you get the same results as shown in the table below.
In the table, we will round to 6 decimal places (but we do not actually
round in our computer program).
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n xn f ′(xn) αf ′(xn)

0 1 2 0.02

1 0.98 1.96 0.0196

2 0.9604 1.9208 0.019208

3 0.941192 1.882384 0.018824
...

...
...

...
25 0.603465 1.206929 0.012069

50 0.364170 0.728339 0.007283

100 0.132620 0.265239 0.002652

200 0.017588 0.035176 0.000352

300 0.002333 0.004665 0.000047

400 0.000309 0.000619 0.000006

We can visualize these results on our graph. Indeed, we see that our
guesses are converging to the minimum at x = 0.
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Local vs Global Minima

There is one big caveat to gradient descent that is essential to
understand: it is not guaranteed to converge to a global minimum. It’s
possible for gradient descent to get "stuck" in a local minimum, just like
a ball rolling down a hill might roll into a depression and get stuck there
instead of falling all the way to the bottom of the hill.

To illustrate this caveat numerically, let’s use gradient descent to find
the minimum value of the function f(x) = x4 + x3 − 2x2 starting
with the initial guess x = 1. Note that the derivative of this function
is f ′(x) = 4x3 + 3x2 − 4x.

n xn f ′(xn) αf ′(xn)

0 1 3 0.03

1 0.97 2.593392 0.025934

2 0.944066 2.263154 0.022632

3 0.921435 1.990732 0.019907
...

...
...

...
25 0.736701 0.280693 0.002807

50 0.701878 0.053456 0.000535

100 0.693413 0.002445 0.000024

200 0.6930014 0.000005 0.000000

Uh oh! We are converging to the local minimum at x = 0.69, but this
is not the global minimum of the function.
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Trying Different Initial Guesses

Because it’s possible for gradient descent to get stuck in local minima,
it’s often a good idea to run the gradient descent procedure with several
different initial guesses and use whichever final guess gives the best result
(i.e. lowest function value).

To illustrate, let’s run the gradient descent algorithm a couple more
times with different initial guesses. For the next run, we’ll start with the
initial guess x = 0.

n xn f ′(xn) αf ′(xn)

0 0 0 0

1 0 0 0

2 0 0 0

3 0 0 0
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Uh oh! This is even worse. We started at the top of a hill, and the
function is flat there (i.e. the derivative is zero), so our guesses are not
changing at all. In other words, the ball is not rolling down the hill
because it was placed at the very top where it’s flat.

Let’s try again, this time with initial guess x = −1.

n xn f ′(xn) αf ′(xn)

0 −1 3 0.03

1 −1.03 2.931792 0.029318

2 −1.059318 2.848862 0.028489

3 −1.087807 2.752289 0.027523
...

...
...

...
25 −1.410141 0.389810 0.003898

50 −1.441723 0.015732 0.000157

100 −1.442999 0.000022 0.000000

200 −1.443000 0.000000 0.000000

There we go! This time, we reached the desired global minimum.

Final Remarks

There are many different variations of gradient descent that attempt to
better avoid getting stuck in local minima. For example, some variations
incorporate the “momentum” of a ball rolling down a hill to help the
guesses “roll through” shallow local minima, whereas other variations
include random perturbations.
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Additionally, there are ways to choose better initial guesses. In the
example above, we did not use any particular rationale when choosing
our initial guesses (x = 1, 0,−1). But we could have (for instance)
randomly generated a large number of initial guesses, plugged each one
into our function f(x), and only run gradient descent on those initial
guesses that were associated with the lowest values of f(x).

Also note that it’s often necessary to try out different learning rates.
In the examples above, we used a learning rate of α = 0.01 and this
worked out fine. If we had chosen a learning rate that was too high,
say α = 0.5, then our guesses would update by too large an amount
each time, causing them to jump too far and never converge. This is
demonstrated below.

n xn f ′(xn) αf ′(xn)

0 −1 3 1.5

1 −2.5 −33.75 −16.875
2 14.375 12444 6222

3 −6208 −956777563439 −478388781719

On the other hand, if we had chosen a learning rate that was too low,
say α = 0.000001, then our guesses would update by too miniscule
an amount each time and we would require an excessive number of
iterations to converge. This is demonstrated below.
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n xn f ′(xn) αf ′(xn)

0 −1 3 0.000003

1 −1.000003 2.999994 0.000003

10 −1.000030 2.999940 0.000003

100 −1.000300 2.999399 0.000003

1000 −1.002997 2.993925 0.000003

10000 −1.029675 2.932619 0.000003

100000 −1.250157 1.873863 0.000002

1000000 −1.442997 0.000046 0.000000

Lastly, note that we can maximize functions by performing gradient
ascent, which is similar to gradient descent except that we replace the
subtraction with addition in the update rule: xn+1 = xn + αf ′(xn).

Exercises

Use gradient descent to minimize the following functions. Before
looking at the graph, perform gradient descent using several different
initial guesses, and then plug your final guesses back into the function to
determine which final guess is the best (i.e. gives you the lowest function
value). Then, look at the graph to check whether you found the global
maximum.

1. f(x) = x2 + x+ 1

2. f(x) = x3 − x4 − x2
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3. f(x) =
sinx

1 + x2

4. f(x) = 3 cosx+ x2esinx
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11. Multivariable Gradient
Descent

Multivariable gradient descent is similar to single-variable gradient
descent, except that we replace the derivative f ′(x) with the gradient
∇f(x⃗) as follows:

x⃗n+1 = x⃗n − α∇f(x⃗n)

Here, x⃗n denotes the vector of nth guesses for all the variables. For
example, if f is a function of 2 input variables x, y, then we denote

x⃗n = ⟨xn, yn⟩

and the update rule can be expressed as follows:
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⟨xn+1, yn+1⟩ = ⟨xn, yn⟩ − α∇f(xn, yn)

= ⟨xn, yn⟩ − α

〈
∂f

∂x
,
∂f

∂y

〉∣∣∣∣
(xn,yn)

Worked Example

To illustrate, let’s use gradient descent to minimize the following
function:

f(x, y) = x sin y + x2

First, we work out the gradient:

∇f(x, y) =
〈
∂f

∂x
,
∂f

∂y

〉
=

〈
∂

∂x

(
x sin y + x2

)
,
∂

∂y

(
x sin y + x2

)〉
= ⟨sin y + 2x, x cos y⟩

If we start with the initial guess x = 1, y = 2 (which we denote as
⟨x, y⟩0 = ⟨1, 2⟩) and use a learning rate of α = 0.01, then our next
guess is
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⟨x1, y1⟩ = ⟨x0, y0⟩ − α∇f(x0, y0)

= ⟨1, 2⟩ − (0.01) ⟨sin y + 2x, x cos y⟩|(1,2)

= ⟨1, 2⟩ − (0.01) ⟨sin 2 + 2, cos 2⟩

≈ ⟨0.970907, 2.004161⟩ .

We will carry out the rest of the iterations using a computer program.
You should do this too and verify that you get the same results as shown
in the table below. In the table, we will round to 6 decimal places (but
we do not actually round in our computer program).

n ⟨xn, yn⟩ ∇f(xn, yn)

0 ⟨1, 2⟩ ⟨2.909297,−0.416147⟩
1 ⟨0.970907, 2.004161⟩ ⟨2.849372,−0.40771⟩
2 ⟨0.942413, 2.008239⟩ ⟨2.790665,−0.399229⟩
3 ⟨0.914507, 2.012231⟩ ⟨2.733153,−0.390711⟩
...

...
...

25 ⟨0.427158, 2.078619⟩ ⟨1.728121,−0.207717⟩
50 ⟨0.086462, 2.109688⟩ ⟨1.031202,−0.044371⟩
100 ⟨−0.242655, 2.084195⟩ ⟨0.385770, 0.119178⟩
250 ⟨−0.457667, 1.862063⟩ ⟨0.042547, 0.131426⟩
500 ⟨−0.496295, 1.657935⟩ ⟨0.003616, 0.043192⟩
1000 ⟨−0.499975, 1.577936⟩ ⟨0.000025, 0.003569⟩
2000 ⟨−0.500000, 1.570844⟩ ⟨0.000000, 0.000024⟩
3000 ⟨−0.500000, 1.570797⟩ ⟨0.000000, 0.000000⟩

65



Justin Skycak

If we plot graph of the surface and some of our intermediate guesses,
we can see that our guesses do indeed take us down the valley into a
minimum:

Sanity Check

When we run gradient descent on functions with more than two input
variables, it becomes difficult to visualize the graph of the function.
However, we can still verify that we’re moving in the correct direction
by evaluating the function at each guess and making sure the function
values are decreasing.

To illustrate, let’s add another column f(xn, yn) on the right side of
the table above. We can see that the function values in this column
are decreasing, and this tells us that we are successfully minimizing our
function f.
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n ⟨xn, yn⟩ ∇f(xn, yn)
∣∣ f(xn, yn)

0 ⟨1, 2⟩ ⟨2.909297,−0.416147⟩
∣∣ 1.909297

1 ⟨0.970907, 2.004161⟩ ⟨2.849372,−0.40771⟩
∣∣ 1.823815

2 ⟨0.942413, 2.008239⟩ ⟨2.790665,−0.399229⟩
∣∣ 1.741817

3 ⟨0.914507, 2.012231⟩ ⟨2.733153,−0.390711⟩
∣∣ 1.663164

...
...

...

∣∣∣∣∣ ...

25 ⟨0.427158, 2.078619⟩ ⟨1.728121,−0.207717⟩
∣∣ 0.555717

50 ⟨0.086462, 2.109688⟩ ⟨1.031202,−0.044371⟩
∣∣ 0.081684

100 ⟨−0.242655, 2.084195⟩ ⟨0.385770, 0.119178⟩
∣∣ −0.152491

250 ⟨−0.457667, 1.862063⟩ ⟨0.042547, 0.131426⟩
∣∣ −0.228931

500 ⟨−0.496295, 1.657935⟩ ⟨0.003616, 0.043192⟩
∣∣ −0.248103

1000 ⟨−0.499975, 1.577936⟩ ⟨0.000025, 0.003569⟩
∣∣ −0.249987

2000 ⟨−0.500000, 1.570844⟩ ⟨0.000000, 0.000024⟩
∣∣ −0.250000

3000 ⟨−0.500000, 1.570797⟩ ⟨0.000000, 0.000000⟩
∣∣ −0.250000

Exercises

Use gradient descent to minimize the following functions. Use several
different initial guesses, and then plug your final guesses back into the
function to determine which final guess is the best (i.e. gives you the
lowest function value). Be sure to evaluate the function at each guess
and verify that the function values are decreasing.

1. f(x, y) = (x− 1)2 + 3y2

2. f(x, y) = y2 + y cosx

3. f(x, y, z) = (x− 1)2 + 3(y − 2)2 + 4(z + 1)2

4. f(x, y, z) = x2 + 3y2 + 4z2 + cos(xyz)
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12. Selection, Bubble,
Insertion, and Counting Sort

There are many different methods for sorting items in arrays. Let’s go
over some of the simplest methods.

Selection Sort

The absolute simplest sorting method, selection sort, involves building
up a separate sorted array by repeatedly taking the minimum
element from the original array. To illustrate, let’s sort the array
[3, 5, 8, 2, 5] using selection sort.

• Our original array is [3, 5, 8, 2, 5] and our sorted array
is empty [ ] since we just started. The minimum element of
our original array is 2 , and we move this element to the sorted
array.
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• Our original array is now [3, 5, 8, 5] and our sorted array
is [2] . The minimum element of our original array is 3 , and
we move this element to the sorted array.

• Our original array is now [5, 8, 5] and our sorted array is
[2, 3] . The minimum element of our original array is 5 , and

we move this element to the sorted array.

• Our original array is now [8, 5] and our sorted array is
[2, 3, 5] . The minimum element of our original array is 5 ,

and we move this element to the sorted array.

• Our original array is now [8] and our sorted array is
[2, 3, 5, 5] . The minimum element of our original array

is 8 , and we move this element to the sorted array.

• Our original array is now empty [ ] and our sorted array is
[2, 3, 5, 5, 8] . We’re done!

Bubble Sort

Another simple sorting method, bubble sort involves repeatedly
looping through all pairs of consecutive elements in the array
and swapping them if they are out of order. Let’s sort the array
[3, 5, 8, 2, 5] using bubble sort.

1. First pass

– [(3, 5), 8, 2, 5] - The first pair of consecutive
elements is (3,5) . These elements are in the correct
order, so we do nothing.
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– [3, (5, 8), 2, 5] - The next pair of consecutive
elements is (5,8) . These elements are in the correct
order, so we do nothing.

– [3, 5, (8, 2), 5] - The next pair of consecutive
elements is (8,2) . These elements are out of order, so we
swap them. Our updated array is [3, 5, 2, 8, 5] .

– [3, 5, 2, (8, 5)] - The next pair of consecutive
elements is (8,5) . These elements are out of order, so we
swap them. Our updated array is [3, 5, 2, 5, 8] .

2. Since we made a swap in the first pass, we proceed to a second
pass.

– [(3, 5), 2, 5, 8]

– [3, (5, 2), 5, 8] - Swap. The array is now
[3, 2, 5, 5, 8] .

– [3, 2, (5, 5), 8]

– [3, 2, 5, (5, 8)]

3. Since we made a swap in the second pass, we proceed to a third
pass.

– [(3, 2), 5, 5, 8] - Swap. The array is now
[2, 3, 5, 5, 8] .

– [2, (3, 5), 5, 8]

– [2, 3, (5, 5), 8]

– [2, 3, 5, (5, 8)]

4. Since we made a swap in the third pass, we proceed to a fourth
pass.
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– [(2, 3), 5, 5, 8]

– [2, (3, 5), 5, 8]

– [2, 3, (5, 5), 8]

– [2, 3, 5, (5, 8)]

5. Since we made no swaps in the fourth pass, we are done!

Insertion Sort

Insertion sort is similar to bubble sort, with one key difference.
Whenever we find something out of order, instead of carrying out just
one swap, we repeatedly swap the out-of-order element backwards until
it is in the correct position. Let’s illustrate.

• [(3, 5), 8, 2, 5]

• [3, (5, 8), 2, 5]

• [3, 5, (8, 2), 5] - Swap and note where we left off. We
will now start looking backwards, continuing to swap the 2

until it is in the correct position.

• [3, (5, 2), 8*, 5] - Swap and continue looking
backwards.

• [(3, 2), 5, 8*, 5] - Swap. Normally we would continue
looking backwards, but we can’t go backwards any more since
we’re at the beginning of the array. So, we’re done dealing with
the 2 and we can pick up from where we left off.
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• [2, 3, 5, (8, 5)] - Swap and note where we left off. We
will now start looking backwards, continuing to swap the 5

until it is in the correct position.

• [2, 3, (5, 5), 8*] - No swap needed. The 5 is in the
correct position. Normally we would pick up from where we left
off, but we left off at the end of the array, so we’re done!

Counting Sort

Lastly, counting sort is quite different from all the sorting methods
we’ve covered so far. It’s more involved, so we will outline the procedure
before showing an example. The procedure is as follows:

1. Identify the minimum number in the array and then subtract it
from all numbers in the array. This way, the updated array has a
minimum of 0 and all other elements are positive.

2. Let N be the maximum number in the array. Create another
array, counts , with N+1 entries, all initialized to 0 .

3. Loop through the array. For each number n that you encounter,
increment counts[n] . This way, the value of counts[n]

represents the amount of times that you encountered the
number n .

4. Read off the counts array into a sorted array that contains
counts[n] instances of each number n .
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5. In the first step, you subtracted the minimum number of the
original array. Undo that by adding the minimum number to
each element in your sorted array. Finally, we’re done!

Below is an example of applying counting sort to sort the array
[3, 5, 8, 2, 5] .

1. The minimum number is 2 . Subtracting 2 from all numbers
in the array, the updated array is [1,3,6,0,3] .

2. The maximum number in the new array is 6 . So, we let
counts = [0,0,0,0,0,0,0] .

3. We loop through the array [1,3,6,0,3] and increment
counts .

– The first element is 1 , so we increment counts[1] .
Now we have counts = [0,1,0,0,0,0,0] .

– The next element is 3 , so we increment counts[3] .
Now we have counts = [0,1,0,1,0,0,0] .

– The next element is 6 , so we increment counts[6] .
Now we have counts = [0,1,0,1,0,0,1] .

– The next element is 0 , so we increment counts[0] .
Now we have counts = [1,1,0,1,0,0,1] .

– The next element is 3 , so we increment counts[3] .
Now we have counts = [1,1,0,2,0,0,1] .

4. We read off the array counts = [1,1,0,2,0,0,1] as
follows: 1 zero, 1 one, 0 twos, 2 threes, 0 fours, 0 fives,
1 six. So, we have a sorted array [0, 1, 3, 3, 6] .
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5. In the first step, we subtracted 2 . Now we add that back to each
item of the sorted array and get [2, 3, 5, 5, 8] . We’re
done!

Time Complexity

It’s common to refer to time complexity when talking about the speed
of various algorithms. Selection, bubble, and insertion sort all have
average-case time complexity O(n2), pronounced order of n squared.
Loosely speaking, this means that if we were to create a mathematical
expression for the average number of operations required to sort a list
of n elements, the variable part of the dominating term would be n2.

To understand why selection sort is O(n2), remember that selection
sort involves repeatedly building up a separate sorted array by repeatedly
taking the minimum element from the original array. The original array
initially consists of n elements, and we need to check each of them
when computing the minimum, so there are n operations. Once we’ve
computed the minimum and moved it to the sorted array, we need to
repeat the procedure on the remaining n − 1 elements. Continuing
the pattern and adding up all the operations, we get the following
expression:
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n+ (n− 1) + (n− 2) + . . .+ 1

=
n(n+ 1)

2

=
1

2
n2 +

1

2
n

Indeed, the dominating term is
1

2
n2, and its variable part isn2.The time

complexities of bubble and insertion sort can be derived in a similar way.

Counting sort is generally faster than selection, bubble, and insertion
sort. However, the drawback is that it can require lots of memory.

Exercises

First, write a function calc_min(arr) that calculates the minimum
element of an array by looping through and keeping track of the smallest
element that has been found. Then, for each sorting method described
above, write a function that takes an input array and sorts it using the
described procedure.

Do not use the built-in min() function; instead, use your calc_min

function. Be sure to write plenty of tests that cover a variety of cases
(negative numbers, repeated numbers, duplicates, decimals, etc).

1. Write calc_min(arr) .

2. Write selection_sort(arr) .
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3. Write bubble_sort(arr) .

4. Write insertion_sort(arr) .

5. Write counting_sort(arr) .

6. Derive the average-case time complexity of bubble sort.

7. Derive the average-case time complexity of insertion sort.

8. Derive the average-case time complexity of counting sort.

9. Construct an example in which counting sort requires drastically
more memory than selection, bubble, and insertion sort. (Hint:
what would cause the counts array to become enormous?)
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13. Merge Sort and Quicksort

Merge sort is a sorting algorithm that works by breaking an array in
half, recursively calling merge sort on each half separately, and then
merging the two sorted halves. The base case is that empty arrays and
arrays of 1 item are already sorted (so if you call merge sort on such an
array, it leaves the array as-is).

merge_sort(array):
if the array is empty or has 1 item:

return the array as-is

otherwise:
break the array in half
recursively call merge_sort on each half

separately
merge the two halves and return the result

Note that when an odd-length array is broken in half, it is okay for one
of the halves to have one more item than the other half.
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Example of Merge Sort

Below is a concrete example illustrating how merge_sort sorts an
array.

merge_sort ([6,9,7,4,2,1,8,5])
| halves: [6,9,7,4] [2,1,8,5]
|
|--> merge_sort ([6,9,7,4])

| halves: [6,9] [7,4]
|
|--> merge_sort ([6 ,9])

| halves: [6] [9]
|
|--> merge_sort ([6])

|
|<-- [6]
|
|--> merge_sort ([9])

|
|<-- [9]
|
merge ([6] ,[9])

|<-- [6,9]
|
|--> merge_sort ([7 ,4])

| halves: [7] [4]
|
|--> merge_sort ([7])

|
|<-- [7]
|
|--> merge_sort ([4])

|
|<-- [4]
|
merge ([7] ,[4])

|<-- [4,7]
|
merge ([6 ,9] ,[4 ,7])

|<-- [4,6,7,9]
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|
|--> merge_sort ([2,1,8,5])

| halves: [2,1] [8,5]
|
|--> merge_sort ([2 ,1])

| halves: [2] [1]
|
|--> merge_sort ([2])

|
|<-- [2]
|
|--> merge_sort ([1])

|
|<-- [1]
|
merge ([2] ,[1])

|<-- [1,2]
|
|--> merge_sort ([8 ,5])

| halves: [8] [5]
|
|--> merge_sort ([8])

|
|<-- [8]
|
|--> merge_sort ([5])

|
|<-- [5]
|
merge ([8] ,[5])

|<-- [5,8]
|
merge ([1 ,2] ,[5 ,8])

|<-- [1,2,5,8]
|
merge ([4,6,7,9],[1,2,5,8])
[1,2,4,5,6,7,8,9]

81



Justin Skycak

Quicksort

Another sorting algorithm, quicksort, is very similar to merge sort. The
only difference is that instead of splitting the array in half, we randomly
choose a pivot element and split the array into 3 pieces: elements that are
less than the pivot element, elements that are equal to the pivot element,
and elements that are greater than the pivot element. Then, we apply
quicksort recursively on the “less than” and “greater than” pieces before
combining the pieces.

quicksort ([6,9,7,4,2,1,8,5])
| pivot: 7
| pieces: [6,4,2,1,5] [7] [9,8]
|
|--> quicksort ([6,4,2,1,5])

| pivot: 5
| pieces: [4,2,1] [5] [6]
|
|--> quicksort ([4,2,1])

| pivot: 2
| pieces: [1] [2] [4]
|
|--> quicksort ([1])

|
|<-- [1]
|
|--> quicksort ([4])

|
|<-- [4]
|
combine ([1] ,[2] ,[4])

|<-- [1,2,4]
|
|--> quicksort ([6])

|
|<-- [6]
|
combine ([1 ,2 ,4] ,[5] ,[6])
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|<-- [1,2,4,5,6]
|
|--> quicksort ([9 ,8])

| pivot: 9
| halves: [8] [9] []
|
|--> quicksort ([8])

|
|<-- [8]
|
|--> quicksort ([])

|
|<-- []
|
combine ([8] ,[9] ,[])

|<-- [8,9]
|
combine ([1,2,4,5,6],[7],[8,9])
[1,2,4,5,6,7,8,9]

Time Complexity

With an average-case time complexity of O(n log n), merge sort and
quicksort are generally faster than selection, bubble, and insertion sort.
And unlike counting sort, they are not susceptible to blowup in the
amount of memory required.
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Exercises

Implement merge sort and quicksort. As always, be sure to write
plenty of tests that cover a variety of cases (negative numbers, repeated
numbers, duplicates, decimals, etc).

1. Write a helper function merge(arr1, arr2) that merges two
sorted arrays by repeatedly looking at the first element of each
array and moving the smaller one into a new array.

2. Write a function merge_sort(arr) that sorts an array using
the merge sort algorithm.

3. Write a function quicksort(arr) that sorts an array using
the quicksort algorithm.
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Part III

Objects
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14. Basic Matrix Arithmetic

Let’s use arrays to implement matrices and their associated
mathematical operations. We will jump straight to exercises – it
is assumed that you are already familiar with matrix arithmetic and
reduced row echelon form.

Exercise: Addition, Subtraction, Transpose,
and Scalar Multiplication

To start, create a class Matrix that implements basic matrix
arithmetic.
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>>> A = Matrix ([
[1, 2],
[3, 4]

])

>>> A.show()
[ 1 , 2 ]
[ 3 , 4 ]

>>> At = A.transpose ()
>>> At.show()
[ 1 , 3 ]
[ 2 , 4 ]

>>> A.add(At).show()
[ 2 , 5 ]
[ 5 , 8 ]

In addition to the methods shown above, you should also
implement subtract and scalar_multiply . (The input
to scalar_multiply is a number, and it should multiply all entries
of the matrix.)

To keep your code clean, you’ll need to implement some helper
attributes like num_cols and num_rows .
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>>> A = Matrix ([
[1, 2, 3],
[4, 5, 6]

])

>>> A.num_cols
3

>>> A.num_rows
2

Your class (and tests) should be general to matrices of any dimensions.
Do not assume the matrix is square. However, if you struggle and get
stuck, then you can build some scaffolding for yourself by first hard-
coding a class for, say, a 2× 3 matrix. Handling the general case often
becomes easier once you’ve worked through a specific case.

Remember that some operations impose constraints on the dimensions
of the matrices involved. For example, you cannot add two matrices
unless their dimensions are equal. In your code, be sure to check that
all such constraints are satisfied before attempting to carry out the
operation. If any constraint is not satsified, then throw an error with
a descriptive message so that the user can understand why your matrix
class is unable to perform the desired computation.

89



Justin Skycak

Exercise: Matrix Multiplication and
Recursive Determinant

Next, implement the method matrix_multiply . This will be
trickier than the methods above, but remember that the element at row
i and column j in the product AB is just the dot product of row i

in A and column j in B. (This means that you should write a helper
function for computing dot products.)

Then, implement the method recursive_determinant which
computes the determinant using recursive cofactor expansion. As a
refresher, below is an example of using recursive cofactor expansion
to compute the determinant of a 3× 3 matrix.

det


1 2 3

4 5 6

7 8 9


= 1 det

[
5 6

8 9

]
− 2 det

[
4 6

7 9

]
+ 3 det

[
4 5

7 8

]

= 1 (5 det [9]− 6 det [8])− 2 (4 det [9]− 6 det [7]) + 3 (4 det [8]− 5 det [7])

= 1 (5 · 9− 6 · 8)− 2 (4 · 9− 6 · 7) + 3 (4 · 8− 5 · 7)

= 1 (45− 48)− 2 (36− 42) + 3 (32− 35)

= 1 (−3)− 2 (−6) + 3 (−3)

= −3 + 12− 9

= 0
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15. Reduced Row Echelon
Form and Applications to
Matrix Arithmetic

Recall from linear algebra the following procedure for converting a
matrix to reduced row echelon form (RREF):

row_index = 0

for each column:
if pivot row exists for column:

if pivot row does not match current row_index:
swap current row with pivot row
(so that it matches)

divide pivot row (so that first nonzero entry is 1)

clear entries below and above pivot entry
(by subtracting multiples of pivot row)

row_index += 1
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This algorithm is a bit tricky, so before you attempt to implement
anything, be sure to work out the above algorithm by hand on several
concrete examples until you feel comfortable with it.

Again, we will jump straight to exercises – it is assumed that you are
already familiar with matrix arithmetic and reduced row echelon form.

Exercise: RREF with Helper Functions

Once you’re comfortable working out the algorithm by hand, write
some helper functions.

• For example, the first helper method you’ll need to write will
check whether a pivot row exists for a particular column in
a matrix. If it does exist, then return the index of the row.
Otherwise, return nothing.

• There are at least 3 other helper methods that you’ll need to
write. But don’t stop thinking once you come up with 3 helper
methods. Keep going until you think you’ve really narrowed
down the problem to its atomic sub-procedures.

It’s often a good idea to write tests for your helper functions and get
them passing before you start trying to use them together, especially
when you’re fairly new to coding. In your tests, be sure to consider
a variety of matrices that are substantially different from each other.
When writing tests, your goal is to try (and fail) to break the function
that you wrote.
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Once you’ve written the helper functions, you can stitch them together
into the full RREF algorithm.

Exercise: Inverse via RREF

Once you’ve written a working RREF algorithm, you can use it to
implement a method that computes the inverse of a matrix. Remember
that to compute the inverse of a square matrix A, you can just

1. augment the matrix as [A|I] where I is the identity matrix,

2. run RREF on the augmented matrix to convert it to [I|A−1],

and then

3. read A−1 on the right-hand side.

Exercise: Determinant via RREF

You can also use the RREF algorithm to compute determinants much
faster than with the recursive cofactor expansion method.

• Whenever you divide a row by some amount during the RREF
algorithm, the determinant gets divided by that same amount.

• Whenever you swap two rows during the RREF algorithm, the
determinant switches sign (from positive to negative or vice
versa).
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• At the end of the RREF algorithm, the final matrix has a
determinant of 1.

