Shading via Sine

Drawing Mathematics with Desmos | Justin Skycak

Setup. Navigate to <u>https://www.desmos.com/calculator</u>. Be sure to sign in so that you can save your graph.

Demonstration - High Frequency. Observe the graph as you type each of the following inputs. In general, the graph of $y = \sin(vx)$ looks more and more solid as v increases.

 $y = \sin(x)$ $y = \sin(10x)$ $y = \sin(100x)$ $y = \sin(1000x)$

Demonstration - Thickening a Curve. Observe the graph as you type each of the following inputs. In general, for large v, the graph of $y = f(x) + A\sin(vx)$ thickens the curve y = f(x) to have a vertical thickness of 2A.

$$y = x + 0.1 \sin(1000x)$$

 $y = x^2 + 0.1 \sin(1000x)$

$$y = x^{2} + 0.5 \sin(1000x)$$
$$y = \sin(x) + 0.1 \sin(1000x)$$
$$y = \sin(x) + 0.5 \sin(1000x)$$

Demonstration - Varying Amplitude. Observe the graph as you type each of the following inputs. In general, when v is large, the graph of $y = f(x)\sin(vx)$ shades the area between the graphs of y = -f(x) and y = f(x)

$$y = x \sin(1000x)$$
$$y = x^2 \sin(1000x)$$
$$y = (\sin x) \sin(1000x)$$

Demonstration - Shifts. Observe the graph as you type each of the following inputs. In general, the graph of $y = f(x - a)\sin(vx) + b$ is the graph of $y = f(x)\sin(vx)$ shifted right by a units and up by b units.

$$y = x^2 \sin(1000x)$$

 $y = (x - 2) \sin(1000x) + 5$

Demonstration - Limitations. Observe the graph as you type each of the following inputs.

$$y = \sin(1000x) \{5 < x < 10\}$$
$$y = (x - 2)^2 \sin(1000x) \{2 < x < 4\}$$
$$y = (\sqrt{x - 3}) \sin(1000x) + 5 \{3 < x < 4\}$$

Exercise. Reproduce the downward parabola shown below.

Exercise. Use the parabola as the amplitude of a high-frequency sine function to create a shaded area.

Exercise. Shift the shaded area up and right.

Exercise. Draw parabolas around the shaded area to create an eye.

Exercise. Create another eye.

Exercise. Create a parabola in the shape of a mouth.

Exercise. Thicken the parabola which forms the shape of the mouth.

Challenge. Make other kinds of emoji faces, such as a sad face or a laughing face.