• So, you can “build up” the determinant during the execution
of the RREF algorithm by keeping track of the product of the
numbers you divide by and switching the sign every time you
swap two rows.

To avoid cluttering up your RREF algorithm, it is advisable to just copy-
paste it into a new determinant method and then make whatever
adjustments you need to build up the determinant along the way.
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16. K-Means Clustering

Clustering is the process of grouping similar records within data. Some
examples of clusters in real-life data include users who buy similar items,
songs in a similar genre, and patients with similar health conditions.

One of the simplest clustering methods is called k-means clustering. It
works by guessing some initial clusters in the data and then repeatedly
updating the guesses to make the clusters more cohesive.

1. Initialize the clusters.

1.1 Randomly divide the data into k parts (where k is an input
parameter). Each part is an initial cluster.

1.2 Compute the mean of each part. Each mean is an initial
cluster center.

2. Update the clusters.

2.1 Re-assign each record to the cluster with the nearest center.

2.2 Compute the new cluster centers by taking the mean of the
records in each cluster.

3. Keep repeating step 2 until the clusters stop changing.
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Worked Example

As a concrete example, consider the following data set. Each row
represents a cookie with some ratio of ingredients. We can use k-means
clustering to separate the data into different overarching “types” of
cookies.

columns = ['Portion Eggs', 'Portion Butter', 'Portion
Sugar', 'Portion Flour']

data = [
[0.14, 0.14, 0.28, 0.44],
[0.22, 0.1, 0.45, 0.33],
[0.1, 0.19, 0.25, 0.4 ],
[0.02, 0.08, 0.43, 0.45],
[0.16, 0.08, 0.35, 0.3 ],
[0.14, 0.17, 0.31, 0.38],
[0.05, 0.14, 0.35, 0.5 ],
[0.1, 0.21, 0.28, 0.44],
[0.04, 0.08, 0.35, 0.47],
[0.11, 0.13, 0.28, 0.45],
[0.0, 0.07, 0.34, 0.65],
[0.2, 0.05, 0.4, 0.37],
[0.12, 0.15, 0.33, 0.45],
[0.25, 0.1, 0.3, 0.35],
[0.0, 0.1, 0.4, 0.5 ],
[0.15, 0.2, 0.3, 0.37],
[0.0, 0.13, 0.4, 0.49],
[0.22, 0.07, 0.4, 0.38],
[0.2, 0.18, 0.3, 0.4 ]

]

We will work out the first iteration of the k-means algorithm supposing
that there are k = 3 clusters in the data.
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The first step is to randomly divide the data into k = 3 clusters. To do
this, we can simply add an extra column in our data that represents the
cluster number, and count off cluster numbers 1, 2, 3, 1, 2, 3, and so
on. We will put the extra column at the beginning of the data set.

[
[1, 0.14, 0.14, 0.28, 0.44],
[2, 0.22, 0.1, 0.45, 0.33],
[3, 0.1, 0.19, 0.25, 0.4 ],
[1, 0.02, 0.08, 0.43, 0.45],
[2, 0.16, 0.08, 0.35, 0.3 ],
[3, 0.14, 0.17, 0.31, 0.38],
[1, 0.05, 0.14, 0.35, 0.5 ],
[2, 0.1, 0.21, 0.28, 0.44],
[3, 0.04, 0.08, 0.35, 0.47],
[1, 0.11, 0.13, 0.28, 0.45],
[2, 0.0, 0.07, 0.34, 0.65],
[3, 0.2, 0.05, 0.4, 0.37],
[1, 0.12, 0.15, 0.33, 0.45],
[2, 0.25, 0.1, 0.3, 0.35],
[3, 0.0, 0.1, 0.4, 0.5 ],
[1, 0.15, 0.2, 0.3, 0.37],
[2, 0.0, 0.13, 0.4, 0.49],
[3, 0.22, 0.07, 0.4, 0.38],
[1, 0.2, 0.18, 0.3, 0.4 ]

]
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So, our initial guesses for the clusters are as follows:

# Cluster 1
[

[1, 0.14, 0.14, 0.28, 0.44],
[1, 0.02, 0.08, 0.43, 0.45],
[1, 0.05, 0.14, 0.35, 0.5 ],
[1, 0.11, 0.13, 0.28, 0.45],
[1, 0.12, 0.15, 0.33, 0.45],
[1, 0.15, 0.2, 0.3, 0.37],
[1, 0.2, 0.18, 0.3, 0.4 ]

]

# Cluster 2
[

[2, 0.22, 0.1, 0.45, 0.33],
[2, 0.16, 0.08, 0.35, 0.3 ],
[2, 0.1, 0.21, 0.28, 0.44],
[2, 0.0, 0.07, 0.34, 0.65],
[2, 0.25, 0.1, 0.3, 0.35],
[2, 0.0, 0.13, 0.4, 0.49]

]

# Cluster 3
[

[3, 0.1, 0.19, 0.25, 0.4 ],
[3, 0.14, 0.17, 0.31, 0.38],
[3, 0.04, 0.08, 0.35, 0.47],
[3, 0.2, 0.05, 0.4, 0.37],
[3, 0.0, 0.1, 0.4, 0.5 ],
[3, 0.22, 0.07, 0.4, 0.38]

]
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To compute each cluster center, we take the mean of each component
of the data (ignoring the first component, which is the cluster label and
was not part of the original data set).

# Cluster 1 center
[

(0.14 + 0.02 + 0.05 + 0.11 + 0.12 + 0.15 + 0.2 ) /
7,

(0.14 + 0.08 + 0.14 + 0.13 + 0.15 + 0.2 + 0.18) /
7,

(0.28 + 0.43 + 0.35 + 0.28 + 0.33 + 0.3 + 0.3 ) /
7,

(0.44 + 0.45 + 0.5 + 0.45 + 0.45 + 0.37 + 0.4 ) / 7
]

# Cluster 2 center
[

(0.22 + 0.16 + 0.1 + 0.0 + 0.25 + 0.0 ) / 6,
(0.1 + 0.08 + 0.21 + 0.07 + 0.1 + 0.13) / 6,
(0.45 + 0.35 + 0.28 + 0.34 + 0.3 + 0.4 ) / 6,
(0.33 + 0.3 + 0.44 + 0.65 + 0.35 + 0.49) / 6

]

# Cluster 3 center
[

(0.1 + 0.14 + 0.04 + 0.2 + 0.0 + 0.22) / 6,
(0.19 + 0.17 + 0.08 + 0.05 + 0.1 + 0.07) / 6,
(0.25 + 0.31 + 0.35 + 0.4 + 0.4 + 0.4 ) / 6,
(0.4 + 0.38 + 0.47 + 0.37 + 0.5 + 0.38) / 6

]
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Carrying out the above computations, we get the following results
(rounded to 3 decimal places for readability):

# Cluster 1 center
[0.113 , 0.146, 0.324, 0.437]

# Cluster 2 center
[0.122 , 0.115, 0.353, 0.427]

# Cluster 3 center
[0.117 , 0.110, 0.352, 0.417]

Once we’ve computed each cluster center, we then loop through the
data and re-assign each data point to the nearest cluster center. We will
use the Euclidean distance when determining the nearest cluster center.
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Data point: [0.14, 0.14, 0.28, 0.44]
Distance

from cluster 1 center: 0.052 <-- nearest
from cluster 2 center: 0.080
from cluster 3 center: 0.085

Data point: [0.22, 0.1, 0.45, 0.33]
Distance

from cluster 1 center: 0.202
from cluster 2 center: 0.169
from cluster 3 center: 0.167 <-- nearest

Data point: [0.1, 0.19, 0.25, 0.4]
Distance

from cluster 1 center: 0.095 <-- nearest
from cluster 2 center: 0.132
from cluster 3 center: 0.132

...

Data with re-assigned clusters:
[

[1, 0.14, 0.14, 0.28, 0.44],
[3, 0.22, 0.1, 0.45, 0.33],
[1, 0.1, 0.19, 0.25, 0.4 ],
...

]

Interpreting the Clusters

If you repeat this process over and over, the cluster labels will eventually
stop changing, indicating that every data point is assigned to the nearest
cluster. In this example, it should be straightforward to interpret the
meaning of your final clusters:
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1. One cluster represents cookies with a greater proportion of sugar.
These might be sugar cookies.

2. Another cluster represents cookies with a greater proportion of
butter. These might be shortbread cookies.

3. Another cluster represents cookies with a greater proportion of
eggs. These might be fortune cookies.

Elbow Method

Finally, remember that k (the number of clusters that we assume)
is an input parameter to the algorithm. Because we usually don’t
know the number of clusters in the data beforehand, it’s helpful to
graph the "cohesiveness" of the clusters versus the value of k. We can
measure cohesiveness by computing the total sum of distances between
points and their cluster centers (the smaller the total distance, the more
cohesive the clusters).

The graph of total distance versusk will be decreasing: the more clusters
we assume, the closer the points will be to their clusters. In the extreme
case where we set k equal to the number of points in our data set, it’s
possible that each point could be assigned to a separate cluster, resulting
in a total distance of 0 but providing us with absolutely no information
about groups of similar records in the data.

To choose k, it’s common to use the elbow method and roughly
estimate where the graph forms an “elbow,” i.e. exhibits maximum
curvature. This represents the point of diminishing returns, meaning
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that assuming a greater number of clusters in the data will not make
the clusters that much more cohesive.

Exercises

First, implement the example that was worked out above and interpret
the resulting clusters. Then, generate a plot of total distance versus k
and identify the elbow in the graph. Was k = 3 a good choice for the
number of clusters in our data set? In other words, is the elbow of the
graph near k = 3?
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17. Tic-Tac-Toe and Connect
Four

One of the best ways to get practice with object-oriented programming
is implementing games. Tic-tac-toe and connect four are great for
learning the ropes. Later on, we will also use these implementations
for developing AI players.

Exercise: Tic-Tac-Toe with Random Players

Develop a tic-tac-toe game in which two random players play against
each other. You can implement your game however you want, provided
that you adhere to the constraints below.

• There should be a Game class and a RandomPlayer

class. The game should be initialized via
game = Game(player1, player2) , where player1

and player2 are both instances of RandomPlayer and
player1 moves first.
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• The Game should have an attribute game.board , and there
should be a method player.choose_move(self, board)

in the Player class that takes a copy of the tic-tac-toe board as
input and returns a random (but legal) move as output.

• Players should NOT actually update the board themselves –
otherwise, they could cheat by changing the board in any way
they please. Rather, the game should ask the player what move
it chooses, and then the game should update its own board
(provided that it’s a legal move). If a player attempts to make
an illegal move, then the game should skip that player’s turn.

• You should be able to run an entire game via game.run(log) .
If log == true , then the game should print out the sequence
of board states and player moves (as well as whether or not the
move was legal). Be sure to implement logging as soon as you start
coding up the game, because printing out logs will save you a lot of
time debugging.

Exercise: Tic-Tac-Toe with Manual Player

Then, create a ManualPlayer class that allows you to play manually
via the command line. You can use Python’s built-in input()

function for this.
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player1 = RandomPlayer ()
player2 = ManualPlayer ()

game = Game(player1 , player2)
game.run()

Be sure to test your game by manually playing a handful of games against
the random player. (Don’t try to win every game – you’ll need to tie
and lose some games for testing purposes.)

Exercise: Strategy Functions

Currently, you have two types of tic-tac-toe players: RandomPlayer

and ManualPlayer . The only difference between these players is in
how they choose moves. The rest of the code is duplicated, which is
not ideal. There should really be just one Player class, where the
choose_move method is automatically adjusted as desired.

To make your code cleaner, implement a single Player class that
is initialized via player = Player(strategy_function) where
strategy_function(board) is a function that takes a copy of

the tic-tac-toe board as input and returns a random move as output.
Then player.choose_move(self, board) will simply call the
strategy_function on the board and return the result.
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player1 = Player(random_strategy_function)
player2 = Player(manual_strategy_function)

game = Game(player1 , player2)
game.run()

Once you’ve implemented this, test your game again by manually
playing a handful of games against the random player. Additionally,
make sure that you are always able to beat the “cheater” strategy shown
below. (If the cheater strategy wins, then it probably means that you’re
allowing the player to access the actual game board instead of giving it
a copy of the board.)

def cheater_strategy_function(board):

# put our own pieces everywhere on the board
for i in range (3):

for j in range (3):
board[i][j] = our own piece

# doesn ’t really matter what we return;
# we’ll arbitrarily move into top -left corner
return (0,0)

Exercise: Custom Strategy

Create a custom strategy that beats the random player most of the time.
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Exercise: Connect Four

Repeat the above exercises for the game of connect four. There are really
only two differences:

1. A player chooses a column to place their piece into, rather than
an actual board space. So, a move will be a single integer rather
than a tuple.

2. Checking whether a player has won is more complicated.
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18. Euler Estimation

Arrays can be used to implement more than just matrices. We can also
implement other mathematical procedures like Euler estimation. We
will jump straight to exercises – it is assumed that you’re already familiar
with Euler estimation from calculus.

Exercise: Single-Variable Euler Estimator

To start, build a single-variable Euler estimation class as follows:
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>>> def derivative(t):
return t+1

>>> euler = EulerEstimator(derivative)

>>> initial_point = (1,4)
>>> euler.eval_derivative(initial_point) # evaluates

derivative at point (1,4)
2

>>> step_size = 0.5
>>> num_steps = 4
>>> euler.estimate_points(initial_point , step_size ,

num_steps)
[

(1, 4 ), # starting point
(1.5, 5 ), # after 1st step
(2, 6.25), # after 2nd step
(2.5, 7.75) , # after 3rd step
(3, 9.5 ) # after 4th step

]

Then, use your Euler estimator to plot several solution curves to the
following differential equation on the interval x ∈ [0, 5]. (Your Euler
estimator generates a list of points, and then you can use that list of
points to generate a plot.)

dy
dx

= x− 2

For one curve, use the initial condition y(0) = −2. For another curve,
use y(0) = −1. Then another curve with y(0) = 0, another with
y(0) = 1, and another with y(0) = 2. All 5 of these curves can go on
the same plot.
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Based on your knowledge of calculus, you should be able to tell if your
plots look right.

Exercise: Multivariable Euler Estimator

Once you’ve implemented a single-variable Euler estimator, you can
generalize it to simulate systems of differential equations. For example,
consider the following system:

a′(t) = a(t) + 1

b′(t) = a(t) + b(t)

c′(t) = 2b(t) + 3t

To simulate this system starting with the initial state a(−0.4) =

−0.45, b(−0.4) = −0.05, c(−0.4) = 0, construct a multivariable
Euler estimator as follows:
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>>> initial_state = {'a': -0.45, 'b': -0.05, 'c': 0}

>>> initial_point = (-0.4, initial_state) # points take
form (t, state)

>>> def da_dt(t, state):
return state['a'] + 1

>>> def db_dt(t, state):
return state['a'] + state['b']

>>> def dc_dt(t, state):
return 2 * state['b'] + 3 * t

>>> derivatives = {
'a': da_dt ,
'b': db_dt ,
'c': dc_dt

}

>>> euler = EulerEstimator(derivatives)

>>> euler.eval_derivative_at_point(initial_point)
{'a': 0.55, 'b': -0.5, 'c': -1.3}

>>> step_size = 2
>>> num_steps = 3
>>> euler.estimate_points(initial_point , step_size ,

num_steps)
[

(-0.4, {'a': -0.45, 'b': -0.05, 'c': 0 }),
(1.6, {'a': 0.65, 'b': -1.05, 'c': -2.6}),
(3.6, {'a': 3.95, 'b': -1.85, 'c': 2.8 }),
(5.6, {'a': 13.85, 'b': 2.35, 'c': 17 })

]
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19. SIR Model For the Spread
of Disease

One of the simplest ways to model the spread of disease using
differential equations is the SIR model. Let’s construct a SIR model
and use our multivariable Euler estimator to plot the solution curves.

The SIR model assumes three sub-populations: susceptible, infected,
and recovered.

• The number of susceptible people (S) decreases at a rate
proportional to the rate of meeting between susceptible and
infected people (because susceptible people have a chance of
catching the disease when they come in contact with infected
people).

• The number of infected people (I) increases at a rate
proportional to the rate of meeting between susceptible
and infected people (because susceptible people become infected
after catching the disease), and decreases at a rate proportional to
the number of infected people (as the diseased people recover).
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• The number of recovered people (R) increases at a rate
proportional to the number of infected people (as the diseased
people recover).

Exercise: SIR Model Equations and Initial
Conditions

First, write a system of differential equations using the following
assumptions:

• There are initially 1000 susceptible people and 1 infected person.

• The number of meetings between susceptible and infected
people each day is proportional to the product of the numbers
of susceptible and infected people, by a factor of 0.01. The
transmission rate of the disease is 3%. (In other words, 3% of
meetings result in transmission.)

• Each day, 2% of infected people recover.



dS
dt

= ___, S(0) = ___

dI
dt

= ___, I(0) = ___

dR
dt

= ___, R(0) = ___
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If you’ve written the system correctly, then at t = 0 you should have

dS
dt

= −0.3, dI
dt

= 0.28,
dR
dt

= 0.02 .

Exercise: SIR Model Simulation

Then use your multivariable Euler estimator to simulate the solution
curve, and plot the result.

• Be sure to choose the step size small enough that the simulation
doesn’t blow up, but large enough that it doesn’t take long to
run.

• Likewise, choose an interval that displays all the main features of
the differential equation, i.e. an interval that shows the behavior
of the curves until they start to asymtpote off.

If your plot is correct, then you should be able to easily describe what
is happening in the plot and why it is happening.

117



Justin Skycak

118



20. Hodgkin-Huxley Model of
Action Potentials in Neurons

In 1952, Alan Hodgkin and Andrew Huxley published a differential
equation model of “spikes” (i.e. “action potentials”) in the voltage of
neurons. For this work, they received the 1963 Nobel Prize in Physiology
or Medicine (shared with Sir John Carew Eccles).

Below, we summarize the key points of the model so that you
may implement and simulate it yourself. The primary source is the
original paper, A quantitative description of membrane current and its
application to conduction and excitation in nerve.

For background information, it is recommended to watch the following
short videos:

1. Neurons or nerve cells - Structure function and types of neurons by
Elearnin
(https://www.youtube.com/watch?v=cUGuWh2UeMk)

2. 2-Minute Neuroscience: Action Potential by Neuroscientifically
Challenged
(https://www.youtube.com/watch?v=W2hHt_PXe5o)
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Idea 1: Start with Physics Fundamentals

From physics, we know that current is proportional to voltage by a
constant C called the capacitance:

I = C
dV
dt

So, the voltage of a neuron can be modeled as

dV
dt

=
I

C
.

For neurons, we have C ≈ 1.0 .

Idea 2: Decompose Current into Four
Subcurrents (Stimulus and Ion Channels)

The current I consists of

• a stimulus s to the neuron (from an electrode or other neurons),

• current flux across sodium and potassium ion channels (INa and
IK), and

• current leakage, treated as a channel IL.
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The stimulus increases the voltage, while the flux and leakage decrease
it. So, we have

dV
dt

=
1

C
[s− INa − IK − IL] .

Idea 3: Model the Ion Channel Currents

The current across an ion channel is proportional to the voltage
difference, relative to the equilibrium voltage of that channel:

INa(V,m, h) = gNa(m,h) (V − VNa) VNa ≈ 115

IK(V, n) = gK(n) (V − VK) VK ≈ −12

IL(V ) = gL · (V − VL) VL ≈ 10.6

The constants of proportionality are conductances, which were
modeled experimentally:

gNa(m,h) = gNam
3h gNa ≈ 120

gK(n) = gKn
4 gK ≈ 36

gL = gL gL ≈ 0.3,

where
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dn
dt

= αn(V )(1− n)− βn(V )n

dm
dt

= αm(V )(1−m)− βm(V )m

dh
dt

= αh(V )(1− h)− βh(V )h.

and

αn(V ) =
0.01(10− V )

exp [0.1(10− V )]− 1
βn(V ) = 0.125 exp

[
− V

80

]
αm(V ) =

0.1(25− V )

exp [0.1(25− V )]− 1
βm(V ) = 4 exp

[
− V

18

]
αh(V ) = 0.07 exp

[
− V

20

]
βh (V ) =

1

exp [0.1(30− V )] + 1
.

Exercise

Your task is to implement the Hodgkin-Huxley neuron model using
Euler estimation. You can represent the state of the neuron at time t
using

(
t, (V, n,m, h)

)
,

and you can approximate the initial values by settingV0 = 0 and setting
n, m, and h equal to their asymptotic values for V0 = 0:
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n0 =
αn(V0)

αn(V0) + βn(V0)

m0 =
αm(V0)

αm(V0) + βm(V0)

h0 =
αh(V0)

αh(V0) + βh(V0)

(When we take V0 = 0, we are letting V represent the voltage offset
from the usual resting potential.)

Simulate the system for t ∈ [0, 80ms] with step size ∆t = 0.01 and
stimulus

s(t) =


150, t ∈ [10, 11] ∪ [20, 21] ∪ [30, 40] ∪ [50, 51] ∪ [53, 54]

∪ [56, 57] ∪ [59, 60] ∪ [62, 63] ∪ [65, 66]

0 otherwise.

You should get the following result:
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The corresponding plot of n, m, and h is provided to help you debug:

Lastly, here is an incomplete code template to get you started:

###############################
### constants

V_0 = ...
n_0 = ...
m_0 = ...
h_0 = ...

C = 1.0
V_Na = 115
...

###############################
### main variables: V, n, m, h

def dV_dt(t,x):
...

def dn_dt(t,x):
n = x['n']
return alpha_n(t,x) * (1-n) - beta_n(t,x) * n
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def dm_dt(t,x):
...

def dh_dt(t,x):
...

###############################
### intermediate variables: alphas , betas , stimulus (s),

currents (I’s), ...

def alpha_n(t,x):
...

def beta_n(t,x):
...

...

################################
### input into EulerEstimator

derivatives = {
'V': dV_dt ,
'n': dn_dt ,
...

}

initial_point = ...
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21. Hash Tables

Under the hood, dictionaries are hash tables.

The most elementary (and inefficient) version of a hash table would be
a list of tuples. For example, if we wanted to implement the dictionary

{
'a': [0 ,1],
'b': 'abcd',
'c': 3.14

}

then we’d have the following list of tuples:

[
('a', [0, 1]),
('b', 'abcd'),
('c', 3.14 )

]

To add a new key-value pair to the dictionary, we’d just append the
corresponding tuple, and to look up the value for some key, we’d just
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loop through the tuples until we get to the tuple with the key we wanted
(and then we’d return the corresponding value).

Exercise: Buckets and Hash Functions

Searching through a long array is slow. So, to be more efficient, we use
several lists of tuples. We call those lists buckets, and we use a hash
function to tell us which bucket to put the new key-value pair in.

Complete the code below to implement a special case of an elementary
hash table. We’ll expand on this example soon, but let’s start with
something simple.
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array = [[], [], [], [], []] # has 5 empty buckets

def hash(string):
# Return the sum of character indices in the string
# (where 'a' has index 0, 'b' has index 1, ..., 'z'

has index 25)
# modulo 5.

# We’ll assume the string consists of lowercase
# letters with no other characters or spaces.

def insert(array , key , value):
# Apply the hash function to the key to get the

bucket index.
# then append the (key , value) pair to the bucket.

def find(array , key):
# Apply the hash function to the key to get the

bucket index.
# Then , loop through the bucket until you get to the

tuple with
# the desired key , and return the corresponding

value.
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Here’s an example of how the hash table will work:

>>> print(array)
array = [[], [], [], [], []]

>>> insert(array , 'a', [0,1])
>>> insert(array , 'b', 'abcd')
>>> insert(array , 'c', 3.14)
>>> print(array)
[

[('a', [0, 1])],
[('b', 'abcd')],
[('c', 3.14 )],
[],
[]

]

>>> insert(array , 'd', 0)
>>> insert(array , 'e', 0)
>>> insert(array , 'f', 0)
>>> print(array)
[

[('a', [0, 1]), ('f', 0)],
[('b', 'abcd')],
[('c', 3.14 )],
[('d', 0 )],
[('e', 0 )]

]
Test your code as follows:

alphabet = 'abcdefghijklmnopqrstuvwxyz'
for i, char in enumerate(alphabet):

key = 'someletters'+char
value = [i, i**2, i**3]
insert(array , key , value)

for i, char in enumerate(alphabet):
key = 'someletters'+char
output_value = find(array , key)
desired_value = [i, i**2, i**3]
assert output_value == desired_value
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Exercise: Hash Table

Write a class HashTable that generalizes the hash table you previously
wrote. This class should store an array of buckets, and the hash function
should add up the alphabet indices of the input string and mod the
result by the number of buckets.

>>> ht = HashTable(num_buckets = 3)
>>> ht.buckets
[[], [], []]
>>> ht.hash(’cabbage ’)
2 (because 2+0+1+1+0+6+4 mod 3 = 14 mod 3 = 2)

>>> ht.insert('cabbage', 5)
>>> ht.buckets
[

[],
[],
[('cabbage', 5)]

]

>>> ht.insert('cab', 20)
>>> ht.buckets
[

[('cab', 20)],
[],
[('cabbage', 5)]

]

>>> ht.insert('c', 17)
>>> ht.buckets
[

[('cab', 20)],
[],
[('cabbage', 5), ('c', 17)]

]

>>> ht.insert('ac', 21)
>>> ht.buckets
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[
[('cab', 20)],
[],
[('cabbage', 5), ('c', 17), ('ac', 21)]

]

>>> ht.find('cabbage')
5
>>> ht.find('cab')
20
>>> ht.find('c')
17
>>> ht.find('ac')
21
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22. Simplex Method

The simplex method is a technique for maximizing linear expressions
subject to linear constraints. Many applied problems can be framed like
this – for example, a business may have a variety of raw materials and
need to determine the most profitable inventory of products that they
can produce from those materials. This would ultimately amount to
maximizing a linear expression for profit, subject to a linear inequality
for each type of raw material (the total amount of raw material used in
the products produced must be less than or equal to the amount of raw
material available).

At its core, the simplex method is just algebra that can be implemented
elegantly using array manipulations. Let’s work through the algebra on
an example:

maximize x1 + 2x2 + x3 such that

2x1 + x2 + x3 ≤ 14

4x1 + 2x2 + 3x3 ≤ 28

2x1 + 5x2 + 5x3 ≤ 30

x1, x2, x3 ≥ 0
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Step 1: Introduce Slack Variables

Math is generally easier when we work with equations (rather than
inequalities). We can convert most of the system above into equations if
we move everything to the RHS and then assign those RHS expressions
to new variables called slack variables.

maximize x1 + 2x2 + x3

0 ≤ 14− 2x1 − x2 − x3

0 ≤ 28− 4x1 − 2x2 − 3x3

0 ≤ 30− 2x1 − 5x2 − 5x3

0 ≤ x1, x2, x3

maximize x1 + 2x2 + x3

x4 = 14− 2x1 − x2 − x3

x5 = 28− 4x1 − 2x2 − 3x3

x6 = 30− 2x1 − 5x2 − 5x3

0 ≤ x1, x2, x3, x4, x5, x6

The slack variables that we created are x4, x5, x6.Note that the original
system is entirely equivalent to the definition of the slack variables. The
system involving slack variables is exactly the same as the original system,
but written a little differently. (This is analogous to change of variables
in integration.)
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Step 2: Evaluate the Objective Quantity

Each system in the above form is associated with a “guess” that comes
from setting all the basic variables equal to 0. The basic variables are the
variables that appear in the expressions for other non-basic variables.

In our case, the basic variables are x1, x2, x3 because they appear in the
quantity we’re trying to maximize and also in the expressions for the
non-basic variables x4, x5, x6. You can also remember that the basic
variables are the RHS and the non-basic variables are the LHS.

When we set the basic variables equal to 0, we plug

x1 = 0

x2 = 0

x3 = 0

into the quantity that we’re trying to maximize (known as the objective
quantity) and get

x1 + 2x2 + x3

→ 0 + 2(0) + 0

→ 0.
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So currently, we have a guess x1 = x2 = x3 = 0 and this brings the
objective quantity to 0. This is a pretty bad guess, but we’re going to
repeatedly improve it until it’s optimal.

Step 3: Identify the Basic Variable with the
Greatest Slope

We’re going to improve upon our guess by repeatedly increasing the
basic variable that will most quickly improve our guess.

To improve our guess, we need to increase the objective quantity x1 +

2x2 + x3, which we write as a function below:

M(x1, x2, x3) = x1 + 2x2 + x3

The basic variable that will most quickly improve our guess is the one
that will make the objective quantity increase the fastest (when we
increase that variable). In other words, it is the one with the greatest
slope.

slope(x1) = 1, slope(x2) = 2, slope(x3) = 1

Here, the basic variable with the largest slope is x2. So this what we will
increase.
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Step 4: Identify which Non-Basic Variable
to Trade for that Basic Variable

The basic variable with the largest slope is x2. We will now trade this
for one of the non-basic variables (x4, x5, x6).

For our next guess, we want to increase x2 as much as possible (since
doing so will increase our objective quantity the fastest). But we can’t
increase it too much – remember that the system has constraints, and
we can’t invalidate those constraints.

Each of the constraints of the original system was converted into a non-
basic variable. So, we need to identify the non-basic variable that places
the strictest constraint on x2, and then trade it with x2 (i.e. make that
variable basic in exchange for making x2 non-basic).

Here is where we are so far:

maximize x1 + 2x2 + x3

x4 = 14− 2x1 − x2 − x3

x5 = 28− 4x1 − 2x2 − 3x3

x6 = 30− 2x1 − 5x2 − 5x3

0 ≤ x1, x2, x3, x4, x5, x6

Since 0 ≤ x4, x5, x6, we have the following constraints:
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0 ≤ x4 = 14− 2x1 − x2 − x3

0 ≤ x5 = 28− 4x1 − 2x2 − 3x3

0 ≤ x6 = 30− 2x1 − 5x2 − 5x3

Let’s simplify a bit:

0 ≤ 14− 2x1 − x2 − x3

0 ≤ 28− 4x1 − 2x2 − 3x3

0 ≤ 30− 2x1 − 5x2 − 5x3

Now, let’s set move x2 to the LHS of each constraint and set the other
basic variables (x1, x3) equal to zero so that we can see which constraint
is strictest:

x2 ≤ 14

x2 ≤ 14

x2 ≤ 6

The strictest constraint is the constraint that places the lowest non-
negative upper bound on x2. Here, the third constraint is the strictest,
and if you look at the work backwards, you’ll see that it came from the
non-basic variable x6:
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x6 = 30− 2x1 − 5x2 − 5x3

↕

0 ≤ 30− 2x1 − 5x2 − 5x3

↕

x2 ≤ 6

So, we need to trade the non-basic variable x6 for the basic variable x2.

Step 5: Execute the Trade

This step will feel more familiar than the earlier steps. We have an
equation relating x6 and x2:

x6 = 30− 2x1 − 5x2 − 5x3

All we need to do is solve this equation for x2 and then substitute that
into our system.

Solving for x2, we get

x2 = 6− 2

5
x1 − x3 −

1

5
x6.
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Then, we substitute into our system. The only catch is that we need to
fully replace thex6 = equation with thex2 = equation. (This equation
is supposed to capture the relationship betweenx2 andx6, and if we just
substituted x2 in the RHS, then it would simplify to a useless equation
x6 = x6).

maximize x1 + 2x2 + x3

x4 = 14− 2x1 − x2 − x3

x5 = 28− 4x1 − 2x2 − 3x3

x6 = 30− 2x1 − 5x2 − 5x3

0 ≤ x1, x2, x3, x4, x5, x6

maximize x1 + 2

(
6− 2

5
x1 − x3 −

1

5
x6

)
+ x3

x4 = 14− 2x1 −
(
6− 2

5
x1 − x3 −

1

5
x6

)
− x3

x5 = 28− 4x1 − 2

(
6− 2

5
x1 − x3 −

1

5
x6

)
− 3x3

x2 = 6− 2

5
x1 − x3 −

1

5
x6

0 ≤ x1, x2, x3, x4, x5, x6
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maximize 12 +
1

5
x1 − x3 −

2

5
x6

x4 = 8− 8

5
x1 +

1

5
x6

x5 = 16− 16

5
x1 − x3 +

2

5
x6

x2 = 6− 2

5
x1 − x3 −

1

5
x6

0 ≤ x1, x2, x3, x4, x5, x6

Just to keep things tidy, we’ll re-order the equations so that the LHS
variables are sorted:

maximize 12 +
1

5
x1 − x3 −

2

5
x6

x2 = 6− 2

5
x1 − x3 −

1

5
x6

x4 = 8− 8

5
x1 +

1

5
x6

x5 = 16− 16

5
x1 − x3 +

2

5
x6

0 ≤ x1, x2, x3, x4, x5, x6

Step 6: Repeat Steps 2-5 Until No Slopes Are
Positive

Evaluate the objective quantity. We will evaluate the objective quantity
for our new guess. Remember that our guess is obtained by setting the
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basic variables equal to0.The basic variables are nowx1, x3, x6. Setting
these variables equal to 0, our objective quantity becomes

12 +
1

5
x1 − x3 −

2

5
x6

→ 12 +
1

5
(0)− 2(0)− 2

5
(0)

→ 12.

So our guess has improved! Our previous guess gave us an objective
quantity of 0, and our new guess gave us an objective quantity of 12.

Sanity Checks

In this example, if you ever get a new guess that does not appear to
increase the objective quantity, then something went wrong. The new
guess should always increase the objective quantity. (In rare cases,
it’s possible for the simplex algorithm to “cycle” around suboptimal
minima that yield the same value of the objective function, but this
example is not one of those cases.)

Additionally, you should always verify that your guess satisfies the
constraints of the original problem statement. Below is an explanation
of how to do that. As a reminder, the original problem statement was
to maximize x1 + 2x2 + x3 subject to the following constraints:
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2x1 + x2 + x3 ≤ 14

4x1 + 2x2 + 3x3 ≤ 28

2x1 + 5x2 + 5x3 ≤ 30

x1, x2, x3 ≥ 0

The original problem statement is framed in terms of variables
x1, x2, x3. The slack variables x4, x5, x6 are artificial things that we
made up. Here, our guess is x1 = x3 = x6 = 0. Although x2 is not
explicit in our guess, we can find it by substituting our guess into our
system. Doing so, we find

x2 = 6, x4 = 8, x5 = 16.

So in terms of the original variables of our system, our guess is

x1 = 0, x2 = 6, x3 = 0.

Indeed, if we evaluate the objective quantity shown in the problem
statement, we get

x1 + 2x2 + x3

→ 0 + 2(6) + 0

→ 12.
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Additionally, the guessx1 = 0, x2 = 6, x3 = 0 satisfies all constraints
in the original problem statement.

Another Iteration

Identify the basic variable with the largest slope. Our objective function
is now

M(x1, x3, x6) = 12 +
1

5
x1 − x3 −

2

5
x6,

and the basic variable with the largest slope is x1.

Identify which non-basic variable to trade for that basic variable. With
a bit of algebra work (which you should do on your own), we have the
following constraints:

x1 ≤ 15

x1 ≤ 5

x1 ≤ 5

The second and third constraints are the strictest. They are equally strict,
so we can choose to proceed with either one. Referring back to our
system (shown below), these two constraints come from x4 and x5.
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maximize 12 +
1

5
x1 − x3 −

2

5
x6

x2 = 6− 2

5
x1 − x3 −

1

5
x6

x4 = 8− 8

5
x1 +

1

5
x6

x5 = 16− 16

5
x1 − x3 +

2

5
x6

0 ≤ x1, x2, x3, x4, x5, x6

Let’s proceed with the x4 constraint since it’s simpler (it contains fewer
variables).

Execute the trade. Solving for x1 in terms of x4 (which you should do
on your own), we get

x1 = 5− 5

8
x4 +

1

8
x6

I’ll leave it to you to finish the trade execution by substituting into your
system.

In the next round, you should find that your guess has improved, but
that no slopes are positive, which means you’re done and have found
the optimal solution.
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Array Manipulations

The algebra above can be implemented more elegantly as array
manipulations. Let’s start by taking the system that we obtained after
introducing slack variables, and converting it to an array:

maximize x1 + 2x2 + x3

x4 = 14− 2x1 − x2 − x3

x5 = 28− 4x1 − 2x2 − 3x3

x6 = 30− 2x1 − 5x2 − 5x3

0 ≤ x1, x2, x3, x4, x5, x6

maximize x1 + 2x2 + x3

2x1 + x2 + x3 + x4 = 14

4x1 + 2x2 + 3x3 + x5 = 28

2x1 + 5x2 + 5x3 + x6 = 30

x1 x2 x3 x4 x5 x6 constant
maximize 1 2 1 0 0 0 0

constraint 2 1 1 1 0 0 14

constraint 4 2 3 0 1 0 28

constraint 2 5 5 0 0 1 30
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From the array, we can tell that x2 has the largest slope since it has the
largest entry in the top row. To find the row that places the strictest
constraint on x2,we just divide the constant column by the x2 column:

x1 x2 x3 x4 x5 x6 constant constraint
maximize 1 2 1 0 0 0 0 −

constraint 2 1 1 1 0 0 14 14/1 = 14

constraint 4 2 3 0 1 0 28 28/2 = 14

constraint 2 5 5 0 0 1 30 30/5 = 6

The bottom row places the strictest constraint. To execute the trade,
we perform elementary row operations using the bottom row to kill off
the rest of the x2 column. (That is, we divide the bottom row so that
the entry in the x2 column becomes 1, and then we subtract multiples
of the bottom row from the other rows.)

x1 x2 x3 x4 x5 x6 constant
maximize 0.2 0 −1 0 0 −0.4 −12 ← max is 12

constraint 1.6 0 0 1 0 −0.2 8

constraint 3.2 0 1 0 1 −0.4 16

constraint 0.4 1 1 0 0 0.2 6

This matches up with the system that we got after the first iteration
when we worked out the algebra (shown below). The only catch is that
the −12 in the “constant” column really means that we’ve reached a
maximum of positive 12. (This happens because the constant column
usually represents the constant once it’s been moved to the other side
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of the equality sign, but there is no equality sign in the expression that
we’re trying to maximize.)

maximize 12 +
1

5
x1 − x3 −

2

5
x6

x4 = 8− 8

5
x1 +

1

5
x6

x5 = 16− 16

5
x1 − x3 +

2

5
x6

x2 = 6− 2

5
x1 − x3 −

1

5
x6

0 ≤ x1, x2, x3, x4, x5, x6

Remember that the array manipulations are just implementing algebra
that we’ve already worked through, so if you get confused or stuck when
implementing the simplex method, it will help to go back to the algebra
and make sure that every array manipulation you do matches up against
the algebra.

Exercises

1. Work out the example that was covered, using algebra, on paper.

2. Write all the relevant array manipulations next to the algebra.

3. Implement the simplex method in code. The input should be
the first array that you write down, and the output should be the
last array that you wrote down.
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4. Work out the array manipulations manually for the new system
shown below, and then ensure that your implementation gives
the same result. Note that when you are identifying the
strictest constraint, if you ever get a constraint of that involves a
comparison to a negative number, then you can discard it (since
we already know the variables are non-negative). This should
only require you to work out 3 iterations (i.e. your 4th guess will
be the final one).

maximize 20x1 + 10x2 + 15x3 such that

3x1 + 2x2 + 5x3 ≤ 55

2x1 + x2 + x3 ≤ 26

x1 + x2 + 3x3 ≤ 30

5x1 + 2x2 + 4x3 ≤ 57

x1, x2, x3 ≥ 0.
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Part IV

Regression and Classification
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23. Linear, Polynomial, and
Multiple Linear Regression via
Pseudoinverse

Supervised learning consists of fitting functions to data sets. The idea
is that we have a sample of inputs and outputs from some process, and
we want to come up with a mathematical model that predicts what
the outputs would be for other inputs. Supervised machine learning
involves programming computers to compute such models.

Linear Regression and the Pseudoinverse

One of the simplest ways to construct a predictive algorithm is to
assume a linear relationship between the input and output. Even if
this assumption isn’t correct, it’s always useful to start with a linear
model because it provides a baseline against which we can compare
the accuracy of more complicated models. (We can only justify using
a complicated model if it is significantly more accurate than a linear
model.)
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For example, let’s fit a linear modely = mx+b to the following data set.
That is, we want to find the values ofm and b so that the liney = mx+b

most accurately represents the following data set.

[(0, 1), (2, 5), (4, 3)]

While there is no single line that goes through all three points in the
data set, we can choose the slope m and intercept b so that the line
represents the data as accurately as possible. There are a handful of
ways to accomplish this, the simplest of which involves leveraging the
pseudoinverse from linear algebra.

To start, let’s set up the system of equations that would need to be
satisfied in order for our model to have perfect accuracy on the data
set. We do this by simply taking each point (x, y) in our data set and
plugging it into the model y = mx+ b.

(x, y) → y = m · x+ b

(0, 1) → 1 = m · 0 + b

(2, 5) → 5 = m · 2 + b

(4, 3) → 3 = m · 4 + b
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Now, we rewrite the above system using matrix notation:

15
3

 =

m · 0 + b

m · 2 + b

m · 4 + b

 →

15
3

 =

0 1

2 1

4 1

[m
b

]

You may be tempted to solve the matrix equation by inverting the
coefficient matrix that’s multiplying the unknown:

[
m

b

]
=

0 1

2 1

4 1


−1 15

3



Then you might remember that the inverse of a non-square matrix does
not exist, and think that this was all fruitless.

But really, this is the main idea of the pseudoinverse method. The only
difference is that before inverting the coefficient matrix, we multiply
both sides of the equation by the transpose of the coefficient matrix so
that it becomes square.
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15
3

 =

0 1

2 1

4 1

[m
b

]

[
0 2 4

1 1 1

]15
3

 =

[
0 2 4

1 1 1

]0 1

2 1

4 1

[m
b

]
[
22

9

]
=

[
20 6

6 3

][
m

b

]

Geometrically, multiplying by the transpose takes the matrices involved
in the equation and projects them onto the nearest subspace where a
solution exists. This means we can now take the inverse:

[
m

b

]
=

[
20 6

6 3

]−1 [
22

9

]

=
1

24

[
3 −6
−6 20

][
22

9

]

=
1

24

[
12

48

]

=

[
1/2

2

]
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Reading off the parameters m =
1

2
and b = 2, we have the following

linear model:

y =
1

2
x+ 2

Polynomial Regression

We can use the pseudoinverse method to fit polynomial models as well.
To illustrate, let’s fit a quadratic modely = ax2+bx+c to the following
data set:

[(0, 1), (2, 5), (4, 3), (5, 0)]

First, we set up our system of equations:
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(x, y) → y = a · x2 + b · x+ c

(0, 1) → 1 = a · 02 + b · 0 + c

(2, 5) → 5 = a · 22 + b · 2 + c

(4, 3) → 3 = a · 42 + b · 4 + c

(5, 0) → 0 = a · 52 + b · 5 + c

Then we convert to a matrix equation, multiply both sides by the
transpose of the coefficient matrix, and invert the resulting square
matrix.
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
1

5

3

0

 =


02 0 1

22 2 1

42 4 1

52 5 1


ab
c


0

2 22 42 52

0 2 4 5

1 1 1 1



1

5

3

0

 =

0
2 22 42 52

0 2 4 5

1 1 1 1



02 0 1

22 2 1

42 4 1

52 5 1


ab
c


6822
9

 =

897 197 45

197 45 11

45 11 4


ab
c


ab
c

 =

897 197 45

197 45 11

45 11 4


−1 6822

9



≈

−0.733.42

1.02



Note that we used a computer to simplify the final step. You can start
to see why computers are essential in machine learning (and this is just
the tip of the iceberg).
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We have the following quadratic model:

y ≈ −0.73x2 + 3.42x+ 1.02

Multiple Linear Regression

Lastly, the pseudoinverse method can also be used to fit models
consisting of multiple input variables. For example, let’s fit a linear
model z = ax+ by + c to the following data set:

[(0, 1, 50), (2, 5, 30), (4, 3, 20), (5, 1, 10)]

Here, we have two input variables, x and y. Our output variable is z.
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As usual, we begin by setting up our system of equations:

(x, y, z) → z = a · x+ b · y + c

(0, 1, 50) → 50 = a · 0 + b · 1 + c

(2, 5, 30) → 30 = a · 2 + b · 5 + c

(4, 3, 20) → 20 = a · 4 + b · 3 + c

(5, 0, 10) → 10 = a · 5 + b · 0 + c

Then we convert to a matrix equation, multiply both sides by the
transpose of the coefficient matrix, and invert the square matrix that
results.
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
50

30

20

10

 =


0 1 1

2 5 1

4 3 1

5 0 1


ab
c


0 2 4 5

1 5 3 0

1 1 1 1



50

30

20

10

 =

0 2 4 5

1 5 3 0

1 1 1 1



0 1 1

2 5 1

4 3 1

5 0 1


ab
c


190260

110

 =

45 22 11

22 35 9

11 9 4


ab
c


ab
c

 =

45 22 11

22 35 9

11 9 4


−1 190260

110



≈

−7.74−0.60
50.12


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So, we have the following model which represents a plane in 3-
dimensional space:

z ≈ −7.74x− 0.60y + 50.12

When the Pseudoinverse Fails

Note that the pseudoinverse method requires that the columns of the
coefficient matrix be independent. Otherwise, when we multiply by the
transpose, the result is not guaranteed to be invertible. In particular, this
means that the number of parameters of the model that we want to fit
(i.e. the width of the coefficient matrix) should not exceed the number
of distinct data points in our data set (i.e. the height of the coefficent
matrix).

To illustrate what happens when the number of parameters of the
model exceeds the number of distinct data points, let’s trying to fit a
line y = mx+ b to a data set [(2, 3)] consisting of only a single point.
(The line has 2 parameters, m and b.)
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3 = m · 2 + b[
3
]
=
[
2 1

] [m
b

]
[
2

1

] [
3
]
=

[
2

1

] [
2 1

] [m
b

]
[
6

3

]
=

[
4 2

2 1

][
m

b

]
[
4 2

2 1

]−1

does not exist

Although multiplying by the transpose gives us a square matrix, the
square matrix is not invertible. This happens because there are infinitely
many lines that have pass through the point (2, 3) and therefore have
perfect accuracy on the data set.

General Formula

Looking back at our work, we can write down the general procedure as
follows, where y is the vector of outputs,X is the coefficients matrix of
our system of equations, and p is the vector of model parameters.
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y = Xp

XTy = XTXp

p = (XTX)−1XTy

The pseudoinverse of the matrix X is defined by (XTX)−1XT , as
shown in the last row of the general equation. To understand why this
quantity is called the pseudoinverse, first recall that if we attempt to
solve the equation y = Xp using the regular matrix, then we get a
solution of the form

p = X−1y.

The issue that we run into is that the regular inverse X−1 usually does
not exist (because X is usually a tall rectangular matrix, not a square
matrix). The best approximation of the solution is

p = (XTX)−1XTy,

which takes a similar form to the previous equation, except that the
inverse X−1 is replaced by the pseudoinverse (XTX)−1XT .
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Final Remarks

Finally, note that quantitative models are usually referred to as regression
models when the goal is to predict some numeric value. This is
contrasted with classification models, where the goal is to predict the
category or class that best represents an input. So far, we have only
encountered regression models, but we will learn about classification
models soon.

Exercises

Use the pseudoinverse method to fit the given model to the given data
set. Check your answer by sketching the resulting model on a graph
containing the data points and verifying that it visually appears to
capture the trend of the data. Remember that the model does not need
to actually pass through all the data points (this is usually impossible).

1. Fit y = mx+ b to [(1, 0), (3,−1), (4, 5)].

2. Fit y = mx+ b to [(−2, 3), (1, 0), (3,−1), (4, 5)].

3. Fit y = ax2 + bx+ c to [(−2, 3), (1, 0), (3,−1), (4, 5)].

4. Fit y = ax2 + bx + c to [(−3,−4), (−2, 3), (1, 0), (3,−1),
(4, 5)].

5. Fit y = ax3 + bx2 + cx + d to [(−3,−4), (−2, 3), (3,−1),
(1, 0), (4, 5)].
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6. Fit z = ax + by + c to [(−2, 3,−3), (1, 0,−4), (3,−1, 2),
(4, 5, 3)].
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24. Regressing a Linear
Combination of Nonlinear
Functions via Pseudoinverse

Previously, we learned how to use the pseudoinverse to fit linear
and polynomial models to data sets consisting of one or more input
variables. However, the pseudoinverse is even more general than that.

Worked Example

For example, let’s fit the model

y = a sinx+ b · 2x

to the following data set:
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[(0, 1), (2, 5), (4, 3)]

Although the model is more complicated, the procedure for fitting it is
exactly the same. First, we set up our system:

(x, y) → y = a · sinx+ b · 2x

(0, 1) → 1 = a · sin 0 + b · 20

(2, 5) → 5 = a · sin 2 + b · 22

(4, 3) → 3 = a · sin 4 + b · 24

Then we convert to a matrix equation and multiply both sides by the
transpose of the coefficient matrix.

15
3

 =

sin 0 20

sin 2 22

sin 4 24

[a
b

]

[
sin 0 sin 2 sin 4

20 22 24

]15
3

 =

[
sin 0 sin 2 sin 4

20 22 24

]sin 0 20

sin 2 22

sin 4 24

[a
b

]

Finally, we evaluate the expression involving the inverse using a
computer:
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[
a

b

]
=

[sin 0 sin 2 sin 4

20 22 24

]sin 0 20

sin 2 22

sin 4 24




−1 [
sin 0 sin 2 sin 4

20 22 24

]15
3


≈

[
3.89

0.37

]

We have the following model:

y ≈ 3.89 sinx+ 0.37(2)x

Pulling Functions Apart

We can apply the pseudoinverse method to fit linear combinations of
general functions:
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y = af(x) + bg(x) + ch(x) + . . .

Note that we can sometimes simplify models into the general form
above even if they appear not to be of that form. For example, consider
the following crazy-looking model:

y =
±2a+x ±

√
bx

1 + x

By applying the rules of algebra, we can “pull apart” this model as
follows:

y =
±2a+x

1 + x
+
±
√
bx

1 + x

=
±2a · 2x

1 + x
+
±
√
b ·
√
x

1 + x

= ±2a · 2x

1 + x
±
√
b ·
√
x

1 + x

Note that 2a and
√
b are themselves constants, so this is in the desired

general form. Let’s fit this model to the data set that we’ve been working
with:

[(0, 1), (2, 5), (4, 3)]
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First, we set up our system:

(x, y) → y = ±2a · 2x

1 + x
±
√
b ·
√
x

1 + x

(0, 1) → 1 = ±2a · 20

1 + 0
±
√
b ·
√
0

1 + 0
→ 1 = ±2a · 1±

√
b · 0

(2, 5) → 5 = ±2a · 22

1 + 2
±
√
b ·
√
2

1 + 2
→ 1 = ±2a · 4

3
±
√
b ·
√
2

3

(4, 3) → 3 = ±2a · 24

1 + 4
±
√
b ·
√
4

1 + 4
→ 1 = ±2a · 16

5
±
√
b · 2

5

Then we convert to a matrix equation and multiply both sides by the
transpose of the coefficient matrix.


1

5

3

 =


1 0

4/3
√
2/3

16/5 2/5


[
±2a

±
√
b

]

[
1 4/3 16/5

0
√
2/3 2/5

]
1

5

3

 =

[
1 4/3 16/5

0
√
2/3 2/5

]
1 0

4/3
√
2/3

16/5 2/5


[
±2a

±
√
b

]
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Finally, we evaluate the expression involving the inverse using a
computer:

[
±2a

±
√
b

]
=


[
1 4/3 16/5

0
√
2/3 2/5

]
1 0

4/3
√
2/3

16/5 2/5




−1 [
1 4/3 16/5

0
√
2/3 2/5

]
1

5

3


≈

[
−0.14
10.01

]

We have the following model:

y ≈ −0.14 · 2x

1 + x
+ 10.01 ·

√
x

1 + x
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Functions that Cannot be Pulled Apart

Despite the example above, not every model can be fit using the
pseudoinverse method. For example, the model below cannot be fit
using the pseudoinverse because there are no rules of algebra that would
allow us to pull it apart:

y = sin(ax) cos(bx)

Functions of Multiple Inputs

Finally, note that all the discussion above also generalizes to functions of
multiple inputs. For example, we can apply the pseudoinverse method
to fit any model of the following form:

z = af(x, y) + bg(x, y) + ch(x, y) + . . .

To demonstrate how this works, let’s fit the model

z = ax sin y + by ln(1 + x)

to the following data set:
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[(0, 1, 50), (2, 5, 30), (4, 3, 20), (5, 1, 10)]

First, we set up our system:

(x, y, z) → z = a · x sin y + b · y ln(1 + x)

(0, 1, 50) → 50 = a · 0 sin 1 + b · 1 ln(1 + 0) → 50 = a · 0 + b · 0

(2, 5, 30) → 30 = a · 2 sin 5 + b · 5 ln(1 + 2) → 30 = a · 2 sin 5 + b · 5 ln 3

(4, 3, 20) → 20 = a · 4 sin 3 + b · 3 ln(1 + 4) → 20 = a · 4 sin 3 + b · 3 ln 5

(5, 1, 10) → 10 = a · 5 sin 1 + b · 1 ln(1 + 5) → 10 = a · 5 sin 1 + b · ln 6

Then we convert to a matrix equation and multiply both sides by the
transpose of the coefficient matrix.


50

30

20

10

 =


0 0

2 sin 5 5 ln 3

4 sin 3 3 ln 5

5 sin 1 ln 6


[
a

b

]

[
0 2 sin 5 4 sin 3 5 sin 1

0 5 ln 3 3 ln 5 ln 6

]
50

30

20

10

 =

[
0 2 sin 5 4 sin 3 5 sin 1

0 5 ln 3 3 ln 5 ln 6

]
0 0

2 sin 5 5 ln 3

4 sin 3 3 ln 5

5 sin 1 ln 6


[
a

b

]
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Finally, we evaluate the expression involving the inverse using a
computer:

[
a

b

]
=


[
0 2 sin 5 4 sin 3 5 sin 1

0 5 ln 3 3 ln 5 ln 6

]
0 0

2 sin 5 5 ln 3

4 sin 3 3 ln 5

5 sin 1 ln 6




−1 [
0 2 sin 5 4 sin 3 5 sin 1

0 5 ln 3 3 ln 5 ln 6

]
50

30

20

10



≈
[
−0.13

4.93

]

We have the following model:

z ≈ −0.13x sin y + 4.93 y ln(1 + x)
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Exercises

Use the pseudoinverse method to fit each model to the given data set.
Check your answer each time by sketching the resulting model on a
graph containing the data points and verifying that it visually appears
to capture the trend of the data.

1. Fit y = a ln(1 + x) +
b

x
to [(1, 0), (3,−1), (4, 5)].

2. Fit y =
ax+ b

2x
to [(1, 0), (3,−1), (4, 5)].

3. Fit y = ±3a+x ± 3
√
bx to [(1, 0), (3,−1), (4, 5)].

4. Fit z = axy2+ b ·2x+y to [(−2, 3,−3), (1, 0,−4), (3,−1, 2),
(4, 5, 3)].
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25. Power, Exponential, and
Logistic Regression via
Pseudoinverse

Previously, we learned that we can use the pseudoinverse to fit any
regression model that can be expressed as a linear combination of
functions. Unfortunately, there are a handful of useful models that
cannot be expressed as a linear combination of functions. Here, we will
explore 3 of these models in particular.

Power regression: y = a · xb

Exponential regression: y = a · bx

Logistic regression: y =
1

1 + e−(ax+b)

The techniques that we will learn for fitting these models will apply
more generally to any model that can be transformed into a linear
combination of functions (where the parameters are the coefficients
in the linear combination).
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Power and Exponential Regressions

Power and exponential regressions are familiar algebraic functions,
so we will address them first. To transform a power or exponential
regression into a linear combination of functions, we can transform the
equation by taking the natural logarithm of both sides and applying the
laws of logarithms to pull apart the expression on the right-hand side:

Power regression

ln y = ln
(
a · xb

)
→ ln y = ln a+ b lnx

Exponential regression

ln y = ln (a · bx) → ln y = ln a+ (ln b) · x

Let’s fit the power regression to the following data set.

[(1, 1), (2, 5), (4, 3)]

As usual, we set up the system of equations, convert it into a matrix
equation, and apply the pseudoinverse.
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(x, y) → ln y = (ln a) · 1 + b · lnx

(1, 1) → ln 1 = (ln a) · 1 + b · ln 1 → 0 = (ln a) · 1 + b · 0

(2, 5) → ln 5 = (ln a) · 1 + b · ln 2

(4, 3) → ln 3 = (ln a) · 1 + b · ln 4

 0

ln 5

ln 3

 =

1 0

1 ln 2

1 ln 4

[ln a
b

]

[
ln a

b

]
=

[1 1 1

0 ln 2 ln 4

]1 0

1 ln 2

1 ln 4




−1 [
1 1 1

0 ln 2 ln 4

] 0

ln 5

ln 3


≈

[
0.35

0.79

]

So, we have the following model:

ln y ≈ 0.35 · 1 + 0.79 · lnx

By combining the logarithms and reversing the transformation that we
originally applied to the power regression y = a · xb, we can write the
above model in power regression form:
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ln y ≈ 0.35 + 0.79 · lnx

ln y ≈ ln(e0.35) + ln x0.79

ln y ≈ ln 1.42 + ln x0.79

ln y ≈ ln 1.42x0.79

y ≈ 1.42x0.79

Danger: Unintentional Domain Constraints

Notice that the data set we used above was slightly different from
the data set that we’ve used earlier in this chapter. We changed the x-
coordinate 0 to a 1 in the first data point.

Earlier: [(0, 1), (2, 5), (4, 3)]

Now: [(1, 1), (2, 5), (4, 3)]
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The reason why we modified the data set is that the earlier data set
exposes a limitation of the pseudoinverse method. We can’t fit our
power regression model to the earlier data set, because the x-coordinate
of 0 causes a catastrophic issue in our transformed power regression
equation.

To see what the issue is, let’s substitute the point (0, 1) into our
transformed power regression equation and see what happens:

(x, y) → ln y = (ln a) · 1 + b · lnx

(0, 1) → ln 1 = (ln a) · 1 + b · ln0

The quantity ln 0 is not defined, so 0 is not a valid input for x. By
transforming the equation, we unintentionally imposed a constraint
on the valid inputs x.

Danger: Suboptimal Fit

Unfortunately, this is not the only bad news. Even with our new
data set, which does not contain any points with an x-value of 0,
the pseudoinverse did not give us the most accurate fit of the power
regression y = axb. It gave us the most accurate fit of the transformed
model ln y = (ln a) · 1 + b · lnx, but this is not the most accurate
fit of the original power regression even though the two equations are
mathematically equivalent.
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To understand this more clearly, let’s consider an extreme example. If
we were to fit a power regression to the data set

[(0.001, 0.01), (2, 4), (3, 9)]

using the same method that we demonstrated above, then we would get
the following model:

y ≈ 2.89x0.82

However, if we plot this curve along with the data, then it’s easy to see
that this is not the most accurate model. It doesn’t even curve the right
way! A hand-picked model as simple as y = x2 would be vastly more
accurate.
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The reason the pseudoinverse method gave us an inaccurate model is
that we transformed the model and data into a different space before
we applied the pseudoinverse:

y = a · xb → ln y = (ln a) · 1 + b · lnx

In the space that the data was transformed to, it turns out that the model
y ≈ 2.89x0.82 is more accurate than the model y = x2. To visualize
this, we can plot these two models along with the data in the space of
points (lnx, ln y).

y = 2.89x0.82 → ln y = ln 2.89 + 0.82 lnx

y = x2 → ln y = 2 lnx

[(0.001, 0.01), (2, 4), (3, 9)] → [(ln 0.001, ln 0.01), (ln 2, ln 4), (ln 3, ln 9)]

≈ [(−6.91,−4.61), (0.69, 1.39), (1.10, 2.20)]
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Indeed, ln y = ln 2.89 + 0.82 lnx is the most accurate model in the
space of points (lnx, ln y), but it is not the most accurate model in the
space of points (x, y).

This is something to be cautious of whenever you transform a model
into a space where the pseudoinverse can be applied – you should
always check the function afterwards and verify that it is looks accurate
“enough” for your purposes.

Logistic Regression

Soon, we will learn about other methods of fitting models that are
robust to this sort of issue. But for now, let’s end by discussing the
logistic function:

y =
1

1 + e−(ax+b)

186



Introduction to Algorithms and Machine Learning

The logistic function has a range of 0 < y < 1, and it is a common
choice of model when the goal is to predict a bounded quantity. For
example, probabilities are bounded between 0 and 1, and rating scales
(such as movie ratings) are often bounded between 1− 5 and 1− 10.

Let’s construct a real-life scenario in which to fit a logistic regression.
Suppose that a food critic has rated sandwiches on a scale of 1 − 5 as
follows:

• A roast beef sandwich with 1 slice of roast beef was given a rating
of 1 out of 5.

• A roast beef sandwich with2 slices of roast beef was given a rating
of 1 out of 5.

• A roast beef sandwich with3 slices of roast beef was given a rating
of 2 out of 5.

We will model the food critic’s rating as a function of the number of
slices of roast beef. Our data set will consist of points (x, y), where x
represents the number of slices of roast beef and y represents the food
critic’s rating.

[(1, 1), (2, 1), (3, 2)]

To model the rating, we can fit a logistic function and then round the
output to the nearest whole number. Since the rating scale is between
1− 5 and we are going to round the output of the logistic function, we
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need to construct a logistic function with the range 0.5 < y < 5.5.

We can do this as follows:

0 <
1

1 + e−(ax+b)
< 1

0 <
5

1 + e−(ax+b)
< 5

0.5 <
5

1 + e−(ax+b)
+ 0.5 < 5.5

So, our goal is to fit the following model to the data set
[(1, 1), (2, 1), (3, 2)].

y =
5

1 + e−(ax+b)
+ 0.5

In order to fit the model using the pseudoinverse, we need to transform
it into a linear combination of functions. We do so by manipulating
the equation to isolate the ax+ b:
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y =
5

1 + e−(ax+b)
+ 0.5

y − 0.5 =
5

1 + e−(ax+b)

1 + e−(ax+b) =
5

y − 0.5

e−(ax+b) =
5

y − 0.5
− 1

−(ax+ b) = ln

(
5

y − 0.5
− 1

)
− ln

(
5

y − 0.5
− 1

)
= ax+ b

Now, we can proceed with the usual process of fitting our model using
the pseudoinverse.

(x, y) → − ln

(
5

y − 0.5
− 1

)
= a · x+ b · 1

(1, 1) → − ln

(
5

1− 0.5
− 1

)
= a · 1 + b · 1 → − ln 9 = a · 1 + b · 1

(2, 1) → − ln

(
5

1− 0.5
− 1

)
= a · 2 + b · 1 → − ln 9 = a · 2 + b · 1

(3, 2) → − ln

(
5

2− 0.5
− 1

)
= a · 3 + b · 1 → − ln(7/3) = a · 3 + b · 1
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 − ln 9

− ln 9

− ln(7/3)

 =

1 1

2 1

3 1

[a
b

]

[
a

b

]
=

[1 2 3

1 1 1

]1 1

2 1

3 1




−1 [
1 2 3

1 1 1

] − ln 9

− ln 9

− ln(7/3)


≈

[
0.67

−3.10

]

So, we have the following model:

y ≈ 5

1 + e−(0.67x−3.10)
+ 0.5

Since we had to transform the model into a space where the
pseudoinverse can be applied, we need to check the function and verify
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that it looks accurate enough for our purposes. Here, our regression
curve looks fairly accurate, so we will proceed to analyze it.

Now that we have a regression curve, we can use it to make predictions
about the data. For example, what rating would we expect the critic to
give a sandwich with 6 slices of roast beef? To answer this question, we
just plug x = 6 into our model:

y(6) ≈ 5

1 + e−((0.67)(6)−3.10)
+ 0.5

≈ 4.08

Our result of 4.08 rounds to 4. So, according to our model, we predict
that the critic would give a rating of 4 to a sandwich that had 6 slices of
roast beef.

Exercises

Use the pseudoinverse method to fit each model to the given data set.
Check your answer each time by sketching the resulting model on a
graph containing the data points and verifying that it visually appears
to capture the trend of the data.

1. Fit a power regression y = a · xb to [(1, 0.2), (2, 0.3), (3, 0.5)].

2. Fit an exponential regression y = a · bx to [(1, 0.2), (2, 0.3),

(3, 0.5)].
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3. Fit a logistic regression y =
1

1 + e−(ax+b)
to [(1, 0.2), (2, 0.3),

(3, 0.5)].

4. Construct a logistic regression whose range is 0.5 < y < 10.5

and fit it to [(1, 2), (2, 3), (3, 5)].
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26. Overfitting, Underfitting,
Cross-Validation, and the
Bias-Variance Tradeoff

We have previously described a model as “accurate” when it appears
to match closely with points in the data set. However, there are issues
with this definition that we will need to remedy. In this section, we
will expose these issues and develop a more nuanced understanding of
model accuracy by way of a concrete example.

Overfitting and Underfitting

Consider the following data set of points (x, y), where x is the number
of seconds that have elapsed since a rocket has launched and y is the
height (in meters) of the rocket above the ground. The data is noisy,
meaning that there is some random error in the measurements.
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[(0, 0), (1, 10), (2, 20), (3, 50), (4, 35), (5, 100),

(6, 110), (7, 190), (8, 150), (9, 260), (10, 270)]

If we use the pseudoinverse to fit linear, quadratic, and 8th degree
polynomial regressions, we get the following results. (You should do
this yourself and verify that you get the same results.)

Linear: y = 28.14x− 32.05
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Quadratic: y = 2.05x2 + 7.68x− 1.36

8th degree: y = −0.00778x8 + 0.296666x7 − 4.575859x6

+ 36.618048x5 − 162.04318x4 + 390.1833x3

− 462.14466x2 + 212.239681x− 0.087308
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Note that we used more decimal places in the 8th degree polynomial
regressor because it is very sensitive to rounding. (If you round the
coefficients to 2 decimal places and plot the result, it will look wildly
different.)

As we can see from the graph, the 8th degree polynomial regressor
matches closest with the points in the data set. So, if we define “accuracy”
as simply matching with points in the data set, then we’d say the 8th
degree polynomial is the most accurate.

However, this doesn’t pass the sniff test. In order to match up with the
points in the data set so well, the 8th degree polynomial has to curve
and contort itself in unrealistic ways between data points.

• For example, between the last two points in the data set, the 8th
degree polynomial rises up and falls down sharply. Did the rocket
really rise up 100 meters and fall down 100 meters between the
9th and 10th seconds? Probably not.

• Likewise, the 8th degree polynomial continues dropping sharply
after the 10th second and hits the x-axis shortly after. Is the
rocket really plummeting to the ground? Based on the actual
data points, it seems unlikely.

So, we can’t place much trust in the8th degree polynomial’s predictions.
The 8th degree polynomial thinks the relationship between x and y is
more complicated than it actually is. When this happens, we say that
the model overfits the data.

On the other hand, the linear regression does not capture the fact that
the data is curving upwards. It thinks the relationship between x and

196



Introduction to Algorithms and Machine Learning

y is less complicated than it actually is. When this happens, we say that
the model underfits the data.

Based on the graph, the quadratic regressor looks the most accurate.
It captures the fact that the data is curving upwards, but it does not
contort itself in unrealistic ways between data points, and it does not
predict that the rocket is going to fall straight down to the ground
immediately after the 10th second. The quadratic regressor neither
overfits nor underfits. So, we can place more trust in its predictions.

The Need for Cross Validation

The discussion above suggests that our definition of accuracy should
be based on how well a model predicts things, not how well it matches
up with the data set. So, we have a new definition of what it means for
a model to be accurate:

• Old (bad) definition: The closer a model matches up with points
in the data set, the more accurate it is.

• New (good) definition: The better a model predicts data points
that it hasn’t seen (i.e. were not used during the model fitting
procedure), the more accurate it is.

But how can we measure how well a model predicts data points that
it hasn’t seen, if we are fitting it on the entire data set? The answer is
surprisingly simple: when measuring the accuracy of a model, don’t
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fit the model on the entire data set. Instead, carry out the following
procedure, known as leave-one-out cross validation:

1. Remove a point from the data set.

2. Fit the model to all points in the data set except the point that we
removed.

3. Check how accurately the model would have predicted the point
that we left out.

4. Place the point back in the data set.

5. Repeat steps 1 − 4 for every point in the data set and add up
how much each prediction was “off” by. This is called the cross-
validation error.

6. The model with the lowest cross-validation error is the most
accurate, i.e. it does the best job of predicting real data points
that it has not seen before.

The phrase leave-one-out refers to when we remove a point from the
data set. The phrase cross validation refers to when we have the model
predict the point we removed: we’re validating that the model still does
a good job of predicting points that it hasn’t already been fitted on. The
word cross indicates that during our validation, we’re asking the model
to “cross over” from points it has seen, to points it has not seen.
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Example: Cross Validation

Let’s demonstrate the leave-one-out cross validation procedure by
computing the cross-validation error for linear, quadratic, and 8th
degree polynomial regression models on our rocket launch data set. We
should find that the quadratic regression has the lowest error, the linear
regression has slightly higher error, and the 8th degree polynomial has
significantly higher error.

The table below shows some of the intermediate steps for computing
the cross-validation error for linear regression. In each row of the table,
we remove a point from the data set, fit a linear regression model to
the remaining data, and then get the predicted y-value by plugging the
x-coordinate of the removed point into the model.
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Removed
Point

Remaining Data Model
Predicted
Y-Value

(0, 0)

[
(1, 10), (2, 20),

(3, 50), (4, 35), (5, 100),

(6, 110), (7, 190), (8, 150),

(9, 260), (10, 270)

]
y = 30.27x− 47.0 −47.0

(1, 10)

[
(0, 0) (2, 20),

(3, 50), (4, 35), (5, 100),

(6, 110), (7, 190), (8, 150),

(9, 260), (10, 270)

]
y = 28.8x− 37.01 −8.21

(2, 20)

[
(0, 0) (1, 10),

(3, 50), (4, 35), (5, 100),

(6, 110), (7, 190), (8, 150),

(9, 260), (10, 270)

]
y = 28.0x− 30.88 25.12

...
...

...
...

(10, 270)

[
(0, 0) (1, 10), (2, 20),

(3, 50), (4, 35), (5, 100),

(6, 110), (7, 190), (8, 150),

(9, 260),

]
y = 26.76x− 27.91 239.69

Once we have all the predicted points, we can compare them to the
removed points and compute the cross-validation error. For each row in
the table, we compute the square of the difference between the predicted
y-value and the actual y-value in the removed point.
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(xactual, yactual) ypredicted (ypredicted − yactual)
2

(0, 0) −47.0 (−47.0− 0)2

(1, 10) −8.21 (−8.21− 10)2

(2, 20) 25.12 (25.12− 20)2

...
...

...

(10, 270) 239.69 (239.69− 270)2

Note that although it might feel more natural to take the absolute value
instead of the square when computing the total error, it’s conventional
to work with squared distances in machine learning and statistics
because squaring has more desirable mathematical properties. For
example, squaring is differentiable everywhere, whereas absolute value
is not (the graph of the absolute value function is not differentiable at
0).

Finally, we sum up all the individual squared errors to get the total cross-
validation error. This sum of squared errors is also known as the cross-
validated RSS (residual sum of squares).

(−47.0− 0)2 + (−8.21− 10)2 + (25.12− 20)2 + . . .+ (239.69− 270)2

If we compute the cross-validation error for the linear, quadratic, and
8th degree polynomial regressors separately, then we get the following
results (rounded to the nearest integer). Note that these results were
generated via code, and there was no intermediate rounding like was
done while working out the example above. You should try to calculate
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these cross-validation errors on your own and verify that your numbers
match up.

Model Cross-Validation Error

Linear 13 143

Quadratic 8 033

8th Degree 7 615 290

If you need to debug anything by hand and round intermediate results,
remember to keep many decimal places in the coefficients of the 8th
degree polynomial regressor. (If you use too few decimal places, then
the regressor will give wildly different results.)

The results are just as we expected:

• The quadratic regressor has the lowest cross-validation error,
which means it is the most accurate model to use for this data set.

• The linear regressor has sightly higher cross-validation error
because it slightly underfits the data (it doesn’t capture the fact
that the data is curving upwards).

• The 8th degree polynomial has massively higher cross-validation
error because it massively overfits the data (it contorts itself
and overcomplicates things so much that it thinks the rocket is
plummeting to the ground).
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Bias-Variance Tradeoff

Finally, let’s build more intuition about why these results came out as
they did. It turns out that the total cross-validation error in our model
is the sum of two different types of error:

(
total cross-

validation error

)
=

(
error due

to bias

)
+

(
error due

to variance

)

Loosely speaking, error due to bias occurs if a model assumes too
much about the relationship being modeled. In our example, the
linear regressor had high error due to bias because it assumed that the
relationship was a straight line (whereas the data was actually curving
upwards a bit). The error due to bias comes from a model’s inability to
pass through all the points that are being used to fit it. A model with
high bias is too rigid to capture some trends in the data, and therefore
underfits the data.

On the other hand, error due to variance occurs if a model changes
drastically when fit to a different sample of data points from the same
data set. In our example, the 8th degree polynomial regressor had high
error due to variance. To see this, you should plot all the different 8th
degree regressors that you came up with during your leave-one-out cross
validation and observe that the graphs look quite different from one
another. This is bad because a model is supposed to pick up on the true
relationship underlying some data, and if the model changes its mind
significantly when it’s shown different samples of data from the same
data set, then we can’t trust it! A model with high variance is so flexible
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that it reads too much into the relationship between points in the data
set and contorts itself in weird ways.

To build further intuition for bias and variance, it can help to
anthropomorphize a bit:

• A high-bias model is dumb: it can’t comprehend the complexity
of the relationship in the data.

• A high-variance model is paranoid: it thinks it’s seeing all sorts
of complicated relationships that just aren’t there.

Ideally, we would like to minimize error due to bias and error due
to variance. However, bias and variance are two sides of the same
coin: when one decreases, the other increases. By minimizing one, we
maximize the other. In particular:

• By making the model less rigid (i.e. decreasing bias), we make the
model more flexible (i.e. increase variance).

• By making the model less flexible (i.e. decreasing variance), we
make the model more rigid (i.e. increase bias).

This is known as the the bias-variance tradeoff, and it means that
we cannot simply minimize bias and variance independently. This is
why cross-validation is so useful: it allows us to compute and thereby
minimize the sum of error due to bias and error due to variance, so that
we may find the ideal tradeoff between bias and variance.
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K-Fold Cross Validation

In closing, note that although leave-one-out cross validation can take
a long time to run on large data sets, a similar procedure called k-fold
cross validation can be used instead. Instead of removing one point at
a time, we shuffle the data set, break it up into k parts (with each part
containing roughly the same number of points), and then remove one
of the parts each time. Each time, we predict the points in the part that
we left out, and then we add up all the squared errors. We usually choose
k to be a small number (such as k = 5) so that the cross validation
procedure runs fairly quickly.

Exercise

Work out the computations that were outlined in the examples
above. Fit and compute leave-one-out cross validation error for linear,
quadratic, and 8th degree polynomials and verify that your results
match up with the examples.
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27. Regression via Gradient
Descent

Gradient descent can be applied to fit regression models. In particular,
it can help us avoid the pitfalls that we’ve experienced when we attempt
to fit nonlinear models using the pseudoinverse.

Previously, we fit a power regression y = axb to the following data set
and got a result that was quite obviously not the most accurate fit.

[(0.001, 0.01), (2, 4), (3, 9)]

This time, we will use gradient descent to fit the power regression and
observe that our resulting model fits the data much better.

Model-Fitting as a Minimization Problem

To fit a model using gradient descent, we just have to construct an
expression that represents the error between the model and the data
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that it’s supposed to fit. Then, we can use gradient descent to minimize
that expression.

To represent the error between the model and the data that it’s supposed
to fit, we can use the residual sum of squares (RSS). To compute the
RSS, we just add up the squares of the differences between the model’s
predictions and the actual data.

data point → predicted y-value vs data y-value

(x, y) → axb vs y

(0.001, 0.01) → a · (0.001)b vs 0.01

(2, 4) → a · 2b vs 4

(3, 9) → a · 3b vs 9

Summing up the squared differences between the predicted y-values
and the y-values in the data, we get the following expression for the
RSS:

RSS =
(
a · (0.001)b − 0.01

)2
+
(
a · 2b − 4

)2
+
(
a · 3b − 9

)2
Now, this is a normal gradient descent problem. We choose an initial
guess for a and b and then use the partial derivatives ∂RSS

∂a
and ∂RSS

∂b
to

repeatedly update our guess so that it results in a lower RSS.

Computing partial derivatives, we have the following:
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∂RSS
∂a

= 2
(
a · (0.001)b − 0.01

)
(0.001)b

+ 2
(
a · 2b − 4

)
· 2b

+ 2
(
a · 3b − 9

)
· 3b

∂RSS
∂b

= 2
(
a · (0.001)b − 0.01

)
· a · (0.001)b ln(0.001)

+ 2
(
a · 2b − 4

)
· a · 2b ln 2

+ 2
(
a · 3b − 9

)
· a · 3b ln 3

Worked Example

Let’s start with the initial guess ⟨a0, b0⟩ = ⟨1, 1⟩ , which corresponds
to the straight line y = 1x1. Our gradient is

∇RSS(a0, b0) =
〈
∂RSS
∂a

,
∂RSS
∂b

〉∣∣∣∣
(a0,b0)

= ⟨−44.000018,−45.095095⟩ ,

and using learning rate α = 0.001 our updated guess is

⟨a1, b1⟩ = ⟨a0, b0⟩ − α∇RSS(a0, b0)

= ⟨1, 1⟩ − (0.001) ⟨−44.000018,−45.095095⟩

= ⟨1.044000, 1.045095⟩ .
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If we continue the process, we get the results shown in the table below.

n ⟨an, bn⟩ ∇RSS(an, bn)
∣∣ RSS(an, bn)

0 ⟨1, 1⟩ ⟨−44.000018,−45.095095⟩
∣∣ 40.000081

1 ⟨1.044000, 1.045095⟩ ⟨−43.610529,−46.794623⟩
∣∣ 35.998548

2 ⟨1.087611, 1.091890⟩ ⟨−42.948407,−48.155772⟩
∣∣ 31.88666

3 ⟨1.130559, 1.140045⟩ ⟨−41.947662,−49.053128⟩
∣∣ 27.719376

50 ⟨1.450958, 1.640770⟩ ⟨0.849948,−0.569792⟩
∣∣ 0.315108

100 ⟨1.410093, 1.668529⟩ ⟨0.783786,−0.539881⟩
∣∣ 0.266312

500 ⟨1.185035, 1.836774⟩ ⟨0.378140,−0.307757⟩
∣∣ 0.061737

1000 ⟨1.065472, 1.939139⟩ ⟨0.137242,−0.123755⟩
∣∣ 0.008426

5000 ⟨1.000014, 1.999987⟩ ⟨−0.000029,−0.000028⟩
∣∣ 0.000100

10000 ⟨1.000000, 2.000000⟩ ⟨0.000000, 0.000000⟩
∣∣ 0.000100

Our gradient descent converged to a = 1 and b = 2, which
corresponds to the function y = 1x2. As we can see from the graph
below, this is a very good fit.
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Sigma Notation and Implementation

Note that when implementing gradient descent on a data set consisting
of more than a few points, it becomes infeasible to hard-code the entire
expression for the RSS gradient. Instead, it becomes necessary to write a
function that loops through the points in the data set and incrementally
adds up each point’s individual contribution to the total RSS gradient.
It also becomes convenient to re-use intermediate values when possible.

To think through this, it’s helpful to express the RSS and its gradient
using sigma notation. In the example above, the RSS is given by

RSS =
∑

(x,y)∈ data

(
axb − y

)2
,

and its gradient is computed as
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∇RSS =
∑

(x,y)∈ data

∇
(
axb − y

)2
=

∑
(x,y)∈ data

2
(
axb − y

)
∇
(
axb − y

)
=

∑
(x,y)∈ data

2
(
axb − y

)〈 ∂

∂a

(
axb − y

)
,
∂

∂b

(
axb − y

)〉

=
∑

(x,y)∈ data

2
(
axb − y

) 〈
xb, abxb−1

〉
=

∑
(x,y)∈ data

2
(
axb − y

)
xb
〈
1, abx−1

〉
.

Now that we’ve worked out the sigma notation, we can write a function
that mirrors it:

gradRSS(a, b, data):
da = 0
db = 0
for (x,y) in data:

common = 2 * (ax^b - y) * x^b
da += common
db += common * a * b * x^-1

return da, db
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Debugging with Central Difference
Quotients

Lastly, note that when debugging broken gradient descent code, it can
be helpful to check your partial derivatives against difference quotient
approximations to ensure that you’re computing the partial derivatives
correctly:

∂RSS
∂a

≈ RSS(a+ h, b)− RSS(a− h, b)

2h

∂RSS
∂b
≈ RSS(a, b+ h)− RSS(a, b− h)

2h

where 0 < h≪ 1 is a small positive number.

Do not abuse difference quotients and attempt to use them to fully bypass
gradient computations. Use difference quotients only for debugging.
Difference quotients will be too slow to effectively train more advanced
models (such as neural networks), and it’s useful to practice gradient
computations on simpler models before moving on to more advanced
models.
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Exercises

Use gradient descent to fit the following models. Be sure to plot your
model on the same graph as the data to ensure that the fit is looks
reasonable.

1. Implement the example that was worked out above.

2. Fit y = ax2 + bx + c to [(0.001, 0.01), (2, 4), (3, 9)] . Verify
that gradient descent gives the same fit as compared to using the
pseudoinverse.

3. Fit y =
5

1 + e−(ax+b)
+ 0.5 to [(1, 1), (2, 1), (3, 2)]. Verify

that gradient descent gives a better fit as compared to using the
pseudoinverse.

4. Fit y = a sin bx+ c sin dx to[
(0, 0) , (1,−1) , (2, 2) , (3, 0) , (4, 0)

(5, 2) , (6,−4) , (7, 4) , (8, 1) , (9,−3)

]
.
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28. Multiple Regression and
Interaction Terms

In many real-life situations, there is more than one factor that controls
the quantity we’re trying to predict. That is to say, there is more than
one input variable that controls the output variable.

Example: Multiple Input Variables

For example, suppose that a food manufacturing company is testing out
different ingredients on sandwiches, including peanut butter and roast
beef. They fed sandwiches to subjects and counted the proportion of
subjects who liked each sandwich.

215



Justin Skycak

scoops
peanut butter

scoops
jelly

slices
beef

proportion
subjects liked

0 0 0 0.0

1 0 0 0.2

2 0 0 0.5

0 1 0 0.4

0 2 0 0.6

0 0 1 0.5

0 0 2 0.8

1 1 0 1.0

1 0 1 0.0

0 1 1 0.1

We want to build a model that has 3 input variables:

x1 = scoops peanut butter

x2 = scoops jelly

x3 = slices beef

The model will predict 1 output variable:

y = proportion subjects liked

Since this output variable must be between 0 and 1, we will use logistic
regression.
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y =
1

1 + e−(ax+b)

The logistic model above is written with only a single input variable.
Here, we have 3 different input variables, so we will introduce a new
term for each input variable:

y =
1

1 + e−(a1x1+a2x2+a3x3+b)

We should also introduce terms that represent interactions between the
variables, but to keep things simple and illustrate why such terms are
needed, let’s continue without them.

If we fit the above model to our data set by running gradient descent
a handful of times with different initial guesses and choosing the best
result, we get the following fitted model:

y =
1

1 + e−(0.79x1+1.13x2+0.75x3−1.72)

The Need for Interaction Terms

This model makes the following predictions. Some of them seem
accurate, but others do not.
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scoops
peanut butter

scoops
jelly

slices
beef

proportion
subjects liked

prediction

0 0 0 0.0 0.15 ✓

1 0 0 0.2 0.28 ✓

2 0 0 0.5 0.47 ✓

0 1 0 0.4 0.36 ✓

0 2 0 0.6 0.63 ✓

0 0 1 0.5 0.27 ×
0 0 2 0.8 0.44 ×
1 1 0 1.0 0.55 ×
1 0 1 0.0 0.46 ×
0 1 1 0.1 0.54 ×

The weirdest inaccurate prediction (bolded above) is that the model
overrates peanut butter & roast beef sandwiches. It thinks that half of
the subjects will like them, when in reality, none of the subjects did.
And if you try to imagine that combination of ingredients, it probably
doesn’t seem appetizing.

The problem is that our model is not sophisticated enough to capture
the idea that two ingredients can taste good alone but bad together (or
vice versa). It’s easy to see why this is:

• The logistic function
1

1 + e−(ax+b)
is increasing if a > 0 and

decreasing if a < 0.

• The coefficient on x1 (peanut butter) is a1 = 1.02 and the
coefficient on x3 (roast beef) is a3 = 1.91.
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• Both of these coefficients are positive. Consequently, the higher
x1 (the more scoops of peanut butter), the higher the prediction
will be. Likewise, the higherx3 (the more slices of roast beef), the
higher the prediction will be.

Interaction Terms

To fix this, we can add interaction terms that multiply two variables
together. These terms will vanish unless both variables are nonzero.

y =
1

1 + e−(a1x1+a2x2+a3x3+a12x1x2+a13x1x3+a23x2x3+b)

The interaction terms above are a12x1x2, a13x1x3, and a23x2x3. The
subscripts indicate which variables are being multiplied together.

Notice that, for example, the interaction term a13x1x3 will not have
an effect on the predictions for x1 (peanut butter) or x3 (roast beef) in
isolation, but it will have an effect when these ingredients are combined.

If we fit this model again using gradient descent, we get the following
result:

y =
1

1 + e−(1.02x1+1.34x2+1.91x3+3.82x1x2−4.82x1x3−3.34x2x3−2.11)

Now, the model makes much more accurate predictions.
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scoops
peanut butter

scoops
jelly

slices
beef

proportion
subjects liked

prediction

0 0 0 0.0 0.11 ✓

1 0 0 0.2 0.25 ✓

2 0 0 0.5 0.48 ✓

0 1 0 0.4 0.32 ✓

0 2 0 0.6 0.64 ✓

0 0 1 0.5 0.45 ✓

0 0 2 0.8 0.85 ✓

1 1 0 1.0 0.98 ✓

1 0 1 0.0 0.02 ✓

0 1 1 0.1 0.10 ✓

As a sanity check, we can also interpret the coefficients of the interaction
terms:

• The interaction term between x1 (peanut butter) and x2 (jelly)
is 3.82x1x2. The positive coefficient indicates that combining
peanut butter and jelly should increase the prediction.

• The interaction term between x1 (peanut butter) and x3 (roast
beef) is −4.82x1x3. The negative coefficient indicates that
combining peanut butter and roast beef should decrease the
prediction.

• The interaction term between x2 (jelly) and x3 (roast beef) is
−3.34x2x3. The negative coefficient indicates that combining
jelly and roast beef should decrease the prediction.
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Intuitively, this all makes sense. Peanut butter & jelly go together, but
peanut butter & roast beef do not go together, and nor do jelly & roast
beef.

Exercise

Implement the example that was worked out above.
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29. K-Nearest Neighbors

Until now, we have been focused on regression problems, in which
we predict an output quantity (that is often continuous). However,
in the real world, it’s even more common to encounter classification
problems, in which we predict an output class (i.e. category). For
example, predicting how much money a person will spend at a store
is a regression problem, whereas predicting which items the person will
buy is a classification problem.

K-Nearest Neighbors

One of the simplest classification algorithms is called k-nearest
neighbors. Given a data set of points labeled with classes, the k-nearest
neighbors algorithm predicts the class of a new data point by

1. finding the k points in the data set that are nearest to the new
point (i.e. its k nearest neighbors),

2. finding the class that occurs most often in those k points (also
known as the majority class), and
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3. and predicting that the new data point belongs to the majority
class of its k nearest neighbors.

As a concrete example, consider the following data set. Each row
represents a cookie with some ratio of ingredients. If we know the
portion of ingredients in a new cookie, we can use the k-nearest
neighbors algorithm to predict which type of cookie it is.

Cookie Type Portion Butter Portion Sugar
Shortbread 0.15 0.2

Shortbread 0.15 0.3

Shortbread 0.2 0.25

Shortbread 0.25 0.4

Shortbread 0.3 0.35

Sugar 0.05 0.25

Sugar 0.05 0.35

Sugar 0.1 0.3

Sugar 0.15 0.4

Sugar 0.25 0.35

Let’s start by plotting the data. We’ll represent shortbread cookies
using filled circles and sugar cookies using open circles. The x-axis will
measure the portion butter, while the y-axis will measure the portion
sugar.
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Suppose we have a cookie recipe that consists of0.25portion butter and
0.3 portion sugar, and we want to predict whether this is a shortbread
cookie or a sugar cookie. First, we’ll identify the corresponding point
(0.25, 0.3) on our graph and label it with a question mark.

To identify the k nearest neighbors of the unknown point, we can
draw the smallest circle around the unknown point such that the circle
contains k other points from our data set.
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The circle for k = 1 is shown below. Since this nearest neighbor is a
sugar cookie, we predict that the unknown cookie is also a sugar cookie.

Using k = 2 instead, we get the circle shown below. Notice that after
the first nearest neighbor, the next two nearest neighbors are the same
distance away from our unknown point, so we have to include both of
them in our circle. Consequently, using k = 3 gives us the exact same
circle.

Now we have 3 nearest neighbors: 2 shortbread cookies and 1 sugar
cookie. As a result, the majority class is shorbtread, and we predict that
the unknown cookie is a shortbread cookie.
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Using k = 4 or k = 5, we get the circle below. The nearest neighbors
are 4 shortbread cookies and 1 sugar cookie, so we predict that the
unknown cookie is a shortbread cookie.

Using k = 6 or k = 7, the nearest neighbors are 5 shortbread
cookies and 2 sugar cookies, so we predict that the unknown cookie
is a shortbread cookie.
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Using k = 8, the nearest neighbors are 5 shortbread cookies and 3

sugar cookies, so we predict that the unknown cookie is a shortbread
cookie.

Using k = 9 or k = 10, the nearest neighbors are 5 shortbread cookies
and 5 sugar cookies. There is a tie for the majority class, so we will break
the tie by choosing the class of nearest neighbors that has the lowest
total distance from the unknown point.
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We compute the distances of the nearest neighbors as follows:

Cookie Type Point Distance From (0.25, 0.3)

Shortbread (0.15, 0.2)
√

(0.15− 0.25)2 + (0.2− 0.3)2 ≈ 0.141

Shortbread (0.15, 0.3)
√

(0.15− 0.25)2 + (0.3− 0.3)2 = 0.1

Shortbread (0.2, 0.25)
√

(0.2− 0.25)2 + (0.25− 0.3)2 ≈ 0.071

Shortbread (0.25, 0.4)
√

(0.25− 0.25)2 + (0.4− 0.3)2 = 0.1

Shortbread (0.3, 0.35)
√

(0.3− 0.25)2 + (0.35− 0.3)2 ≈ 0.071

Sugar (0.05, 0.25)
√

(0.05− 0.25)2 + (0.25− 0.3)2 ≈ 0.206

Sugar (0.05, 0.35)
√

(0.05− 0.25)2 + (0.35− 0.3)2 ≈ 0.206

Sugar (0.1, 0.3)
√

(0.1− 0.25)2 + (0.3− 0.3)2 = 0.15

Sugar (0.15, 0.4)
√

(0.15− 0.25)2 + (0.4− 0.3)2 ≈ 0.141

Sugar (0.25, 0.35)
√

(0.25− 0.25)2 + (0.35− 0.3)2 = 0.05

Then, we compute the total distance for each class of nearest neighbors:

Shortbread: 0.141 + 0.1 + 0.071 + 0.1 + 0.071 = 0.483

Sugar: 0.206 + 0.206 + 0.15 + 0.141 + 0.05 = 0.753
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Since shortbread neighbors have a lower total distance from the
unknown point, we predict that the unknown cookie is a shortbread
cookie.

Choosing the Value of K

Now that we’ve learned how to make a prediction for any particular
value of k, the big question is: which value of k should we use to make
the prediction?

The value of k is a parameter in k-nearest neighbors, just like
the degree is a parameter in polynomial regression. To choose an
appropriate degree for a polynomial regression, we used leave-one-out
cross validation.

We can take the same approach here. The only difference is that
instead of computing the residual sum of squares (RSS), we can directly
compute the accuracy by dividing the number of correct classifications
by the number of total classifications.
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Using leave-one-out cross validation with k = 1, we get 4 correct
classifications out of 10 total classifications, giving us an accuracy of
4/10 = 0.4.

Using leave-one-out cross validation with k = 2, we get 5 correct
classifications, giving us an accuracy of 0.5.
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Using leave-one-out cross validation with k = 3 or k = 4, we get an
accuracy of 0.8.

With k = 5, we get an accuracy of 0.7.
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With k = 6, k = 7, or k = 8, we get an accuracy of 0.5.

With k = 9, we get an accuracy of 0. (Every point has 4 nearest
neighbors of the correct class and 5 nearest neighbors of the incorrect
class, leading us to predict the incorrect class.)
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We organize our results in the graph below. The best fit (highest
accuracy) occurred at k = 3 and k = 4, so those would be good values
of k to use in our model.

When k is too low, the model overfits the data because it is too flexible
(i.e. too high variance). In the extreme case of k = 1, the model only
looks to a single nearest neighbor, which leads it to place too much trust
in fine details (that could just be noise) instead of trying to understand
the overall trend.

On the other hand, when k is too high, the model underfits the data
because it is too rigid (i.e. too high bias). In the extreme case where k is
equal to the number of points in the data set, the model totally ignores
any sort of detail and will instead predict whichever class occurs most
often in the data set.

In other words:

• when k is too low, the model relies too much on anecdotal
evidence, and
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• when k is too high, the model is unable to look beyond
stereotypes.

Exercises

1. Implement the example that was worked out above. Start by
classifying the unknown point (0.25, 0.3) for various values of
k, and then generate the leave-one-out cross validation curve.

2. Construct a cross-validation curve for the following data
set, where we measure butter in cups and sugar in grams. The
highest accuracy on this data set should be lower than the highest
accuracy on the original data set. Why does using different scales
for the variables cause worse performance? Run through the
algorithm by hand until you notice and can describe what’s
happening.
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Cookie Type Cups Butter Grams Sugar
Shortbread 0.6 200

Shortbread 0.6 300

Shortbread 0.8 250

Shortbread 1.0 400

Shortbread 1.2 350

Sugar 0.2 250

Sugar 0.2 350

Sugar 0.4 300

Sugar 0.6 400

Sugar 1.0 350

3. As demonstrated by the previous problem, k-nearest neighbors
models tend to perform worse when variables have different
scales. To ensure that variables are measured on the same scale,
it’s common to normalize data before fitting models.

In particular, min-max normalization involves computing the
minimum value of a variable, subtracting the minimum from all
values, computing the new maximum value, and then dividing
all values by that maximum. This ensures that the variable is
measured on a scale from 0 to 1.

Normalize the “Cups Butter” variable in the data set above using
min-max normalization. Then, do the same with the “Grams
Sugar” variable. Finally, construct a cross-validation curve for
the normalized data set and verify that the performance has
improved.
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30. Naive Bayes

Naive Bayes is a classification algorithm that is grounded in Bayesian
probability. It involves choosing the class with the highest conditional
probability given the corresponding data point, assuming that all the
variables in the data set are independent from each other.

Deriving the Formula

The derivation of the main formula is shown below: we apply Bayes’
formula, discard the denominator P (point) since it doesn’t depend
on the class, and then express P (point | class) as a product since we’re
assuming that the variables in the point are independent.
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class = argmax
class

[P (class | point)]

= argmax
class

[
P (point | class)P (class)

P (point)

]
= argmax

class
[P (point | class)P (class)]

= argmax
class

[ ∏
variables

P (variable | class)P (class)

]

= argmax
class

[
P (class)

∏
variables

P (variable | class)

]

The quantities in the final expression can be computed directly from
our data set:

• P (class) is the number of records in the class, divided by the total
number of records.

• P (variable | class) is the number of records in the class that have
a matching variable value, divided by the total number of records
in the class.

Example: Spam Detection

Let’s walk through a simple concrete example in which we apply the
naive Bayes algorithm to the task of spam detection. Spam detection
is the canonical example for naive Bayes because it was one of the first
commercial successes of naive Bayes.
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Suppose that you go through 10 emails in your inbox and keep track
of whether each email was a scam, along with whether it contained
grammatical errors or links to other websites.

Scam Errors Links
No No No
Yes Yes Yes
Yes Yes Yes
No No No
No No Yes
Yes Yes Yes
No Yes No
No No Yes
Yes Yes No
No No Yes

Now, you look at 4 new emails. We can use the naive Bayes algorithm
to predict whether each of these emails is a scam, based on whether it
contains errors or links.

Scam Errors Links
? No No
? Yes Yes
? Yes No
? No Yes
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First, let’s consider the email with no errors and no links. We’ll start
by writing down the naive Bayes classification formula for this specific
situation:

class = argmax
class

[
P (class)

∏
variables

P (variable | class)

]

= argmax
class

[P (class)P (no errors | class)P (no links | class)]

So, we have two quantities to compare:

P (scam)P (no errors | scam)P (no links | scam)

vs

P (no scam)P (no errors | no scam)P (no links | no scam)

Let’s compute each of the probabilities in the above quantities:

• Of the 10 emails in the original data set, 4 are scams and 6 are
not scams. Therefore, we have

P (scam) =
4

10
, P (no scam) =

6

10
.
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• Of the 4 emails in the original data set that are scams, 0 have no
errors and 1 has no links. Therefore, we have

P (no errors | scam) =
0

4
, P (no links | scam) =

1

4
.

• Of the 6 emails in the original data set that are not scams, 5 have
no errors and 3 have no links. Therefore, we have

P (no errors | no scam) =
5

6
, P (no links | no scam) =

3

6
.

Substituting these probabilities into the 2 quantities we wish to
evaluate, we get

P (scam)P (no errors | scam)P (no links | scam)

=
4

10
· 0
4
· 1
4

= 0

vs

P (no scam)P (no errors | no scam)P (no links | no scam)

=
6

10
· 5
6
· 3
6

=
1

4
.
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The “no scam” quantity gave us a greater value, so we predict that the
email with no errors and no links is not a scam.

Quantity
Scam vs No Scam

Scam Errors Links

0 vs 1
4

No No No
? Yes Yes
? Yes No
? No Yes

We can predict the next row in the same way:

P (scam)P (errors | scam)P (links | scam)

=
4

10
· 4
4
· 3
4

=
3

10

vs

P (no scam)P (errors | no scam)P (links | no scam)

=
6

10
· 1
6
· 3
6

=
1

20
.

This time, the “scam” quantity gave us a greater value, so we predict
that the email with errors and links is a scam.
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Quantity
Scam vs No Scam

Scam Errors Links

0 vs 1
4

No No No
3
10

vs 1
20

Yes Yes Yes
? Yes No
? No Yes

If we apply the naive Bayes algortithm to the remaining rows, we get
the following results:

Quantity
Scam vs No Scam

Scam Errors Links

0 vs 1
4

No No No
3
10

vs 1
20

Yes Yes Yes
1
10

vs 1
20

Yes Yes No
0 vs 1

4
No No Yes

Finally, note that in the event of a tie (i.e. both quantities give the same
value), it is common to choose the class that occurred most frequently
in the data set.

Exercise

Implement the example that was worked out above.
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Part V

Graphs
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31. Breadth-First and
Depth-First Traversals

Graphs show up all the time in computer science, so it’s important to
know how to work with them. For example, consider the following
graph:

At its core, this graph is just a list of edges. Each edge (a, b) represents
a connection from node a to node b.
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edges = [
(0,2), (0,3), (0,8),
(2,3),
(3,1), (3,2), (3,5), (3,9),
(4,0), (4,6), (4,8),
(5,7),
(6,3)

]

Graph Class

When working with graphs, it’s usually convenient and efficient to parse
edges into a Graph class that handles operations behind the scenes.

>>> graph = Graph(edges)

>>> graph.get_child_ids (3)
[1, 2, 9, 5]

>>> graph.get_parent_ids (3)
[0, 2, 6]

>>> graph.get_child_ids (4)
[0, 8, 6]

>>> graph.get_parent_ids (4)
[]

>>> graph.get_child_ids (7)
[]

>>> graph.get_parent_ids (7)
[5]
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Breadth-First and Depth-First Traversals

In addition to getting the children or parents of a particular node in
the graph, it’s common to need to traverse though the graph in various
ways. The two most common types of traversals are breadth first and
depth first.

A breadth-first traversal starts at a node and then visits its children,
its grandchildren, its great-grandchildren, and so on. Intuitively, it
proceeds outward from the root node in broad layers.

>>> graph.get_ids_breadth_first (4)
[4, 0, 8, 6, 2, 3, 1, 9, 5, 7]

# Note: there are other valid breadth -first traversals
# that would also be fine. For example:
[4, 8, 6, 0, 3, 2, 9, 5, 1, 7]

On the other hand, a depth-first traversal goes down the entire family
tree of a single child before going down the family tree of another child.
Intuitively, it proceeds outward from the root node in deep spikes.

>>> graph.depth_first (4)
[4, 0, 2, 3, 1, 9, 5, 7, 8, 5]

# Note: there are other valid depth -first traversals
# that would also be fine. For example:
[4, 8, 6, 3, 1, 5, 7, 9, 2, 0]
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Implementation via Queues and Stacks

Take a moment to make sure you understand the examples above before
reading on.

Breadth-first and depth-first traversals are simple to implement using
queues and stacks (respectively), which are list-like data structures that
follow specific conventions regarding the order in which items can be
loaded and unloaded.

• In a queue, the first item loaded becomes the first item unloaded
(i.e. first-in-first-out, just like a line at the grocery store).

• In a stack, the first item loaded becomes the LAST item unloaded
(i.e. first-in-last-out, just like a stack of paper).

To generate a breadth-first traversal, the following algorithm can be
used:

queue = [rootNode]
visited = {rootNode: True}
traversal = [rootNode]

while queue not empty:
unload node from queue
for each child of node:

if child has not been visited:
load child to queue and traversal
record visit

Below is a concrete walkthrough showing how the algorithm above
generates a breadth-first traversal from root node 4.
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queue = [4], visited = {4:T}, traversal = [4]

unload 4 --> queue = []
- child 0 has not been visited , so visit it

queue = [0]
visited = {0:T,4:T}
traversal = [4,0]

- child 8 has not been visited , so visit it
queue = [0,8]
visited = {0:T,4:T,8:T}
traversal = [4,0,8]

- child 6 has not been visited , so visit it
queue = [0,8,6]
visited = {0:T,4:T,6:T,8:T}
traversal = [4,0,8,6]

unload 0 --> queue = [8,6]
- child 2 has not been visited , so visit it

queue = [8,6,2]
visited = {0:T,2:T,4:T,6:T,8:T}
traversal = [4,0,8,6,2]

- child 3 has not been visited , so visit it
queue = [8,6,2,3]
visited = {0:T,2:T,3:T,4:T,6:T,8:T}
traversal = [4,0,8,6,2,3]

unload 8 --> queue = [6,2,3]
- (no children)

unload 6 --> queue = [2,3]
- child 3 has already been visited , so skip it

unload 2 --> queue = [3]
- (no children)

unload 3 --> queue = []
- child 1 has not been visited , so visit it

queue = [1]
visited = {0:T,1:T,2:T,3:T,4:T,6:T,8:T}
traversal = [4,0,8,6,2,3,1]

- child 9 has not been visited , so visit it
queue = [1,9]
visited = {0:T,1:T,2:T,3:T,4:T,6:T,8:T,9:T}
traversal = [4,0,8,6,2,3,1,9]
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- child 5 has not been visited , so visit it
queue = [1,9,5]
visited = {0:T,1:T,2:T,3:T,4:T,5:T,6:T,8:T,9:T}
traversal = [4,0,8,6,2,3,1,9,5]

unload 1 --> queue = [9,5]
- (no children)

unload 9 --> queue = [5]
- (no children)

unload 5 --> queue = []
- child 7 has not been visited , so visit it

queue = [7]
visited = {0:T,1:T,2:T,3:T,4:T,5:T,6:T,7:T,8:T,9:T}
traversal = [4,0,8,6,2,3,1,9,5,7]

unload 7 --> queue = []
- (no children)

queue is empty --> nothing left to unload --> DONE
Final traversal: [4,0,8,6,2,3,1,9,5,7]

Generating a depth-first traversal is almost exactly the same. The only
difference is that we use a stack instead of a queue. A concrete example
illustrating the difference between a stack and a queue is given below.

1. With a queue, we load on the right and unload on the left. For
example, given a queue [1,2] , loading 3 gives [1,2,3] . If
we unload, the unloaded element is 1 and the remaining queue
is [2,3] .

2. With a stack, we load on the right and unload on the right. For
example, given a stack [1,2] , loading 3 gives [1,2,3] . If
we unload, the unloaded element is 3 and the remaining stack
is [1,2] .
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Time Complexity

Because breadth-first and depth-first traversals both visit each node once
and only once, they both have time complexity O(n) where n is the
number of nodes in the graph.

Exercises

Implement a Graph class with all the methods described above, and
make sure to test it on several different types of graphs. You can use
the graph shown here as one of your test cases, but you should also test
several significantly different cases (e.g. cycles, an instance of two arrows
pointing the opposite way, a disconnected graph, etc).
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32. Distance and Shortest
Paths in Unweighted Graphs

The distance between two nodes in a graph is the fewest number of
edges that must be crossed to travel from one node to the other. A path
between two nodes is a sequence of nodes that can be traversed to get
from one node to the other, traveling along edges. The shortest path
is the path with the shortest distance.

Demonstration

Below is a demonstration of distances and shortest paths in a particular
graph.
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>>> graph.calc_distance (0,3)
3
>>> graph.calc_distance (3,5)
3
>>> graph.calc_distance (0,5)
3
>>> graph.calc_distance (4,1)
2
>>> graph.calc_distance (2,4)
False

>>> graph.calc_shortest_path (0,3)
[0, 1, 4, 3]
>>> graph.calc_shortest_path (3,5)
[3, 1, 4, 5]
>>> graph.calc_shortest_path (0,5)
[0, 1, 4, 5]
>>> graph.calc_shortest_path (4,1)
[4, 3, 1]
>>> graph.calc_shortest_path (2,4)
False

Implementation

The key to implementing these methods is to first create a method
graph.set_distance_and_previous(idx) that does a breadth-

first traversal from the node at the given index and sets the attributes
node.distance and node.previous for each node encountered

during the traversal.
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1. Start at the node whose index is idx .

2. In the breadth-first traversal, you’ll end up visiting all the children
of that node, those children’s children, and so on.

3. Whenever you add a child to the queue, set the child’s
previous attribute to be the parent node that the child is

coming from, and set the child’s distance attribute to be one
more than that parent’s distance.

4. When this is all done, each node’s distance attribute will
represent its distance from the initial starting node, and each
node’s previous attribute will represent the node that comes
before it if you’re traveling to it on the shortest path.

Note that this will require you to write a Node class and create an
instance for every node in your graph. It’s best to do this at the very
beginning when you first initialize the graph.

When you run graph.calc_distance(from_idx, to_idx)

or graph.calc_shortest_path(from_idx, to_idx) , the
first step will always be to run graph.set_distance_and

_previous(from_idx) . Once you have the distance and
previous attributes set, you can use them to easily compute

distances and shortest paths between nodes:

257



Justin Skycak

• calc_distance(from_idx, to_idx)

Simply return the distance attribute of the “to” node.

• calc_shortest_path(from_idx, to_idx)

1. Start at the “to” node and repeatedly go to the previous
node until you get to the “from” node.

2. Keep track of all the nodes you visit (this is the shortest
path in reverse).

3. Return the path in order from the “from” node to the
“to” node. (You’ll have to reverse the reversed path that you
found in the previous step.)

Exercises

Extend your Graph class to include the methods calc_distance

and calc_shortest_path . As always, be sure to write tests.
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33. Dijkstra’s Algorithm for
Distance and Shortest Paths in
Weighted Graphs

In a weighted graph, every edge is assigned a value called a weight.

Initializing a Weighted Graph

For example, consider the following weighted graph:
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A weighted graph can be initialized with a weights dictionary instead of
an edges list. The edges list just had a list of edges, whereas the weights
dictionary will have its keys as edges and its values as the weights of those
edges.

>>> weights = {
(0,1): 3, (1,0): 3,
(1,7): 4, (7,1): 4,
(7,2): 2, (2,7): 2,
(2,5): 1, (5,2): 1,
(5,6): 8, (6,5): 8,
(0,3): 2, (3,0): 2,
(3,2): 6, (2,3): 6,
(3,4): 1, (4,3): 1,
(4,8): 8, (8,4): 8,
(8,0): 4, (0,8): 4

}

>>> weighted_graph = WeightedGraph(weights)

Distance and Shortest Paths in Weighted
Graphs

In a weighted graph, the distance between two nodes is the sum of the
weights on the shortest path between them. For example, the distance
from node 8 to node 4 is 7 because the shortest path is 8 4→ 0

2→ 3
1→

4.

In particular, notice that the shortest path is NOT 8
8→ 4 because the

distance along this path is 8.
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>>> [weighted_graph.calc_distance (8,n) for n in range (9)
]

[4, 7, 12, 6, 7, 13, 21, 11, 0]

>>> weighted_graph.calc_shortest_path (8,4)
[8, 0, 3, 4]

>>> weighted_graph.calc_shortest_path (8,7)
[8, 0, 1, 7]

>>> weighted_graph.calc_shortest_path (8,6)
[8, 0, 3, 2, 5, 6]

Dijkstra’s Algorithm for Distance

The underlying algorithms for calc_distance and
calc_shortest_path are a bit more complicated for weighted

graphs than for unweighted graphs.

To implement calc_distance(from_idx, to_idx) we need to
use Dijkstra’s algorithm, which works by assigning each node an
initial guess for its distance and then repeatedly updating those guesses
until they actually represent the distances to those nodes.

1. When setting initial guesses, the “from” node is assigned a
distance value of 0, and all other nodes are assigned distance
values of∞ (just use a large number like 9999999999).

2. Set the current_node to be the “from” node.
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3. Loop through the current_node ’s unvisited children
and update their distances as child.distance =

min(child.distance, current_node.distance +

edge_weight) .

4. Update the current_node to be the unvisited node with the
smallest distance value (not necessarily a child node).

5. If the ending node has not been visited yet, then return to step
3.

6. Return the distance attribute of the “to” node.

Let’s demonstrate each iteration of Dijkstra’s algorithm when
computing the distance from node 8 to node 6.

First, we set the initial guesses for the distance values. Since we’re
starting at node 8, we already know that it’s a distance of 0 from itself.
All the other nodes get initial guesses of infinity.
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Now, we visit node 8 (the “from” node) and update the distance values
on its children.

The next node we visit should be the unvisited node with the smallest
distance value. This would be node 0, whose distance value is 4. We
visit this node and update the distance values on its unvisited children.

Again, we visit the unvisited node with the smallest distance value. This
time, it’s node 3.
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Notice that when we update the distance values on its unvisited
children, node 4’s distance value decreases from 8 to 7. Whenever a
distance value decreases like this, it means that the nodes we’ve traversed
contain a shorter path than a path we found earlier.

In our first iteration, we found a path 8
8→ 4 with distance 8. Now, we

found a path 8
4→ 0

2→ 3
1→ 4 with distance 7.

As usual, we visit the unvisited node with the smallest distance value.
This time, we can visit either node 1 or node 4 (they are the unvisited
nodes with the smallest distance values). We’ll arbitrarily choose to visit
node 1 and update the distance values of its children.
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We keep on repeating this same procedure until the “to” node (node 6)
has been visited.
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We’ve visited node 6, and its distance value is 21. This means that the
distance from node 8 to node 6 is 21.

Computing Shortest Paths via the
Shortest-Path Tree

But what is the specific shortest path from node 8 to node 6 that gives
us this distance of 21?

To find the shortest path, we first construct the shortest-path
tree by discarding any edge (a,b) whose weight does not
match the corresponding difference between distance values,
b.distance - a.distance .
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Once we have the shortest-path tree, we’ve effectively reduced our
problem down to a problem that we’ve already solved: finding the
shortest path between two nodes in an unweighted graph.

Indeed, we can see that the shortest path from node 8 to node 6 in the
tree above is given by 8→ 0→ 3→ 2→ 5→ 6. And indeed, in the
weighted graph, the sum of weights along this path is 21.
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Exercises

Implement a WeightedGraph class with the methods
calc_distance and calc_shortest_path . As always, be

sure to write tests.
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270



34. Decision Trees

A decision tree is a graphical flowchart that represents a sequence of
nested “if-then” decision rules. To illustrate, first recall the following
cookie data set that was introduced during the discussion of k-nearest
neighbors:

Cookie Type Portion Butter Portion Sugar
Shortbread 0.15 0.2

Shortbread 0.15 0.3

Shortbread 0.2 0.25

Shortbread 0.25 0.4

Shortbread 0.3 0.35

Sugar 0.05 0.25

Sugar 0.05 0.35

Sugar 0.1 0.3

Sugar 0.15 0.4

Sugar 0.25 0.35

The following decision tree was algorithmically constructed to classify
an unknown cookie as a shortbread cookie or sugar cookie based on its
portions of butter and sugar.
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Using a Decision Tree

To use the decision tree to classify an unknown cookie, we start at the
top of the tree and then repeatedly go downwards and left or right
depending on the values of x and y.

For example, suppose we have a cookie with 0.25 portion butter and
0.35 portion sugar. To classify this cookie, we start at the top of the tree
and then go

1. right (butter > 0.125),

2. right (sugar > 0.325),

3. right (butter > 0.2),
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4. left (butter ≤ 0.275),

5. left (sugar ≤ 0.375),

reaching the prediction that the cookie is a sugar cookie.

Classification Boundary

Let’s take a look at how the decision tree classifies the points in our data
set:

We can visualize this in the plane by drawing the classification
boundary, shading the regions whose points would be classified as
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shortbread cookies and keeping unshaded the regions whose points
would be classified as sugar cookies. Each dotted line corresponds to a
split in the tree.

Building a Decision Tree: Reducing
Impurity

The algorithm for building a decision tree is conceptually simple. The
goal is to make the simplest tree such that the leaf nodes pure in the sense
that they only contain data points from one class. So, we repeatedly split
impure leaf nodes in the way that most quickly reduces the impurity.

Intuitively, a node has 0 impurity when all of its data points come from
one class. On the other hand, a node has maximum impurity when an
equal amount of its data points come from each class.

To quantify a node’s impurity, all we have to do is count up the
proportion p of the node’s data points that are from one particular
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class and then apply a function that transforms p into a measure of
impurity.

• If p = 0 or p = 1, then the node has no impurity since its data
points are entirely from one class.

• Ifp = 0.5, then the node has maximum impurity since half of its
data points come from one class and the other half comes from
the other class.

Graphically, our function should look like this:

Two commonly used functions that yield the above graph are Gini
impurity, defined as

G(p) = 1− p2 − (1− p)2,

and information entropy, defined as
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H(p) = −p log2 p− (1− p) log2(1− p).

Although these functions may initially look a little complicated, note
that their forms permit them to be easily generalized to situations where
we have more than two classes:

G = 1−
∑
i

p2i

H = −
∑
i

pi log2 pi,

where pi is the proportion of the ith class. (In our situation we only
have two classes with proportions p1 = p and p2 = 1− p.)

Worked Example: Split 0

As we walk through the algorithm for building our decision tree, we’ll
use Gini impurity since it simplifies nicely in the case of two classes,
making it more amenable to manual computation:

G(p) = 1− p2 − (1− p)2

= 2p(1− p)
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Initially, our decision tree is just a single root node, i.e. a "stump" with
no splits. It contains our full data set, shown below.

Worked Example: Split 1

Remember that our goal is to repeatedly split impure leaf nodes in
the way that most quickly reduces the impurity. To find the split that
most quickly reduces the impurity, we loop over all possible splits and
compare the impurity before the split to the impurity after the split.

The impurity before the split is the same for all possible splits, so we
will calculate it first. In the graph above there are 5 points that represent
shortbread cookies and 5 points that represent sugar cookies, so p =
5

5 + 5
=

1

2
and the impurity is computed as
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Gbefore = G

(
1

2

)
= 2

(
1

2

)(
1− 1

2

)
= 0.5.

Now, let’s find all the possible splits. To find the values of x that could
be chosen for splits, we first find all the distinct values of x that are hit
by points and put them in order:

x = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3

The possible splits along the x-axis are the midpoints between
consecutive entries in the list above:

xsplit = 0.075, 0.125, 0.175, 0.225, 0.275

Performing the same process for y-coordinates, we get the following:

y = 0.2, 0.25, 0.3, 0.35, 0.4

ysplit = 0.225, 0.275, 0.325, 0.375
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Let’s go through each possible split and measure the impurity after the
split. In general, the impurity after the split is measured as a weighted
average of the new leaf nodes resulting from the split:

impurity after = (portion data points in ≤ node)× (impurity of ≤ node)

+ (portion data points in > node)× (impurity of > node)

The formula above can be represented more concisely as

Gafter = p≤G≤ + p>G>.

Possible Split: xsplit = 0.075

The x ≤ 0.05 node would be pure with 2 sugar cookies, giving an
impurity of
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G≤ = 2

(
0

2

)(
2

2

)
= 0.

On the other hand, the x > 0.05 node would contain 5 shortbread
cookies and 3 sugar cookies, giving an impurity of

G> = 2

(
5

8

)(
3

8

)
=

30

64
.

The≤ node would contain 2 points while the > node would contain

8 points, giving proportions p≤ =
2

10
and p> =

8

10
.

Finally, the impurity after the split would be

Gafter = p≤G≤ + p>G>

=

(
2

10

)
(0) +

(
8

10

)(
30

64

)
= 0.375.
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Possible Split: xsplit = 0.125

Repeating the same process, we have p≤ =
3

10
and p> =

7

10
get we

get the following impurities:

G≤ = 2

(
0

3

)(
3

3

)
= 0

G> = 2

(
5

7

)(
2

7

)
=

20

49

Gafter =

(
3

10

)
(0) +

(
7

10

)(
20

49

)
≈ 0.286.
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Possible Split: xsplit = 0.175

G≤ = 2

(
2

6

)(
4

6

)
=

16

36

G> = 2

(
3

4

)(
1

4

)
=

6

16

Gafter =

(
6

10

)(
16

36

)
+

(
4

10

)(
6

16

)
≈ 0.417
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Possible Split: xsplit = 0.225

G≤ = 2

(
3

7

)(
4

7

)
=

24

49

G> = 2

(
2

3

)(
1

3

)
=

4

9

Gafter =

(
7

10

)(
24

49

)
+

(
3

10

)(
4

9

)
≈ 0.476
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Possible Split: xsplit = 0.275

G≤ = 2

(
4

9

)(
5

9

)
=

40

81

G> = 2

(
1

1

)(
0

1

)
= 0

Gafter =

(
9

10

)(
40

81

)
+

(
1

10

)
(0) ≈ 0.444
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Possible Split: ysplit = 0.225

G≤ = 2

(
1

1

)(
0

1

)
= 0

G> = 2

(
4

9

)(
5

9

)
=

40

81

Gafter =

(
1

10

)
(0) +

(
9

10

)(
40

81

)
≈ 0.444
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Possible Split: ysplit = 0.275

G≤ = 2

(
2

3

)(
1

3

)
=

4

9

G> = 2

(
3

7

)(
4

7

)
=

24

49

Gafter =

(
3

10

)(
4

9

)
+

(
7

10

)(
24

49

)
≈ 0.476
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Possible Split: ysplit = 0.325

G≤ = 2

(
3

5

)(
2

5

)
=

12

25

G> = 2

(
2

5

)(
3

5

)
=

12

25

Gafter =

(
5

10

)(
12

25

)
+

(
5

10

)(
12

25

)
= 0.48
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Possible Split: ysplit = 0.375

G≤ = 2

(
4

8

)(
4

8

)
=

32

64

G> = 2

(
1

2

)(
1

2

)
=

2

4

Gafter =

(
8

10

)(
32

64

)
+

(
2

10

)(
2

4

)
= 0.5
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Best Split

Remember that the initial impurity before splitting was Gbefore =

0.5. Let’s compute how much each potential split would decrease the
impurity:

Split
∣∣ Gbefore −Gafter

xsplit = 0.075
∣∣ 0.5− 0.375 = 0.125

xsplit = 0.125
∣∣ 0.5− 0.286 = 0.214

xsplit = 0.175
∣∣ 0.5− 0.417 = 0.083

xsplit = 0.225
∣∣ 0.5− 0.476 = 0.024

xsplit = 0.275
∣∣ 0.5− 0.444 = 0.056

ysplit = 0.225
∣∣ 0.5− 0.444 = 0.056

ysplit = 0.275
∣∣ 0.5− 0.476 = 0.024

ysplit = 0.325
∣∣ 0.5− 0.48 = 0.02

ysplit = 0.375
∣∣ 0.5− 0.5 = 0

According to the table above, the best split is xsplit = 0.125 since it
decreases the impurity the most. We integrate this split into our decision
tree:
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This decision tree can be visualized in the plane as follows:

Worked Example: Split 2

Again, we repeat the process and split any impure leaf nodes in the tree.
There is exactly one impure leaf node (x > 0.125) and it contains 5
shortbread and 2 sugar cookies, giving an impurity of

Gbefore = G

(
5

7

)
= 2

(
5

7

)(
2

7

)
≈ 0.408

To find the possible splits, we first find the distinct values of x and y

that are hit by points in this node and put them in order:
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x = 0.15, 0.2, 0.25, 0.3

y = 0.2, 0.25, 0.3, 0.35, 0.4

The possible splits are the midpoints between consecutive entries in the
list above:

xsplit = 0.175, 0.225, 0.275

ysplit = 0.225, 0.275, 0.325, 0.375

Possible Split: xsplit = 0.175

Remember that we are only splitting the region covered by the x >

0.125 node, which contains 7 data points. We can ignore the 3 data
points left of the hard dotted line, since they are not contained within
the node that we are splitting.
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G≤ = 2

(
2

3

)(
1

3

)
=

4

9

G> = 2

(
3

4

)(
1

4

)
=

6

16

Gafter =

(
3

7

)(
4

9

)
+

(
4

7

)(
6

16

)
≈ 0.405

Possible Split: xsplit = 0.225

G≤ = 2

(
3

4

)(
1

4

)
=

6

16

G> = 2

(
2

3

)(
1

3

)
=

4

9

Gafter =

(
4

7

)(
6

16

)
+

(
3

7

)(
4

9

)
≈ 0.405
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Possible Split: xsplit = 0.275

G≤ = 2

(
4

6

)(
2

6

)
=

16

36

G> = 2

(
1

1

)(
0

1

)
= 0

Gafter =

(
6

7

)(
16

36

)
+

(
1

7

)
(0) ≈ 0.381
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Possible Split: ysplit = 0.225

G≤ = 2

(
1

1

)(
0

1

)
= 0

G> = 2

(
4

6

)(
2

6

)
=

16

36

Gafter =

(
1

7

)
(0) +

(
6

7

)(
16

36

)
≈ 0.381
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Possible Split: ysplit = 0.275

G≤ = 2

(
2

2

)(
0

2

)
= 0

G> = 2

(
3

5

)(
2

5

)
=

12

25

Gafter =

(
2

7

)
(0) +

(
5

7

)(
12

25

)
≈ 0.343
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Possible Split: ysplit = 0.325

G≤ = 2

(
3

3

)(
0

3

)
= 0

G> = 2

(
2

4

)(
2

4

)
=

8

16

Gafter =

(
3

7

)
(0) +

(
4

7

)(
8

16

)
≈ 0.286
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Possible Split: ysplit = 0.375

G≤ = 2

(
4

5

)(
1

5

)
=

8

25

G> = 2

(
1

2

)(
1

2

)
=

1

2

Gafter =

(
5

7

)(
8

25

)
+

(
2

7

)(
1

2

)
≈ 0.371
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Best Split

The best split is ysplit = 0.325 since it decreases the impurity the most.

Split
∣∣ Gbefore −Gafter

xsplit = 0.175
∣∣ 0.408− 0.405 = 0.003

xsplit = 0.225
∣∣ 0.408− 0.405 = 0.003

xsplit = 0.275
∣∣ 0.408− 0.381 = 0.027

ysplit = 0.225
∣∣ 0.408− 0.381 = 0.027

ysplit = 0.275
∣∣ 0.408− 0.343 = 0.065

ysplit = 0.325
∣∣ 0.408− 0.286 = 0.122

ysplit = 0.375
∣∣ 0.408− 0.371 = 0.037

We integrate this split into our decision tree:
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This decision tree can be visualized in the plane as follows:

Worked Example: Split 3

Again, we repeat the process and split any impure leaf nodes in the tree.
There is exactly one impure leaf node (x > 0.125→ y > 0.325) and
it contains 2 shortbread and 2 sugar cookies, giving an impurity of

Gbefore = G

(
2

4

)
= 2

(
2

4

)(
2

4

)
= 0.5.

To find the possible splits, we first find the distinct values of x and y

that are hit by points in this node and put them in order:
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x = 0.15, 0.25, 0.3

y = 0.35, 0.4

The possible splits are the midpoints between consecutive entries in the
list above:

xsplit = 0.2, 0.275

ysplit = 0.375

Possible Split: xsplit = 0.2

Remember that we are only splitting the region covered by the x >

0.125→ y > 0.325 node, which contains 4 data points. We can ignore
the 6 data points outside of this region, since they are not contained
within the node that we are splitting.
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G≤ = 2

(
0

1

)(
1

1

)
= 0

G> = 2

(
2

3

)(
1

3

)
=

4

9

Gafter =

(
1

4

)
(0) +

(
3

4

)(
4

9

)
≈ 0.333

Possible Split: xsplit = 0.275

G≤ = 2

(
1

3

)(
2

3

)
=

4

9

G> = 2

(
1

1

)(
0

1

)
= 0

Gafter =

(
3

4

)(
4

9

)
+

(
1

4

)
(0) ≈ 0.333
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Possible Split: ysplit = 0.375

G≤ = 2

(
1

2

)(
1

2

)
=

2

4

G> = 2

(
1

2

)(
1

2

)
=

2

4

Gafter =

(
2

4

)(
2

4

)
+

(
2

4

)(
2

4

)
= 0.5

Best Split

This time, there is a tie for the best split: xsplit = 0.2 and xsplit = 0.275

both decrease impurity the most.

Split
∣∣ Gbefore −Gafter

xsplit = 0.2
∣∣ 0.5− 0.333 = 0.167

xsplit = 0.275
∣∣ 0.5− 0.333 = 0.167

ysplit = 0.375
∣∣ 0.5− 0.5 = 0
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When ties like this occur, it does not matter which split we choose. We
will arbitrarily choose the split that we encountered first, xsplit = 0.2,

and integrate this split into our decision tree:

This decision tree can be visualized in the plane as follows:
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Worked Example: Split 4

Again, we repeat the process and split any impure leaf nodes in the tree.
There is exactly one impure leaf node (x > 0.125→ y > 0.325→
x > 0.2) and it contains 2 shortbread and 1 sugar cookie, giving an
impurity of

Gbefore = G

(
2

3

)
= 2

(
2

3

)(
1

3

)
≈ 0.444.

To find the possible splits, we first find the distinct values of x and y

that are hit by points in this node and put them in order:

x = 0.25, 0.3

y = 0.35, 0.4

The possible splits are the midpoints between consecutive entries in the
list above:

xsplit = 0.275

ysplit = 0.375
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Possible Split: xsplit = 0.275

G≤ = 2

(
1

2

)(
1

2

)
=

2

4

G> = 2

(
1

1

)(
0

1

)
= 0

Gafter =

(
2

3

)(
2

4

)
+

(
1

3

)
(0) ≈ 0.333
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Possible Split: ysplit = 0.375

G≤ = 2

(
1

2

)(
1

2

)
=

2

4

G> = 2

(
1

1

)(
0

1

)
= 0

Gafter =

(
2

3

)(
2

4

)
+

(
1

3

)
(0) ≈ 0.333

Best Split

Again, there is a tie for the best split: xsplit = 0.275 and ysplit = 0.375

both decrease impurity the most.

Split
∣∣ Gbefore −Gafter

xsplit = 0.275
∣∣ 0.444− 0.333 = 0.111

ysplit = 0.375
∣∣ 0.444− 0.333 = 0.111
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We will arbitrarily choose the split that we encountered first, xsplit =

0.275, and integrate this split into our decision tree:

This decision tree can be visualized in the plane as follows:

Worked Example: Split 5

There is only one possibility for the next split, ysplit = 0.375, so it may
be tempting to select it outright. But remember that we only want splits
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that lead to a decrease in impurity. So, it’s still necessary to compute the
decrease in impurity before selecting this split.

Gbefore = G

(
1

2

)
= 2

(
1

2

)(
1

2

)
= 0.5.

G≤ = 2

(
0

1

)(
1

1

)
= 0

G> = 2

(
1

1

)(
0

1

)
= 0

Gafter =

(
1

2

)
(0) +

(
1

2

)
(0) = 0

Indeed, the impurity decreases by a positive amount

308



Introduction to Algorithms and Machine Learning

Gbefore −Gafter = 0.5− 0

= 0.5

> 0,

so we select the split and integrate it into our decision tree:

This decision tree can be visualized in the plane as follows:
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No more splits are possible, so we’re done.

Early Stopping

Note that when fitting decision trees, it’s common to stop splitting
early so that the tree doesn’t overfit the data. This is often achieved by
enforcing

• a maximum depth constraint (i.e. skip over any potential splits
that would cause the tree to become deeper than some number
of levels), or

• a minimum split size constraint (i.e. do not split any leaf node
that contains fewer than some number of data points).

These parameters constrain how far the decision tree can read into
the data, similar to how the degree parameter constrains a polynomial
regression model and how k constrains a k-nearest neighbors model.

Also note that if we stop splitting early (or if the data set has duplicate
points with different classes), we end up with impure leaf nodes. In such
cases, impure leaf nodes are considered to predict the majority class of
the data points they contain. If there is a tie, then we can go up a level
and use the majority class of the parent node.
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Random Forests

A common way to improve the performance of decision trees is to select
a bunch of random subsets of the data (each containing, say, 50%
the data), fit a separate decision tree on each random subset, and then
aggregate them together into a hive mind called a random forest. The
random forest makes its predictions by

1. allowing each individual decision tree to vote (i.e. make its own
prediction), and then

2. choosing whichever prediction received the most votes.

This general approach is called bootstrap aggregating or bagging
for short (because a random subset of the data is known as a bootstrap
sample). Bootstrap aggregating can be applied to any model, though
random forest is the most famous application.
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Exercises

1. Implement the example that was worked out above.

2. Construct a leave-one-out cross-validation curve where a
maximum depth constraint is varied between 1 and the number
of points in the data set. When the maximum depth is 1, the
resulting decision tree will contain only one node (a decision
“stump” that simply predicts the majority class), and the leave-
one-out accuracy will be 0 (since there will be fewer points
in the class of the point that was left out). As usual, the
leave-one-out cross-validation curve should reach a maximum
somewhere between the endpoints (the endpoints correspond
to underfitting or overfitting).

3. Construct a leave-one-out cross-validation curve where a
minimum split size constraint is varied between 1 and one more
than the number of points in the data set. It should look like
a horizontal reflection of the curve for the maximum depth
constraint because increasing the minimum split size has the
same pruning effect as decreasing the maximum depth.

4. Construct a leave-one-out cross-validation curve for a random
forest, where the number of trees in the forest is varied and each
tree is trained on a random sample of 50% of the data. You
should see the performance increase and asymptote off with the
number of trees.
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5. Construct a data set that leads to a decision tree that looks like
the diagram shown below. Be sure to run your decision tree
construction algorithm on the data set to verify the result.

6. Construct a data set that leads to a decision tree that looks like
the diagram shown below. Be sure to run your decision tree
construction algorithm on the data set to verify the result.
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35. Introduction to Neural
Network Regressors

It’s common to represent models via computational graphs. For example,
consider the following multiple logistic regression model:

f(x) =
1

1 + e−(a1x1+a2x2+b)

This model can be represented by the following computation graph,
where

• Σ = a1x1 + a2x2 + b is the sum of products of lower-node
values and the edge weights, and

• σ(Σ) =
1

1 + e−Σ
is the sigmoid function.
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Hierarchy and Complexity

Loosely speaking, the deeper or more “hierarchical” a computational
graph is, the more complex the model that it represents. For example,
consider the computational graph below, which contains an extra “layer”
of nodes.
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Whereas the first computational graph represented a simple model
f(x1, x2) = σ(a1x1 + a2x2 + b), this second computational graph
represents a far more complex model:

f(x1, x2) = σ


a211σ (a111x1 + a112x2 + b11)

+a212σ (a121x1 + a122x2 + b12)

+a213σ (a131x1 + a132x2 + b13)

+b21



The subscripts in the coefficients may look a little crazy, but there is a
consistent naming pattern:

• aℓij is the weight of the connection from the jth node in the ℓth
layer to the ith node in the next layer.

• bℓi is the weight of the connection from the bias node in the ℓth
layer to the ith node in the next layer. (A bias node is a node
whose output is always 1.)

Neural Networks

A neural network is a type of computational graph that is loosely
inspired by the human brain. Each neuron in the brain receives
input electrical signals from other neurons that connect to it, and
the amount of signal that a neuron sends outward to the neurons it
connects to depends on the total amount of electrical signal it receives as
input. Each connection has a different strength, meaning that neurons

317



Justin Skycak

influence each other by different amounts. Additionally, neurons in
key information-processing parts of the brain are sometimes arranged
in layers.

Using neural network terminology, the computational graph above can
be described as a neural network with 3 layers:

1. an input layer containing 2 linearly-activated neurons and a bias
neuron,

2. a hidden layer containing 3 sigmoidally-activated neurons and
a bias neuron, and

3. an output layer containing a single sigmoidally-activated
neuron.

To say that a neuron is sigmoidally-activated means that to get the
neuron’s output we apply a sigmoidal activation function σ to the
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neuron’s input. Remember that the input Σ is the sum of products
of lower-node values and the edge weights. By convention, a linear
activation function is the identity function (i.e. the output is the same
as the input).

Neural networks are extremely powerful models. In fact, the universal
approximation theorem states that given a continuous function f :

[0, 1]n → [0, 1] and an acceptable error threshold ϵ > 0, there exists a
sigmoidally-activated neural network with one hidden layer containing
a finite number of neurons such that the error between the f and the
neural network’s output is less than ϵ.

Example: Manually Constructing a Neural
Network

To demonstrate, let’s set up a neural network that models the following
data set:

[(0, 0), (0.25, 1), (0.5, 0.5), (0.75, 1), (1, 0)]

First, we’ll draw a curve that approximates the data set. Then, we’ll work
backwards to combine sigmoid functions in a way that resembles the
curve that we drew.
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Loosely speaking, it appears that our curve can be modeled as the sum
of two humps.

Notice that we can create a hump by adding two opposite-facing
sigmoids (and shifting the result down to lie flat against the x-axis):
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h(x) = σ(x+ 1) + σ(−x+ 1)− 1

Remember that our neural network repeatedly applies sigmoid
functions to sums of sigmoid functions, so we’ll have to apply a sigmoid
to the function above. The following composition will accomplish this
while shaping our hump to be the correct width:

H(x) = σ(20h(10x)− 5)

Then, we can represent our final curve as the sum of two horizontally-
shifted humps (again shifted downward to lie flat against the x axis and
then wrapped in another sigmoid function).
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σ(20H(x− 0.25) + 20H(x− 0.75)− 5)

Now, let’s work backwards from our final curve expression to figure
out the architecture of the corresponding neural network.

Our output node represents the expression

σ(20H(x− 0.25) + 20H(x− 0.75)− 5),

so the previous layer should have nodes whose outputs areH(x−0.25),
H(x− 0.75), and 1 (the corresponding weights being 20, 20, and−5
respectively).
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Expanding further, we have

H(x− 0.25) = σ(20h(10x− 2.5)− 5)

= σ(20(σ(10x− 1.5) + σ(−10x+ 3.5)− 1)− 5)

= σ(20σ(10x− 1.5) + 20σ(−10x+ 3.5)− 25)

H(x− 0.75) = σ(20h(10x− 7.5)− 5)

= σ(20(σ(10x− 6.5) + σ(−10x+ 8.5)− 1)− 5)

= σ(20σ(10x− 6.5) + 20σ(−10x+ 8.5)− 25),

so the second-previous layer should have nodes whose outputs are
σ(10x− 1.5), σ(10x− 6.5), σ(−10x+ 3.5), σ(−10x+ 8.5), and
1. (In the diagram below, edges with weight 0 are represented by soft
dashed segments.)
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We can now sketch our full neural network as follows:
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Hierarchical Representation

There is a clear hierarchical structure to the network. The first hidden
layer transforms the linear intput into sigmoidal functions. The second
hidden layer combines those sigmoids to generate humps. The output
layer combines humps into the desired output.

Hierarchical structure is ultimately the reason why neural networks
can fit arbitrary functions to such high degrees of accuracy. Loosely
speaking, each neuron in the network recognizes a different feature in
the data, and deeper layers in the network synthesize elementary features
into more complex features.
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Exercises

1. Reproduce the example above by plotting the regression curve
(as well as the data points).

2. Tweak the neural network constructed in the discussion above
so that the output resembles the following curve:
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3. Tweak the neural network constructed in the discussion above
so that the output resembles the following curve. (Hint: shift the
equilibrium, flip one of the humps, and make the humps a little
narrower.)

4. Tweak the neural network constructed in the discussion above
so that the output resembles the following curve. (Hint: put a
sharp peak on top of a wide plateau.)
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36. Backpropagation

The most common method used to fit neural networks to data is
gradient descent, just like we did have done previously for simpler
models. The computations are significantly more involved for neural
networks, but an algorithm called backpropagation provides a
convenient framework for computing gradients.

Core Idea

The backpropagation algorithm leverages two key facts:

1. If you know
∂RSS
∂σ(Σ)

for the output σ(Σ) of a neuron, then you

can easily compute
∂RSS
∂w

for any weight w that the neuron
receives from a neuron in the previous layer.

2. If you know
∂RSS
∂σ(Σ)

for all neurons in a layer, then you can piggy-

back off the result to compute
∂RSS
∂σ(Σ)

for all neurons in the

previous layer.
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With these two facts in mind, the backpropagation algorithm consists
of the following three steps:

1. Forward propagate neuron activities. Compute Σ and σ(Σ)

for all neurons in the network, starting at the input layer and
repeatedly piggy-backing off the results to compute Σ and σ(Σ)

for all neurons in the next layer.

2. Backpropagate neuron output gradients. Compute
∂RSS
∂σ(Σ)

for all

neurons, starting with the output layer and then repeatedly piggy-

backing off the results to compute
∂RSS
∂σ(Σ)

in the previous layer.

3. Expand neuron output gradients to weight gradients. Compute
∂RSS
∂w

for all weights in the neural network by piggy-backing off

of
∂RSS
∂σ(Σ)

for the neuron that receives the weight.

Forward Propagation of Neuron Activities

Let’s formalize these steps mathematically. First, we denote the
following quantities:

• x⃗ =


x1

x2

...

 are the inputs to the neural network, and f(x⃗) is the

output of the neural network.
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• Σ⃗ℓ =


Σℓ1

Σℓ2

...

 are the inputs to the neurons in the ℓth layer, and

h⃗ℓ =


hℓ1

hℓ2

...

 are the outputs of the neurons in the ℓth layer. If the

activation function of these neurons is σ, then h⃗ℓ = σ
(
Σ⃗ℓ

)
.

• The input layer is the 0th layer, there areL hidden layers between
the input and output layers, and the output layer is the (L+1)th
layer. Note that this means h⃗0 = x⃗ and hL+1 = f(x⃗).

• Aℓ =


aℓ11 aℓ12 · · ·
aℓ21 aℓ22 · · ·

...
... . . .

 is the matrix of connection

weights between the non-bias neurons in the ℓth layer and the

next layer, and b⃗ℓ =


bℓ1

bℓ2
...

 are the connection weights between

the bias neuron in the ℓth layer and the neurons in the next layer.
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The following diagram may aid in remembering what each symbol
represents.
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Using the terminology introduced above, we can state the forward
propagation step as follows:

Σ⃗1 = A1x⃗+ b⃗1

h⃗1 = σ
(
Σ⃗1

)
Σ⃗2 = A2h⃗1 + b⃗2

h⃗2 = σ
(
Σ⃗2

)
Σ⃗3 = A3h⃗2 + b⃗3

h⃗3 = σ
(
Σ⃗3

)
...

Σ⃗L = ALh⃗L−1 + b⃗L

h⃗L = σ
(
Σ⃗L

)
ΣL+1 = a(L+1)11hL1 + a(L+1)12hL2 + · · ·+ b(L+1)1

f (x⃗) = σ (ΣL+1)

Note that the last two lines are written as scalars since the output layer
contains only a single neuron, i.e. the output neuron.
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Backpropagation of Neuron Output
Gradients

Now, let’s formalize the backpropagation step for a point (x⃗, y). First,
we compute the gradient with respect to the output neuron. Remember
that the output of the output neuron isf(x⃗),which can also be denoted
as h(L+1)1 since the output layer is the (L+ 1)th layer.

∂RSS
∂h(L+1)i

=
∂

∂h(L+1)i

[
(f (x⃗)− y)2

]
=

∂

∂h(L+1)i

[(
h(L+1)i − y

)2]
= 2

(
h(L+1)i − y

)

Then, we backpropagate to the previous layer.
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∂RSS
∂hLi

=
∂RSS

∂h(L+1)1

·
∂h(L+1)1

∂hLi

=
∂RSS

∂h(L+1)1

· ∂

∂hLi

[
σ
(
Σ(L+1)1

)]
=

∂RSS
∂h(L+1)1

σ′ (Σ(L+1)1

)
· ∂

∂hLi

[
Σ(L+1)1

]
=

∂RSS
∂h(L+1)1

σ′ (Σ(L+1)1

)
· ∂

∂hLi

[
a(L+1)11hL1 + a(L+1)12hL2

+ · · ·+ b(L+1)1

]

=
∂RSS

∂h(L+1)1

σ′ (Σ(L+1)1

)
a(L+1)1i

Note that the quantity
∂RSS

∂h(L+1)1

was already computed, so we do not

have to expand it out.
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We continue backpropagating using the same approach. Note that
hidden layers contain multiple nodes (unlike the output layer), so we
need a term for each node.

∂RSS
∂h(L−1)i

=
∂RSS
∂hL1

· ∂hL1

∂h(L−1)i

+
∂RSS
∂hL2

· ∂hL2

∂h(L−1)i

+ · · ·

= · · ·

=
∂RSS
∂hL1

σ′ (ΣL1) aL1i +
∂RSS
∂hL2

σ′ (ΣL2) aL2i + · · ·

Again, note that the quantities
∂RSS
∂hL1

,
∂RSS
∂hL2

, . . . were already
computed, so we do not have to expand them out.

Also note that we can consolidate into vector form:
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∂RSS
∂h⃗L−1

=


∂RSS

∂h(L−1)1

∂RSS
∂h(L−1)2

...



=


∂RSS
∂hL1

σ′ (ΣL1) aL11 +
∂RSS
∂hL2

σ′ (ΣL2) aL21 + · · ·
∂RSS
∂hL1

σ′ (ΣL1) aL12 +
∂RSS
∂hL2

σ′ (ΣL2) aL22 + · · ·
...



=


aL11 aL21 · · ·
aL12 aL22 · · ·

...
... . . .



∂RSS
∂hL1

σ′ (ΣL1)

∂RSS
∂hL2

σ′ (ΣL2)

...


= AT

L

(
∂RSS
∂h⃗L

◦ σ′
(
Σ⃗L

))
,

where ◦ denotes the element-wise product.

We keep backpropagating using the same approach until we reach the

input layer. At that point, we will have computed
∂RSS
∂hℓi

for every
neuron in the network.
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Expansion of Neuron Output Gradients to
Weight Gradients

Finally, we expand the neuron output gradients into weight gradients,

i.e. coefficient gradients
∂RSS
∂aℓij

and bias gradients
∂RSS
∂bℓi

.

∂RSS
∂aℓij

=
∂RSS
∂hℓi

· ∂hℓi

∂aℓij

=
∂RSS
∂hℓi

· ∂

∂aℓij
[σ (Σℓi)]

=
∂RSS
∂hℓi

σ′ (Σℓi) ·
∂

∂aℓij
[Σℓi]

=
∂RSS
∂hℓi

σ′ (Σℓi) ·
∂

∂aℓij

[
aℓi1h(ℓ−1)1 + aℓi2h(ℓ−1)2

+ · · ·+ b(ℓ−1)i

]

=
∂RSS
∂hℓi

σ′ (Σℓi)h(ℓ−1)j
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By the same computation, we get

∂RSS
∂bℓi

=
∂RSS
∂hℓi

σ′ (Σℓi) .

Notice that the expression for
∂RSS
∂bℓi

appears in the expression for
∂RSS
∂aℓij

, so we can simplify:

∂RSS
∂bℓi

=
∂RSS
∂hℓi

σ′ (Σℓi)

∂RSS
∂aℓij

=
∂RSS
∂bℓi

h(ℓ−1)j

Again, we can consolidate into vector form:

∂RSS
∂b⃗ℓ

=
∂RSS
∂h⃗ℓ

◦ σ′
(
Σ⃗ℓ

)
∂RSS
∂Aℓ

=
∂RSS
∂b⃗ℓ

⊗ h⃗ℓ−1,

where⊗ is the outer product.
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Gradient Descent Update

Once we know all the weight gradients, we can update the weights using
the usual gradient descent update:

Aℓ → Aℓ − α
∂RSS
∂Aℓ

where
∂RSS
∂Aℓ

=
∑
(x⃗,y)

∂RSS
∂Aℓ

∣∣∣∣
(x⃗,y)

b⃗ℓ → b⃗ℓ − α
∂RSS
∂b⃗ℓ

where
∂RSS
∂b⃗ℓ

=
∑
(x⃗,y)

∂RSS
∂b⃗ℓ

∣∣∣∣
(x⃗,y)

Pseudocode

The following pseudocode summarizes the backpropagation algorithm
that was derived above.

1. Reset all gradient placeholders

∀ℓ ∈ {1, 2, ..., L} :

∂RSS
∂Aℓ

=


0 0 · · ·
0 0 · · ·
...

... . . .


∂RSS
∂b⃗ℓ

= 0⃗
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2. Loop over all data points

∀(x⃗, y) :

2.1 Forward propagate neuron activities

Σ⃗0 = x⃗

h⃗0 = x⃗

∀ℓ ∈ {0, 1, . . . , L} :

Σ⃗ℓ+1 = Aℓ+1h⃗ℓ + b⃗ℓ+1

h⃗ℓ+1 = σ
(
Σ⃗ℓ+1

)

2.2 Backpropagate neuron output gradients

∂RSS
∂h(L+1)1

= 2
(
h(ℓ+1)1 − y

)
∀ℓ ∈ {L,L− 1, . . . , 1} :

∂RSS
∂h⃗ℓ

= AT
ℓ+1

(
∂RSS
∂h⃗ℓ+1

◦ σ′
(
Σ⃗ℓ+1

))
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2.3 Expand to weight gradients

∀ℓ ∈ {L+ 1, L, . . . , 1} :

∂RSS
∂b⃗ℓ

∣∣∣∣
(x⃗,y)

=
∂RSS
∂h⃗ℓ

◦ σ′
(
Σ⃗ℓ

)
∂RSS
∂Aℓ

∣∣∣∣
(x⃗,y)

=
∂RSS
∂b⃗ℓ

∣∣∣∣
(x⃗,y)

⊗ h⃗ℓ−1

∂RSS
∂Aℓ

→ ∂RSS
∂Aℓ

+
∂RSS
∂Aℓ

∣∣∣∣
(x⃗,y)

∂RSS
∂b⃗ℓ

→ ∂RSS
∂b⃗ℓ

+
∂RSS
∂b⃗ℓ

∣∣∣∣
(x⃗,y)

3. Update weights via gradient descent

∀ℓ ∈ {1, 2, ..., L} :

Aℓ → Aℓ − α
∂RSS
∂Aℓ

b⃗ℓ → b⃗ℓ − α
∂RSS
∂b⃗ℓ

You might notice that steps 2.2 and 2.3 above can be combined more

efficiently into a single step since
∂RSS
∂h⃗ℓ

= AT
ℓ+1

∂RSS
∂b⃗ℓ+1

. However, we

will keep these steps separate for the sake of intuitive clarity. You are
welcome to combine these steps in your own implementation.
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Worked Example of a Single Iteration

Now, let’s walk through an concrete example of fitting a neural network
to a data set using the backpropagation algorithm. We will use the same
data set and neural network architecture as the previous chapter:

[(0, 0), (0.25, 1), (0.5, 0.5), (0.75, 1), (1, 0)]

Because neural networks are hierarchical and high-dimensional (i.e.
they have many parameters that are tightly coupled), they are vastly
more difficult to train as compared to simpler non-hierarchical low-
dimensional models like linear, logistic, and polynomial regressions.
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Various tricks are often required to prevent the neural network from
getting “stuck” in suboptimal local minima, which we will not cover
here.

To provide a simple example that illustrates the training of a neural
network to a high degree of accuracy while avoiding the need for
more advanced tricks, we will intentionally choose the initial weights
of our network to be similar to the weights that we arrived at when
manually constructing a neural network in the previous chapter. (More
specifically, they will be proportional by a factor of 0.5.) This will place
us near a deep valley on the surface of RSS as a function of parameters
of the neural network, and the proximity will allow elementary gradient
descent to lead us down into the valley.

So, we will use the following initial weights:

A1 =


5

−5
5

−5

 b⃗1 =


−0.75
1.75

−3.25
4.25



A2 =

[
10 10 0 0

0 0 10 10

]
b⃗2 =

[
−12.5
−12.5

]

A3 =
[
10 10

]
b⃗3 =

[
−2.5

]

Let’s work out the first iteration of backpropagation by hand, using
learning rate α = 0.01. Note that the values shown are rounded to 6
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decimal places, but intermediate values are not actually rounded in the
implementation.

Point: (x⃗, y) = ([0], 0)

Forward propagation

Σ⃗0 = x⃗ =
[
0
]

h⃗0 = x⃗ =
[
0
]

Σ⃗1 = A1h⃗0 + b⃗1 =


5

−5
5

−5


[
0
]
+


−0.75
1.75

−3.25
4.25

 =


−0.75
1.75

−3.25
4.25



h⃗1 = σ
(
Σ⃗1

)
= σ



−0.75
1.75

−3.25
4.25


 =


0.320821

0.851953

0.037327

0.985936



Σ⃗2 = A2h⃗1 + b⃗2 =

[
10 10 0 0

0 0 10 10

]
0.320821

0.851953

0.037327

0.985936

+

[
−12.5
−12.5

]
=

[
−0.772259
−2.267367

]

h⃗2 = σ
(
Σ⃗2

)
= σ

([
−0.772259
−2.267367

])
=

[
0.315991

0.093862

]

Σ⃗3 = A3h⃗2 + b⃗3 =
[
10 10

] [0.315991
0.093862

]
+
[
−2.5

]
=
[
1.59852529

]
h⃗3 = σ

(
Σ⃗3

)
= σ

([
1.598525

])
=
[
0.831812

]
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Backpropagation

∂RSS
∂h31

= 2 (h31 − y) = 2 (0.831812− 0) = 1.663624

∂RSS
∂h⃗2

= AT
3

(
∂RSS
∂h⃗3

◦ σ′
(
Σ⃗3

))
=

[
10

10

]([
1.663624

]
◦ σ′

([
1.59852529

]))
=

[
2.327422

2.327422

]

∂RSS
∂h⃗1

= AT
2

(
∂RSS
∂h⃗2

◦ σ′
(
Σ⃗2

))
=


10 0

10 0

0 10

0 10


([

2.327422

2.327422

]
◦ σ′

([
−0.772259

−2.267367

]))
=


5.030502

5.030502

1.979515

1.979515



Expansion

∂RSS

∂b⃗3

∣∣∣∣∣
([0],0)

=
∂RSS

∂h⃗3

◦ σ
′
(
Σ⃗3

)
=
[
1.663624

]
◦ σ

′
([

1.598525
])

=
[
0.232742

]

∂RSS

∂A3

∣∣∣∣
([0],0)

=
∂RSS

∂b⃗3

∣∣∣∣∣
([0],0)

⊗ h⃗2 =
[
−0.000913

]
⊗
[
0.315991

0.093862

]
=
[
0.073544 0.021846

]

∂RSS

∂b⃗2

∣∣∣∣∣
([0],0)

=
∂RSS

∂h⃗2

◦ σ
′
(
Σ⃗2

)
=

[
2.327422

2.327422

]
◦ σ

′
([

−0.772259

−2.267367

])
=

[
0.503050

0.197951

]

∂RSS

∂A2

∣∣∣∣
([0],0)

=
∂RSS

∂b⃗2

∣∣∣∣∣
([0],0)

⊗ h⃗1 =

[
0.503050

0.197951

]
⊗


0.320821

0.851953

0.037327

0.985936

 =

[
0.161389 0.428575 0.018777 0.495976

0.063507 0.168645 0.007389 0.195168

]

∂RSS

∂b⃗1

∣∣∣∣∣
([0],0)

=
∂RSS

∂h⃗1

◦ σ
′
(
Σ⃗1

)
=


5.030502

5.030502

1.979515

1.979515

 ◦ σ
′



−0.75

1.75

−3.25

4.25


 =


1.096121

0.634493

0.071131

0.027448



∂RSS

∂A1

∣∣∣∣
([0],0)

=
∂RSS

∂b⃗1

∣∣∣∣∣
([0],0)

⊗ h⃗0 =


1.096121

0.634493

0.071131

0.027448

⊗
[
0
]
=


0

0

0

0


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Point: (x⃗, y) = ([0.25], 1)

Σ⃗0 =
[
0.25

]
h⃗0 =

[
0.25

]

Σ⃗1 =


0.5

0.5

−2
3

 h⃗1 =


0.622459

0.622459

0.119203

0.952574



Σ⃗2 =

[
−0.050813
−1.782230

]
h⃗2 =

[
0.487299

0.144028

]

Σ⃗3 =
[
3.813274

]
h⃗3 =

[
0.978401

]

∂RSS
∂h⃗3

=
[
−0.043198

]
,

∂RSS
∂h⃗2

=

[
−0.009129
−0.009129

]
,

∂RSS
∂h⃗1

=


−0.022807
−0.022807
−0.011254
−0.011254



∂RSS

∂b⃗3

∣∣∣∣∣
([0.25],1)

=
[
−0.000913

] ∂RSS

∂A3

∣∣∣∣
([0.25],1)

=
[
−0.000445 −0.000131

]

∂RSS

∂b⃗2

∣∣∣∣∣
([0.25],1)

=

[
−0.002281

−0.001125

]
∂RSS

∂A2

∣∣∣∣
([0.25],1)

=

[
−0.001420 −0.001420 −0.000272 −0.002173

−0.000701 −0.000701 −0.000134 −0.001072

]

∂RSS

∂b⃗1

∣∣∣∣∣
([0.25],1)

=


−0.005360

−0.005360

−0.001182

−0.000508

 ∂RSS

∂A1

∣∣∣∣
([0.25],1)

=


−0.001340

−0.001340

−0.000295

−0.000127


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Point: (x⃗, y) = ([0.5], 0.5)

∂RSS

∂b⃗3

∣∣∣∣∣
([0.5],0.5)

=
[
0.020099

] ∂RSS

∂A3

∣∣∣∣
([0.5],0.5)

=
[
0.006351 0.006351

]

∂RSS

∂b⃗2

∣∣∣∣∣
([0.5],0.5)

=

[
0.043443

0.043443

]
∂RSS

∂A2

∣∣∣∣
([0.5],0.5)

=

[
0.037011 0.013937 0.013937 0.037011

0.037011 0.013937 0.013937 0.037011

]

∂RSS

∂b⃗1

∣∣∣∣∣
([0.5],0.5)

=


0.054794

0.094659

0.094659

0.054794

 ∂RSS

∂A1

∣∣∣∣
([0.5],0.5)

=


0.027397

0.047330

0.047330

0.027397



Point: (x⃗, y) = ([0.75], 1)

∂RSS

∂b⃗3

∣∣∣∣∣
([0.75],1)

=
[
−0.000913

] ∂RSS

∂A3

∣∣∣∣
([0.75],1)

=
[
−0.000131 −0.000445

]

∂RSS

∂b⃗2

∣∣∣∣∣
([0.75],1)

=

[
−0.001125

−0.002281

]
∂RSS

∂A2

∣∣∣∣
([0.75],1)

=

[
−0.001072 −0.000134 −0.000701 −0.000701

−0.002173 −0.000272 −0.001420 −0.001420

]

∂RSS

∂b⃗1

∣∣∣∣∣
([0.75],1)

=


−0.000508

−0.001182

−0.005360

−0.005360

 ∂RSS

∂A1

∣∣∣∣
([0.75],1)

=


−0.000381

−0.000886

−0.004020

−0.004020



Point: (x⃗, y) = ([1], 0)

∂RSS

∂b⃗3

∣∣∣∣∣
([1],0)

=
[
0.232742

] ∂RSS

∂A3

∣∣∣∣
([1],0)

=
[
0.021846 0.073544

]

∂RSS

∂b⃗2

∣∣∣∣∣
([1],0)

=

[
0.197951

0.503050

]
∂RSS

∂A2

∣∣∣∣
([1],0)

=

[
0.195168 0.007389 0.168645 0.063507

0.495976 0.018777 0.428575 0.161389

]

∂RSS

∂b⃗1

∣∣∣∣∣
([1],0)

=


0.027448

0.071131

0.634493

1.096121

 ∂RSS

∂A1

∣∣∣∣
([1],0)

=


0.027448

0.071131

0.634493

1.096121



Weight Updates
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Summing up all the gradients we computed, we get the following:

∂RSS
∂b⃗3

=
[
0.483758

] ∂RSS
∂A3

=
[
0.101165 0.101165

]

∂RSS
∂b⃗2

=

[
0.741038

0.741038

]
∂RSS
∂A2

=

[
0.391076 0.448347 0.200388 0.593621

0.593621 0.200388 0.448347 0.391076

]

∂RSS
∂b⃗1

=


1.172495

0.793742

0.793742

1.172495

 ∂RSS
∂A1

=


0.053123

0.116235

0.677508

1.119371



Finally, applying the gradient descent updates Aℓ → Aℓ − α
RSS
∂Aℓ

and

b⃗ℓ → b⃗ℓ−α
RSS
∂b⃗ℓ

withα = 0.01,we get the following updated weights:

A1 =


4.999469

−5.001162
4.993225

−5.011194

 b⃗1 =


−0.761725
1.742063

−3.257937
4.238275



A2 =

[
9.996089 9.995517 −0.002004 −0.005936
−0.005936 −0.002004 9.995517 9.996089

]
b⃗2 =

[
−12.507410
−12.507410

]

A3 =
[
9.998988 9.998988

]
b⃗3 =

[
−2.504838

]
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Demonstration of Many Iterations

Repeating this procedure over and over, we get the following results.
Note that the values shown are rounded to 3 decimal places, but
intermediate values are not actually rounded in the implementation.

Initial

• RSS ≈ 1.614

• Predictions ≈ 0.832, 0.978, 0.979, 0.978, 0.832

(Compare to 0, 1, 0.5, 1, 0)

A1 =


5

−5
5

−5

 b⃗1 =


−0.75
1.75

−3.25
4.25



A2 =

[
10 10 0 0

0 0 10 10

]
b⃗2 =

[
−12.5
−12.5

]

A3 =
[
10 10

]
b⃗3 =

[
−2.5

]

350



Introduction to Algorithms and Machine Learning

After 1 iteration

• RSS ≈ 1.525

• Predictions ≈ 0.812, 0.973, 0.973, 0.972, 0.801

A1 =


4.999

−5.001
4.993

−5.011

 b⃗1 =


−0.762
1.742

−3.258
4.238



A2 =

[
9.996 9.996 −0.002 −0.006
−0.006 −0.002 9.996 9.996

]
b⃗2 =

[
−12.507
−12.507

]

A3 =
[
9.999 9.999

]
b⃗3 =

[
−2.505

]

After 2 iterations

• RSS ≈ 1.426

• Predictions ≈ 0.789, 0.967, 0.965, 0.962, 0.765
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A1 ≈


4.999

−5.002
4.986

−5.023

 b⃗1 ≈


−0.774
1.734

−3.267
4.226



A2 ≈

[
9.992 9.991 −0.004 −0.012
−0.012 −0.004 9.991 9.992

]
b⃗2 ≈

[
−12.515
−12.515

]

A3 ≈
[
9.998 9.998

]
b⃗3 ≈

[
−2.510

]

After 3 iterations

• RSS ≈ 1.320

• Predictions ≈ 0.764, 0.959, 0.954, 0.949, 0.725

A1 ≈


4.998

−5.004
4.978

−5.035

 b⃗1 ≈


−0.787
1.725

−3.276
4.213



A2 ≈

[
9.987 9.986 −0.006 −0.019
−0.019 −0.006 9.986 9.988

]
b⃗2 ≈

[
−12.524
−12.524

]

A3 ≈
[
9.997 9.997

]
b⃗3 ≈

[
−2.516

]
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After 10 iterations

• RSS ≈ 0.730

• Predictions ≈ 0.571, 0.844, 0.816, 0.774, 0.478

A1 ≈


4.992

−5.015
4.933

−5.101

 b⃗1 ≈


−0.873
1.66

−3.331
4.142



A2 ≈

[
9.957 9.953 −0.022 −0.064
−0.058 −0.022 9.958 9.959

]
b⃗2 ≈

[
−12.58
−12.575

]

A3 ≈
[
9.99 9.991

]
b⃗3 ≈

[
−2.557

]

After 100 iterations

• RSS ≈ 0.496

• Predictions ≈ 0.362, 0.694, 0.730, 0.698, 0.356
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A1 ≈


5.068

−4.962
4.965

−5.158

 b⃗1 ≈


−0.936
1.696

−3.249
4.164



A2 ≈

[
9.920 9.862 −0.064 −0.15
−0.116 −0.074 9.894 9.921

]
b⃗2 ≈

[
−12.708
−12.683

]

A3 ≈
[
9.978 9.981

]
b⃗3 ≈

[
−2.735

]

After 1 000 iterations

• RSS ≈ 0.198

• Predictions ≈ 0.199, 0.788, 0.668, 0.788, 0.202

A1 ≈


5.491

−5.101
5.343

−5.152

 b⃗1 ≈


−0.518
2.008

−3.081
4.546



A2 ≈

[
9.744 9.666 −0.301 −0.425
−0.442 −0.301 9.668 9.721

]
b⃗2 ≈

[
−13.155
−13.170

]

A3 ≈
[
9.982 9.98

]
b⃗3 ≈

[
−3.596

]
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After 10 000 iterations

• RSS ≈ 0.0239

• Predictions ≈ 0.068, 0.922, 0.517, 0.915, 0.075

A1 ≈


6.96

−6.033
6.632

−5.806

 b⃗1 ≈


−0.279
2.766

−3.307
5.478



A2 ≈

[
9.88 9.555 −0.835 −0.865
−0.932 −0.806 9.647 9.781

]
b⃗2 ≈

[
−13.763
−13.804

]

A3 ≈
[
10.515 10.542

]
b⃗3 ≈

[
−4.759

]

After 100 000 iterations

• RSS ≈ 0.0020

• Predictions ≈ 0.020, 0.979, 0.501, 0.976, 0.023
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A1 ≈


8.407

−7.103
7.786

−6.971

 b⃗1 ≈


−0.523
3.289

−3.906
6.412



A2 ≈

[
10.437 9.708 −1.367 −1.063
−1.179 −1.311 9.922 10.416

]
b⃗2 ≈

[
−14.075
−14.139

]

A3 ≈
[
11.607 11.800

]
b⃗3 ≈

[
−5.433

]

After 1 000 000 iterations

• RSS ≈ 0.0002

• Predictions ≈ 0.006, 0.993, 0.500, 0.993, 0.007

A1 ≈


9.527

−7.895
8.602

−7.956

 b⃗1 ≈


−0.738
3.651

−4.384
7.219



A2 ≈

[
11.006 9.855 −1.801 −1.214
−1.405 −1.730 10.129 11.100

]
b⃗2 ≈

[
−14.323
−14.440

]

A3 ≈
[
12.902 13.223

]
b⃗3 ≈

[
−6.178

]
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Below is a graph of the regression curves before and after training (i.e.
using the initial weights and using the weights after1 000 000 iterations
of backpropagation). The trained network does an even better job of
passing through the leftmost and rightmost points than the network
we constructed manually in the previous section!

Exercises

1. Implement the example that was worked out above.

2. Re-run the example that was worked out above, this time using
initial weights drawn randomly from the normal distribution.
Note that your RSS should gradually decrease but it may get
“stuck” in a suboptimal local minimum, resulting in a regression
curve that is a decent but not perfect fit.
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Part VI

Games
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37. Canonical and Reduced
Game Trees for Tic-Tac-Toe

A game tree is a data structure that represents all the possible outcomes
of a game. It is a graph where the nodes correspond to the states of
the game, and the edges correspond to actions that cause the game to
transition from one state to another. Game trees are commonly used
when coding up strategies for autonomous game-playing agents.

Exercise: Tic-Tac-Toe Tree

Create a class TicTacToeTree that constructs a game tree for tic-tac-
toe. Each node in the game tree has corresponds to a state of the game.
The root node represents an empty board. It has 9 children, one for
each move that the first player can make. Each of those 9 children have
8 children (after the first player has moved, there are 8 moves remaining
for the second player). And so on.
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There are 255 168 unique ways that a game of tic-tac-toe can play out,
so you can check your tree by verifying that there are 255 168 leaf nodes.

Here are some tips regarding the implementation:

• Each node should have a state attribute that holds the state of the
tic-tac-toe game, a player attribute that says whose turn it is, and
a winner attribute that says if someone has won.

• Instead of passing edges into the tree at initialization, you’ll need
to build up your tree algorithmically: start with a tree with a
single node, and then repeatedly create child nodes until they
reach a terminal state (i.e. a state where the game is finished).

• Ultimately this just comes down to a graph traversal (breadth-
first or depth-first, doesn’t matter which). Whenever a node’s
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game state is not terminal, create a child node for each possible
next state.

Exercise: Reduced Tic-Tac-Toe Tree

Once you’ve built your TicTacToeTree and verified that it has
the correct number of leaf nodes, the next step is to make it more
efficient. Notice that there are many redundancies where separate nodes
represent the same state:

Although redundancies are included in the canonical conception of a
game tree, we can greatly speed up the construction and reduce the size
of our game tree if we use only one node per game state. To do this,
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you’ll need to make a slight tweak to your traversal so that whenever a
node with the desired state already exists, you connect up that existing
node as a child (instead of creating a new node).

Do not loop over the tree every time to check if a node with the desired
child state already exists. That would be really inefficient! Instead, store
nodes in a dictionary where the key represents the game state. That way,
to check if a node with a particular game state already exists, you just
need to look up that state in the dictionary.

There are 5 478 distinct possible game states in the game of tic-tac-toe,
so you can check your reduced tree by verifying that there are 5 478
nodes in total.
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38. Minimax Strategy

The minimax strategy is a powerful game-playing strategy that
operates on game trees. It envisions the worst-case scenario that could
possibly result from any given move, and then chooses the move that
would result in the best (i.e. “least bad”) worst-case scenario.

Minimax Algorithm

The minimax strategy chooses actions according to the following
algorithm:

1. Create a game tree with all the states of the game.

2. Identify each node that represents a terminal state and assign
it a minimax value of 1, −1, or 0 depending on whether it
corresponds to a win, loss, or tie for you.

3. Repeatedly propagate those values up the tree to parent nodes,
assuming that you will try to win (i.e. move into states that
maximize your value) and your opponent will try to make you
lose (i.e. move into states that minimize your value).
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– If the edge from the parent node corresponds to your turn,
then the parent node’s minimax value is the maximum of
the child values (because you want to maximize your value).

– Otherwise, if the edge from the parent node corresponds
to your opponent’s turn, then the parent node’s minimax
value is the minimum of the child values (because your
opponent wants to minimize your value).

• Always choose the move that takes you to the next possible state
with the highest minimax value. (You can break ties via random
choice.)

Worked Example

To illustrate the minimax algorithm in action, let’s label part of a tic-
tac-toe game tree with minimax values, from the perspective of player X
(i.e. supposing we are player X). We always start by labeling the terminal
states.
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Then, we propagate these values up to parent nodes. But we can only
compute the minimax value of a node once we’ve assigned minimax
values to all its children.

Here, there are 3 parents who do not have minimax values but whose
children all do. The edges between these parents and their children all
correspond to moves by X, which is us, and we want to maximize the
minimax value. So, to each of these parents, we assign the maximum
value of its children. (In this case, each of these parents has only one
child, so the maximum value happens to be the only value.)
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Now, we repeat the process. Now, there are 2 parents who do not have
minimax values but whose children all do. The edges between these
parents and their children all correspond to moves by O, which is our
opponent, and our opponent wants to minimize the minimax value. So,
to each of these parents, we assign the minimum value of its children.
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Again, we repeat the process. There is a single parent (the top node)
who does not have a minimax value but whose children all do. The
edges between these parents and their children all correspond to moves
by X, which is us, and we want to maximize the minimax value. So we
assign it the maximum value of its children.
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We’ve assigned minimax values to all the nodes in this part of the tree.
The minimax value of the highest node is 1, which tells us that there is
a guaranteed way to win from that game state (all we need to do is place
an X in the bottom-left corner). Indeed, this action is accomplished by
choosing the child node with the maximum value.

Exercises

1. Implement a minimax player for your tic-tac-toe game that
automatically chooses actions based on the minimax strategy.
(It goes without saying: don’t rebuild and relabel the game tree
on every move. That would be very inefficient and slow. Build
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and label it once at the beginning, and then use the same tree
throughout the rest of the game.)

2. Run your minimax player against a deterministic “top-left
strategy” that always moves into the leftmost open space in the
topmost row. At each of the minimax player’s turns, print out
the possible moves that the minimax player could possibly make
as well as the associated minimax values of the states. Check the
following:

– Every minimax value should be either 1,−1, or 0.

– Each of the minimax player’s chosen moves should be
associated with a maximum-value state.

– Towards the end of the game, you should be able to inspect
game states, manually sketch out the section of the game
tree containing their progeny, and then manually compute
and verify the minimax value of each state.

– Make sure these checks still hold when the minimax player
goes second.

3. Then, run your minimax player against a random player for many
games (alternating who goes first). The minimax player should
never lose. If you encounter any game where the minimax player
loses, then you’ll need to store the sequence of moves and step
through the game to debug what went wrong.

4. Play two minimax players against each other for many games,
alternating who goes first. Every game should result in a tie.

5. Play against the minimax player yourself. You shouldn’t be able
to win.
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39. Reduced Search Depth and
Heuristic Evaluation for
Connect Four

In theory, we could solve any game by building a big game tree, labeling
the terminal states as wins, losses, or ties, and then working backwards
from that information to identify the minimax strategy. But in practice,
game trees get so big so quickly that for all but the most simple games,
game trees are too expensive to store in memory and take too long to
traverse.

For example, consider the game of connect four, which is normally
played on a 7 × 6 board. Whereas tic-tac-toe had 5 478, valid board
states, connect four has 4 531 985 219 092. Implementing a game tree
of this size is infeasible – if you’re not convinced, try running a simple
“for” loop that loops over the numbers from 1 to 4 531 985 219 092. If
looping over a million numbers takes a few seconds, then looping over
a trillion numbers will take weeks.
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Reduced Search Depth

We can’t build a full game tree for connect four. But what we can do
instead is

1. reduce the search depth (i.e. build a shortened game tree up to
some maximum depth), and

2. come up with some kind of heuristic evaluation function to
rate how good or bad each leaf node state is.

Then we can apply the minimax strategy in an attempt to move in the
direction of the best leaf node state.

This procedure for selecting a move can be outlined more explicitly as
follows:

1. Build a game tree that is N layers deep from the current game
state. (This is called an N -ply game tree.)

2. Use the heuristic evaluation function to assign minimax to the
terminal nodes in the game tree.

3. Repeatedly propagate those values up to parent nodes using the
minimax algorithm.

4. Choose your action in accordance with the standard minimax
strategy (i.e. choose the move that takes you to the child state
with the highest minimax value).
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Note that this time, you’ll have to relabel the game tree on every move
because the terminal nodes of the tree will change (thereby changing
the minimax values of the rest of the tree). But you don’t need to rebuild
the full game tree on every move – you can take the existing game tree,
prune off nodes that are no longer relevant, and grow the additional
nodes needed to bring you back to a search depth of N.

Heuristic Evaluation Function

Now, let’s talk about the “secret sauce” in this recipe: the heuristic
evaluation function. It takes a game state as input, and returns a number
between −1 and 1 that represents how strongly we want or do not
want to be in that game state. To write this function we use our human
intuition about the game. Here are some rough guidelines:

• If we’re 100% confident that a game state is a win or will result in
a win, then the function should return 1.

• If we think that a win is more likely than a loss, then the function
should return a decimal between 0 and 1, with higher win
probabilities corresponding to higher decimals.

• If we have no idea whether a game state will result in a win or
loss, or we think it will result in a tie, then the function should
return 0.

• If we think that a win is less likely than a loss, then the function
should return a decimal between 0 and −1, with lower win
probabilities corresponding to more negative decimals.
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• If we’re 100% confident that a game state is a loss or will result in
a loss, then the function should return−1.

For example, here is a simple heuristic function for tic-tac-toe:

1. If the game state is a definite win, tie, or loss, then return 1, 0, or
−1 respectively.

2. Otherwise, count up the number of rows, columns, and diagonals
where you occupy two spaces and the third space is empty. Then,
subtract the number of rows, columns, and diagonals where
your opponent occupies two spaces and the third space is empty.
Finally, divide the result by 8 (which is the total number of rows,
columns, and diagonals).

Exercises

Remember to alternate who goes first in the matchups described below.

1. Implement a 9-ply heuristic minimax tic-tac-toe player, i.e. it uses
the heuristic evaluation function described above and a search
depth of N = 9 (which happens to be the full tree). Then, run
it against the perfect minimax player that you created previously.
Every game should result in a tie.

2. Implement a 2-ply heuristic minimax tic-tac-toe player. Then,
run it against your 9-ply heuristic player, as well as a purely
random player. The 2-ply player should do better than the
random player but worse than the 9-ply player.

376



Introduction to Algorithms and Machine Learning

3. Develop a heuristic minimax connect four player that uses as
many ply as can be computed quickly, and verify that it performs
better than a random player.

4. Verify that your heuristic minimax connect four player performs
better than a “last-minute” player that moves randomly unless
it has an opportunity to capture a win or block a loss on the
next move. (If it doesn’t, then you may need to improve your
heuristic.)

5. Play against your heuristic minimax connect four player yourself.
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40. Introduction to Blondie24
and Neuroevolution

Previously, we built strategic connect four players by constructing a
pruned game tree, using heuristics to rate terminal states, and then
applying the minimax algorithm. This was a combination of game-
specific human intelligence (heuristics) and generalizable artificial
intelligence (minimax on a game tree).

Blondie24

In the 1990s, a researcher named David Fogel managed to automate
the process of rating states in pruned game trees without relying
on heuristics or any other human input. In particular, he and his
colleague Kumar Chellapilla created a computer program that achieved
expert level checkers-playing ability by learning from scratch. They
played it against other humans online under the username Blondie24,
pretending to be a 24-year old blonde female college student.
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Blondie24 was particularly noteworthy because other successful game-
playing agents had been hand-tuned and/or trained on human-expert
strategies. Unlike these agents, Blondie24 learned without having any
access to information on human-expert strategies.

To automate the process of rating states in pruned game trees, Fogel
turned it into a regression problem: given a game state, predict its value.
Of course, the regression function is pretty complicated (e.g. changing
one piece on a chess board can totally change the outcome of the game),
so the natural choice was to use a neural network.

However, the usual method of training a neural network,
backpropagation, does not work in this setting. Backpropagation relies
on a dataset of pairs of inputs and outputs – which means that the
model would need a data set of game states along with their correct
rating, totally defeating the purpose of getting the model to learn
this information from scratch. In this setting, the only feedback the
computer gets is at the very end of the game, whether it won or lost (or
tied).

Neuroevolution

To get around this issue, Fogel trained neural networks via evolution,
which is often referred to as neuroevolution in the context of neural
networks. Starting with a population of many neural networks with
random weights, he repeatedly

1. played the networks against each other,
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2. discarded the networks that performed worse than average,

3. duplicated the remaining networks, and then

4. randomly perturbed the weights of the duplicate networks.

This is analogous to the concept of evolution in biology in which weak
organisms die and fit organisms survive to produce similar but slightly
mutated offspring. By repeatedly running the evolutionary procedure,
Fogel was able to evolve a neural network whose internal mapping from
input state to output rating caused it to play the game of checkers in an
intelligent way, without any sort of human input.

Exercise: Evolving a Neural Network
Regressor

Before we reimplement Fogel’s papers leading up to Blondie24, let’s
first gain some experience with neuroevolution in a simpler case. As a
toy problem, consider the following data set:
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[
(0.0, 1.0), (0.04, 0.81), (0.08 , 0.52), (0.12 , 0.2),

(0.17, -0.12),
(0.21, -0.38), (0.25, -0.54), (0.29, -0.58), (0.33,

-0.51), (0.38 , -0.34),
(0.42, -0.1), (0.46, 0.16), (0.5, 0.39), (0.54, 0.55),

(0.58, 0.61),
(0.62, 0.55), (0.67, 0.38), (0.71 , 0.12) , (0.75,

-0.19), (0.79 , -0.51),
(0.83, -0.77), (0.88, -0.95), (0.92, -1.0), (0.96 ,

-0.91), (1.0, -0.7)
]

We will fit the above data using a neural network regressor with the
following architecture:

• Input Layer: 1 linearly-activated node and 1 bias node

• First Hidden Layer: 10 tanh-activated nodes and 1 bias node

• Second Hidden Layer: 6 tanh-activated nodes and 1 bias node

• Third Hidden Layer: 3 tanh-activated nodes and 1 bias node

• Output Layer: 1 tanh-activated node

Remember that hyperbolic tangent function is defined as

tanhx =
ex − e−x

ex + e−x
.
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To train the neural network, use the following evolutionary algorithm
(which is based on the Blondie24 approach):

1. Create a population of 15 neural networks with weights
randomly drawn from [−0.2, 0.2]. Additionally, assign a
mutation rate to each net, initially equal to α = 0.05.

2. Each of the 15 parents replicates to produce a single child. The
child is given mutation rate

αchild = αparenteN(0,1)/
√

2
√

|W |

and weights

wchild
ij = w

parent
ij + αchildN(0, 1),

where N(0, 1) is a random number drawn from the standard
normal distribution and |W | is the number of weights in the
network. Be sure to draw a different random number for each
instance of N(0, 1).

3. Compute the RSS for each net and select the 15 nets with the
lowest RSS. These will be the parents in the next generation.

4. Go back to step 2.

Make a plot of the average RSS at each generation, run the algorithm
until the graph levels off to nearly 0, and then plot the regression curves
corresponding to the first and last generations of neural networks on a
graph along with the data.

383



Justin Skycak

(The regression curve plot will contain 60 different curves drawn on
the same plot: one curve from each of the 30 nets in the first generation,
and one curve from each of the 30 nets in the last generation.)

The first generation curves will not fit the data at all (they will appear
flat), but the final generation of regression curves should fit the data
remarkably well. Note that the training process may require on the
order of a thousand generations.

Exercise: Hyperparameter Tuning

Once you’ve got this working, try tuning hyperparameters to get the
RSS to converge to nearly 0 as quickly as possible. You can tweak the
mutation rate, initial weight distribution, number of neural networks,
and neural network architecture (i.e. number of hidden layers and their
sizes).

Visualization

Courtesy of Maia Dimas, below is an illustration of the first and last
generations of neural nets, along with a graph of RSS versus the number
of generations.
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Courtesy of Elias Gee, below some intermediate illustrations of a small
population (10nets) as they learn to fit the curve over many generations.
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41. Reimplementing Fogel’s
Tic-Tac-Toe Paper

The goal of this section is to reimplement the paper Using Evolutionary
Programming to Create Neural Networks that are Capable of Playing
Tic-Tac-Toe by David Fogel in 1993. This paper preceded Blondie24,
and many of the principles introduced in this paper were extended
in Blondie24. As such, reimplementing the paper provides good
scaffolding as we work our way up to reimplement Blondie24.

The information needed to reimplement this paper is outlined below.
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Neural Network Architecture

The neural net consists of the following layers:

• Input Layer: 9 linearly-activated nodes and 1 bias node

• Hidden Layer: H sigmoidally-activated nodes and 1 bias node
(H is variable, as will be described later)

• Output Layer: 9 sigmoidally-activated nodes

Converting Board to Input

A tic-tac-toe board is converted to input by flattening it into a vector
and replacing X with 1, empty squares with 0, and O with−1.

For example, given a board

X O □

□ X O
□ □ □

 ,

we first concatenate consecutive rows to flatten the board into the
following 9-element vector:

⟨X,O,□,□,X,O,□,□,□⟩ ,
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Then, we replace X with 1, empty squares with 0, and O with−1 to
get the final input vector:

⟨1,−1, 0, 0, 1,−1, 0, 0, 0⟩

Converting Output to Action

The output layer consists of 9 nodes, one for each board square. To
convert the output values into an action, we do the following:

1. Discard any values that correspond to a board square that has
already been filled. (This will prevent illegal moves.)

2. Identify the empty board square with the maximum value. We
move into this square.

Evolution Procedure

The initial population consists of 50 networks. In each network,
the number of hidden nodes H is randomly chosen from the range
{1, 2, . . . , 10} and the initial weights are randomly chosen from the
range [−0.5, 0.5].
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Replication

A network replicates by making a copy of itself and then modifying the
copy as follows:

• Each weight is incremented by N(0, 0.052), a value drawn from
the normal distribution with mean 0 and standard deviation
0.05.

• With 0.5 probability, we modify the network architecture. If we
modify the architecture, then we do so by randomly choosing
between adding or deleting a hidden node. If we add a node, then
we initialize its associated weights with values of 0.

Note that when modifying the architecture, we abort any decision
that would lead the number of hidden nodes to exit the range
{1, 2, . . . , 10}. More specifically:

• We abort the decision to delete a hidden node if the number of
hidden nodes is H = 1.

• We abort the decision to add a hidden node if the number of
hidden nodes is H = 10.
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Evaluation

In each generation, each network plays 32 games against a near-perfect
but beatable opponent. The evolving network is always allowed to move
first, and receives a payoff of 1 for a win, 0 for a tie, and−10 for a loss.

The near-perfect opponent follows the strategy below:

With 10% chance:
- Randomly choose an open square to move into.

Otherwise:
- If the next move can be chosen to win the game , do so

.

- Otherwise , if the next move can be chosen to block
the opponent ’s win , do so.

- Otherwise , if there are 2 open squares in a line with
the opponent ’s marker , randomly move into one of

those
squares.

- Otherwise , randomly choose an open square to move
into.

Once the total payoff (over32 games against the near-perfect opponent)
has been computed for each of the 100 networks (the 50 parents and
their 50 children), a second round of evaluation occurs to select the
networks that will proceed to the next generation and replicate.

In the second round of evaluation, each network is given a score that
represents how its total payoff (from matchups with the near-perfect
opponent) compares to the total payoffs of some other networks in
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the same generation. Specifically, each network is compared to 10

other networks randomly chosen from the generation, and its score
is incremented for each other network that has a lower total payoff.

The top 50 networks from the second round of evaluation are selected
to proceed to the next generation and replicate.

Note: The actual paper states that the networks with the highest
performance from the second round of evaluation are selected.
Interpreted formally, it would suggest to only select those network(s)
that had the absolute maximum performance. But this would lead the
generations to rapidly shrink in size, resulting in premature convergence.
The informal interpretation (top 50 networks) leads the generation
sizes to stay the same, which avoids the issue.
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Performance Curve

Generate a performance curve as follows:

1. Run the above procedure for 800 generations, keeping track of
the maximum total payoff (i.e. the best player’s total payoff) at
each generation.

2. Then repeat 19 more times, for a total of 20 trials of 800

generations each.

3. Finally, plot the mean maximum total payoff (averaged over the
20 trials) as a function of the number of generations.

The resulting curve should resemble the following shape:

Once you’re able to generate a good performance curve, store the neural
network parameters for the best player from the last generation so that
you can play it against a random player and verify its intelligence. (It
should beat the random player the vast majority of the time.)
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Debugging: Sanity Checks

Before you attempt to run the full 20 trials of 800 generations with 50

parent networks in each generation, run a quicker sanity check (say, 5
trials of 50 generations with 10 parent networks in each generation) to
make sure that the curve looks like it’s moving in the correct direction
(upward).

Given the complexity of this project, your plot will likely not come out
correct the first time you try to run it, even if you feel certain that you
have correctly implemented the specifications of the paper.

If and when this happens, you will need to add plenty of validation to
your implementation. A non-exhaustive list of validation checks and
unit tests are provided below for the first half of the paper specifications.
You will need to come up validation checks for the second half on your
own.

1. Each generation, check that each individual neural network has
a valid number of nodes in each layer.

2. Whenever you convert a board to input for a neural network,
check that the resulting entries are all in the set {−1, 0, 1} add
up to 0 before the neural network player makes its next move.

3. Create a unit test takes a variety of possible board states and
output vectors from the neural network and then verifies that
the player makes the appropriate move.
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4. Check that the initial weights are between −0.5 and 0.5, no
weight stays the same after replication, some weights increase and
some weights decrease after replication (i.e. they don’t all move
in the same direction), and no weight changes by more than 0.3

(which is 6 standard deviations).

5. Check that after replication, some networks have an additional
hidden layer node, other networks have one less hidden layer
node, and other networks have an unchanged number of hidden
layer nodes.

6. . . .

If the plot still doesn’t look right even after your sanity checks are
implemented and passing, then create a log of the results using the
template shown below.

(Sometimes there can be issues that you don’t anticipate in your sanity
checks, that become apparent when you take a birds-eye view and
manually look at concrete numbers.)
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HYPERPARAMETERS
Networks per generation: 20
Selection percentage: 0.5

ABBREVIATIONS
star (*) if selected
H = number of non -bias neurons in hidden layer
[min weight , mean weight , max weight]
(wins : losses : ties)
(IDs won against | IDs lost against | IDs tied

against)

GENERATION 1

NN 1 (parent , H=7, [-0.42, 0.02, 0.37])
payoff -300 (0:30:2)
score 2 (7 ,17|2 ,7 ,16 ,12 ,13|8 ,11 ,19)

* NN 2 (parent , H=3, [-0.49, -0.05, 0.45])
payoff -190 (10:20:2)
score=7 (3 ,8 ,9 ,11 ,12 ,14 ,19|15|4 ,10)

...

* NN 20 (child of 10, H=5, [-0.45, 0.03, 0.48])
payoff -200 (10:21:1)
score 8 (7 ,17|2 ,7 ,16 ,12 ,13|8 ,11 ,19)]
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GENERATION 2

NN 2 (parent , ...)
payoff ...
score ...

* NN 4 (parent , ...)
payoff ...
score ...

...

NN 20 (parent , ...)
payoff ...
score ...

* NN 21 (child of 2, ...)
payoff ...
score ...

NN 40 (child of 20, ...)
payoff ...
score ...

...
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42. Reimplementing
Blondie24

Fogel and Chellapilla’s Blondie24 was published over the course of two
papers. Here we shall address the first paper, Evolving Neural Networks
to Play Checkers without Relying on Expert Knowledge, published in
1999.

This first version of Blondie24 operated under similar principles as
Fogel’s tic-tac-toe player, described previously. However, there are a
number of important differences that are detailed below.
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Neural Network Architecture

The neural net consists of the following layers:

• Input Layer: 32 linearly-activated nodes and 1 bias node
(checkers board has 64 squares but only half of them are used)

• First Hidden Layer: 40 tanh-activated nodes and 1 bias node

• Second Hidden Layer: 10 tanh-activated nodes and 1 bias node

• Output Layer: 1 tanh-activated node

Additionally, there is a special node called a piece difference node whose
activity is the sum of the 32 input nodes. The piece difference node
connects directly to the output node, bypassing all the layers. The
connection, of course, has a variable weight that is learned by the
network.

In total, there are 1742 weights (including the weight of the piece
difference node).

Converting Board to Input

This is similar to tic-tac-toe in that the player’s own regular pieces are
labeled with 1, empty squares with 0, and opponent regular pieces with
−1. However, the player’s own king pieces are labeled with K, and
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the opponent’s with−K, where K is a variable that is learned by the
network.

An action is chosen via the minimax algorithm using the following
heuristic evaluation function. As the network learns, this heuristic
evaluation function will become more accurate.

1. If a board state is a win or a loss, return 1 or−1 respectively.

2. Otherwise, pass the board state as input to the neural network
and return the activity of the output node.

The search depth is set to d = 4 to allow for reasonable execution times.

Evolution Procedure

The initial population consists of 15 networks with initial weights
randomly chosen from the range [−0.2, 0.2],mutation rates set toα =

0.05, and K = 2. Each network is initialized with the same number
of nodes (as described earlier), which remains constant throughout the
course of evolution (i.e. nodes are not added nor deleted).

Replication

The evolution procedure follows the same rules as those described
previously when evolving neural network regressors.
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However, in addition to updating the mutation rate and weights, K is
also updated through the following rule:

Kchild = KparenteN(0,1)/
√
2

Note that K is constrained to the range [1, 3], meaning that

• if K falls below 1 then it is immediately set to 1, and

• if K rises above 3 then it is immediately set to 3.

Evaluation

Each of the 30 networks in a generation plays a game of checkers
against 5 other networks randomly selected (with replacement) from
the generation. The network is allowed to move first during each game,
and it receives a payoff of 1 for a win, 0 for a tie, and−2 for a loss. (A
tie is declared after 100 moves by each player with no winner.)

The15networks with the highest total payoffs are selected as the parents
of the next generation.
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Performance Curve

In their paper, Fogel and Chellapilla did not create a curve to
demonstrate performance as a function of number of generations.
Instead, they played their final network against human players online
and demonstrated that it achieved an impressive performance rating.

Here, we will create a performance curve by playing the evolving
networks against an external algorithmic strategy and measuring their
performance. This can be accomplished as follows:

1. Develop a heuristic checkers player by hand that plays slightly
intelligently. It should capitalize on obvious opportunities to
move its pieces forward and jump opponent pieces, but it should
not attempt to plan into the future.

2. During each generation of the evolutionary procedure, before
replication, play each of the 15 parent networks against your
heuristic player and compute the average payoff.

3. Keep evolving new generations until the average payoff levels off.

The resulting plot should show that the average payoff increases with
the number of generations (up to some point), demonstrating the that
the evolving networks are learning to play checkers intelligently.

Keep in mind that your hand-crafted heuristic checkers player is
not actually used during the evolution procedure – it is only used
to measure how the evolved networks perform against an external
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opponent. So, anything that the evolving networks "learn" is organic
and self-taught, not tailored to the specifics of your hand-crafted player.
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43. Reimplementing
Blondie24: Convolutional
Version

Fogel and Chellapilla followed up their 1999 Blondie24 paper with
another paper, Evolving an Expert Checkers Playing Program without
Using Human Expertise, published in 2001.

Convolutional Layer

This paper was very similar to the 1999 paper, but it had one key
difference that improved the performance of the evolved players: they
inserted a convolutional layer between the input layer and first hidden
layer in their neural network.
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• Input Layer: 32 linearly-activated nodes and 1 bias node
(checkers board has 64 squares but only half of them are used)

• Convolutional Layer: one tanh-activated node for eachN×N
subsquare of the checkers board withN = 3, 4, 5, 6, 7, 8.These
nodes also receive input from the bias node in the input layer.
Also, this convolutional layer contains 1 bias node that connects
to the next layer.

• First Hidden Layer: 40 tanh-activated nodes and 1 bias node

• Second Hidden Layer: 10 tanh-activated nodes and 1 bias node

• Output Layer: 1 tanh-activated node. Note that this node also
receives input from the piece difference node.

Recall that the checkers board has dimensions 8×8. So, there is a single
8×8 subsquare (namely, the entire board). Likewise, there are four7×7
subsquares, nine 6 × 6 subsquares, sixteen 5 × 5 subsquares, sixteen
5 × 5 subsquares, twenty-five 4 × 4 subsquares, and thirty-six 3 × 3

subsquares. Including the bias node, the total number of nodes in the
convolutional layer is

1 + 4 + 9 + 16 + 25 + 36 + 1 = 92.

These nodes receive 945 weights from the input layer (including the
input bias node):
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The convolutional layer is also known as a spatial preprocessing layer
because it allows the network to perceive spatial characteristics of
the board at different levels of “zoom”. Today, most modern image
classification systems leverage convolutional neural networks.

With the addition of the convolutional layer, the total number of
weights in the Blondie24 neural network increases to 5047, including
the weight from the piece difference node to the output layer. These
weights are all variable and are learned through the process of evolution.

King Value Update

There was one more minor difference in the 2001 paper. The king value
was updated in a slightly different way:

Kchild = Kparent + δ

where δ is randomly chosen from {−0.1, 0, 0.1} . The updated value
of K is still constrained to range [1, 3].
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Performance Curve

Generate a performance curve the same way you did for the
previous (non-convolutional) implementation of Blondie24, playing
your evolved networks against your heuristic strategy. The curve should
look fairly similar but should ideally level off to a slightly higher level of
performance.

410


	Preamble: The Story of Math Academy's Eurisko Sequence
	I Hello World
	1.Some Short Introductory Coding Exercises
	2.Converting Between Binary, Decimal, and Hexadecimal
	3.Recursive Sequences
	4.Simulating Coin Flips
	5.Roulette Wheel Selection
	6.Cartesian Product

	II Searching and Sorting
	7.Brute Force Search with Linear-Encoding Cryptography
	8.Solving Magic Squares via Backtracking
	9.Estimating Roots via Bisection Search and Newton-Raphson Method
	10.Single-Variable Gradient Descent
	11.Multivariable Gradient Descent
	12.Selection, Bubble, Insertion, and Counting Sort
	13.Merge Sort and Quicksort

	III Objects
	14.Basic Matrix Arithmetic
	15.Reduced Row Echelon Form and Applications to Matrix Arithmetic
	16.K-Means Clustering
	17.Tic-Tac-Toe and Connect Four
	18.Euler Estimation
	19.SIR Model For the Spread of Disease
	20.Hodgkin-Huxley Model of Action Potentials in Neurons
	21.Hash Tables
	22.Simplex Method

	IV Regression and Classification
	23.Linear, Polynomial, and Multiple Linear Regression via Pseudoinverse
	24.Regressing a Linear Combination of Nonlinear Functions via Pseudoinverse
	25.Power, Exponential, and Logistic Regression via Pseudoinverse
	26.Overfitting, Underfitting, Cross-Validation, and the Bias-Variance Tradeoff
	27.Regression via Gradient Descent
	28.Multiple Regression and Interaction Terms
	29.K-Nearest Neighbors
	30.Naive Bayes

	V Graphs
	31.Breadth-First and Depth-First Traversals
	32.Distance and Shortest Paths in Unweighted Graphs
	33.Dijkstra's Algorithm for Distance and Shortest Paths in Weighted Graphs
	34.Decision Trees
	35.Introduction to Neural Network Regressors
	36.Backpropagation

	VI Games
	37.Canonical and Reduced Game Trees for Tic-Tac-Toe
	38.Minimax Strategy
	39.Reduced Search Depth and Heuristic Evaluation for Connect Four
	40.Introduction to Blondie24 and Neuroevolution
	41.Reimplementing Fogel's Tic-Tac-Toe Paper
	42.Reimplementing Blondie24
	43.Reimplementing Blondie24: Convolutional Version


